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Optimizing single-photon quantum radar detection through partially postselected filtering

Liangsheng Li ,1,* Maoxin Liu,2 Wen-Long You ,3 Chengjie Zhang ,4 Shengli Zhang,5

Hongcheng Yin,1 Zhihe Xiao,1 and Yong Zhu1

1National Key Laboratory of Scattering and Radiation, Beijing 100854, China
2School of Systems Science and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China

3College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
4School of Physical Science and Technology, Ningbo University, Ningbo 315211, China

5Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, Beijing 100081, China

(Received 12 June 2023; revised 13 October 2023; accepted 23 February 2024; published 7 March 2024)

In this study, we explore an approach aimed at enhancing the transmission or reflection coefficients of
absorbing materials through the utilization of joint measurements of entangled photon states. On the one hand,
through the implementation of photon catalysis in the reflected channel, we can effectively modify the state of
the transmission channel, leading to a notable improvement in the transmission ratio. Similarly, this approach
holds potential for significantly amplifying the reflection ratio of absorbing materials, which is useful for
detecting cooperative targets. On the other hand, employing statistical counting methods based on the technique
of heralding on zero photons, we evaluate the influence of our reflection enhancement protocol for detecting
noncooperative targets, which is validated through Monte Carlo simulations of a quantum radar setup affected by
Gaussian white noise. Our results demonstrate a remarkable enhancement in the signal-to-noise ratio of imaging,
albeit with an increase in mean-square error. These findings highlight the potential practical applications of our
approach in the implementation of quantum radar.
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I. INTRODUCTION

Radar is a highly effective device that utilizes elec-
tromagnetic signals to detect and determine the range of
unknown targets [1]. Over the past few decades, scientists
have conducted extensive theoretical and experimental re-
search to enhance the performance of realistic radar systems.
In all radar systems, a high signal-to-noise ratio (SNR)
plays a key role that determines the sensitivity and effi-
ciency in realistic target detection. To improve the SNR,
the most straightforward approach is to employ optical or
microwave photon detectors that possess both high sensi-
tivity and high detection efficiency. Ultrasensitive detectors
that are capable of counting single photons or even single
microwave photons have been developed, providing a sub-
stantial enhancement in accuracy compared to conventional
radar systems. The quantum effects at the single-photon level
are negligible, undoubtedly heralding a new era of quantum
radar in which techniques from quantum information science
are harnessed for precise positioning, ranging, and detec-
tion of conventional targets. Meanwhile, quantum information
science has become a flourishing interdisciplinary field that
combines quantum mechanics, computation, and information
theory. Using quantum mechanics principles, quantum infor-
mation science adopts a revolutionary approach to encode,
store, transmit, and manipulate information [2,3] which seeks
to successfully surpass the performance limits of classical
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information systems. For example, quantum metrology, in
which quantum entangled states are prepared as probes and
interferometric measurements are conducted during the probe
readout, can potentially reach the sensitivity limit dictated by
Heisenberg’s principle [4–7]. This implies that the number
of repetitions needed to achieve a certain level of precision
is merely the square root of that required in classical mea-
surement strategies, providing a quadratic acceleration of the
measurement process.

Entanglement quantum radar was pioneered by Lloyd [8]
and is alternatively referred to as quantum illumination radar,
which represents a genuine quantum radar system, wherein
quantum entanglement is sent to interrogate the target and
joint quantum measurements are used to detect the resulting
echo signal. Many sophisticated techniques, such as efficient
entanglement generation, optimized discrimination of quan-
tum states, manipulation of photon numbers using photon
catalysis, and high-resolution single-photon detection in opti-
cal and microwave regimes, can be seamlessly integrated into
quantum radar systems, making them increasingly suitable for
various commercial and military applications. Various types
of quantum states have undergone testing and evaluation in
the context of entanglement quantum radar, including photon-
number correlation states [9], N-entangled photons [10],
two-mode squeezing states (TMSSs) [11], photon-subtracted
TMSSs [12], photon-added TMSSs [13], multimode quantum
entanglement states [14], x-ray quantum entanglement [15],
and even microwave quantum entanglement states [16]. Typ-
ically, achieving a 6-dB advantage over conventional radar
through entanglement quantum illumination necessitates the
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implementation of joint quantum measurements on all echo
signals and auxiliary entangled modes [17]. To alleviate the
substantial demands on quantum storage capacity, more effi-
cient joint-measurement-free measurement schemes become
imperative. A mode-by-mode scheme for a quantum receiver
with balanced homodyne measurement and optical paramet-
ric amplification was designed [18]. Zhang et al. proposed
to use noiseless linear amplification to enhance the receiver
[19], which is also applicable to quantum illumination with
Gaussian states [20]. An optimal receiver utilizing iterative
sum-frequency generation was proposed, demonstrating the
possibility of achieving the quantum Chernoff bound for
quantum illumination in the low-signal brightness limit [21].

To further explore the unprecedent potential of quan-
tum radar, various characteristics of quantum radar have
been theoretically studied. The quantum radar cross sec-
tion (QRCS) was introduced via quantum electrodynamics
and interferometric principles [22] and has mainly been
explored theoretically. A closed-form expression for and anal-
ysis of the slumping effect of a cuboid in the scattering
characteristics of quantum radar were derived [23]. Further-
more, a method for calculating the orthogonal projected area
of a target in each incidence, which is a key component
in determining the QRCS of any arbitrary three-dimensional
convex target, was determined [24]. Entanglement quantum
radar can enhance various applications, including data read-
ing [25,26], imaging [27], velocity measurement [28], target
ranging [29], and biomedical imaging [30,31]. Additionally,
research has explored the enhancement of lidar through quan-
tum entanglement [32]. More importantly, recent experiments
in quantum radar made significant progress [33–35].

However, most of the results concerning entanglement
quantum radar assume cooperative targets that are highly re-
flective and lossless. In practical scenarios, it is more likely
that the target is noncooperative or even offensive, especially
when covered with absorbing materials. In such cases, the
reflectivity or transmissibility of the target is extremely low,
posing a challenge to collecting sufficient echo signals for
effective quantum measurements. Consequently, a photon-
filtering strategy that can potentially improve the transmission
or reflection coefficients of noncooperative targets becomes
very important in all quantum radar systems. In this work, we
propose a photon-filtering scheme to enhance the transmis-
sion coefficients which can be easily adapted to enhance the
reflection coefficients. Moreover, we introduce two methods
to implement the photon-filtering scheme. The first method
is based on photon catalysis [36–41], and the second method
involves the technique of heralding on zero photons [42].
Both approaches can significantly improve the imaging of
absorbing targets.

The rest of this paper is organized as follows. In Sec. II, we
illustrate the effective enhancement of transmission or reflec-
tion signals through the utilization of a partially postselected
quantum filter. Section III introduces the implementation of
the photon catalysis, which is useful for detecting cooper-
ative targets. Based on the technique of heralding on zero
photons [42], we present another photon-filtering scheme
for detecting noncooperative targets in Sec. IV. We employ
statistical counting methods to simulate the effects of reflec-
tion enhancement and demonstrate the effectiveness of our

enhancement scheme for significantly improving the SNR of
imaging through a Monte Carlo simulation on Gaussian white
noise. Finally, Sec. V summarizes our results.

II. PARTIALLY POSTSELECTED FILTER

In this section, we illustrate how the transmission signal
or the reflection signal is effectively enhanced. The main idea
is to manipulate a quantum state to be measured by encod-
ing a prepared parameter. To be concrete, photon filtering is
employed to enhance the target signal. The photon filtering
employed in this work utilizes a form of postselection [43,44].
Past research has shown that postselection can significantly
alter photon statistics [45–48]. Recent theoretical research
has suggested that postselected quantum experiments have the
potential to surpass the Heisenberg limit by allowing quantum
states to carry additional Fisher information [49]. Such benefit
may be connected to the negative quasiprobability distribution
[50–54]. Improved quantum advantages can be attained when
properly conditioned experiments are performed with a lower
rate of successful postselection [55,56]. Notably, in a recent
polarimetry experiment, a quantum postselection protocol
substantially elevated the precision of per-detected photons by
more than 2 orders of magnitude [44]. This progress inspires
us to explore the potential for improving the measurement of
the SNR in reflections by devising a postselection protocol
involving an absorbing material.

Consider a photon state

|s〉 =
∑

n

cn|n〉, (1)

where |n〉 represents a photonic Fock state. The photon-
filtering-based noiseless quantum amplifiers are produced
using the nonunitary operation [57]

Gsc = 1

g
(|0〉〈0| + g|1〉〈1|), (2)

where g > 1 is the gain. Then applying Gsc acting on the state
|s〉, one readily obtains the state

|qs〉 = c0

g
|0〉 + gc1|1〉. (3)

The components other than |0〉 and |1〉 are eliminated from
the state |qs〉. For convenience, we apply the partially postse-
lected filter, which is defined by the operator via conditional
measurements:

F = |0〉〈0| + p|1〉〈1|, (4)

in which p is a postselection parameter. We will see in the
following that a partially postselected quantum filter can be
utilized to effectively improve both the transmission and the
reflection of a single-photon-state input.

Enhanced transmission based on a quantum filter. First,
we discuss the scheme to enhance the transmission using the
partially postselected quantum filter, as illustrated in Fig. 1(a).
The setup consists of three parts, including two-channel scat-
tering, a partially postselected quantum filter, and a signal
counter module. The two-channel scattering is implemented
by a beam splitter, which is a finite-thickness slab, as shown
in Fig. 1(a). There are two channels of inputs, including input
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FIG. 1. (a) An implementation of a partially postselected filter
via conditional measurements in a beam splitter. A single photon
is prepared in the input mode of a dispersion beam splitter with
reflectivity |r(ω)|2. The incident angle is θ = π/4. The performance
of the partially postselected filter with different postselection pa-
rameters is shown. (b) The average photon number in channel 3
versus incident frequency. (c) The amplification ratio versus incident
frequency. Increasing p reduces the amplification.

mode 1 of a single-photon state and input mode 2 of the
vacuum state, which are divided by the beam splitter into the
outputs of modes 3 and 4. Assuming that in the dispersive slab
the absorption might be neglected, the input-output formal-
ism between the annihilation operators of input modes �PT =
(a1(ω), a2(ω))T and output modes �OT = (a3(ω), a4(ω))T can
then be described by a linear relation as

�O = T (ω) · �P, (5)

where the operators of each channel are assumed to satisfy the
following commutation relations:

[aα (ω), a†
β (ω′)] = δ(ω − ω′)δ(α − β ),

[aα (ω), aβ (ω′)] = [a†
α (ω), a†

β (ω′)] = 0. (6)

The transformation matrix T (ω) ∈ SU(2) is a unitary matrix,
i.e., T †(ω)T (ω) = I , and thus can be explicitly expressed as

T (ω) =
(

t (ω) r(ω)
−r∗(ω) t∗(ω)

)
. (7)

Here r(ω) and t (ω) are reflection and transmission coeffi-
cients, respectively.

In order to determine the transformation matrix T (ω) of
the dispersive slab, we adopt the lossless Drude model, where
the permittivity is ε = 1 − ω2

p/ω
2 and the permeability is

μ = 1. Without loss of generality, we choose a set of typi-
cal parameters of the beam splitter. The plasma frequency is
ωp = 1014 Hz, and the slab thickness is L = 3 µm. Thus, the
reflection and transmission coefficients of the beam-splitter
model with an incident angle θ are given by

t (ω) = α

β2 − 1
e−iω̄ cos θ , r(ω) = αβ − β2 + 1

β2 − 1
, (8)

with the parameters

ω̄ = ω

ωp
,

α = 4Dω̄ cos θ (D2 + sin2 θ )(e−iD − eiD),

β = (D2 + sin2 θ )(e−iD − eiD) + Dω̄ cos θ (e−iD + eiD)

2Dω̄ cos θ
,

D =
√

(ω̄ cos θ )2 − 1. (9)

With an explicit description of the transformation matrix
T (ω), we can accurately compute the scattering process of the
beam splitter. To proceed, we focus on a single-photon state
residing in mode 1, characterized by solely positive frequen-
cies, which is defined as

|11〉 =
∫ ∞

0
dω	(ω)a†

1(ω)|01〉, (10)

where 	(ω) is the frequency distribution function. Mode 2
is initially prepared in the vacuum state |02〉. Thus, the input
state is

|in〉 =
∫ ∞

0
dω	(ω)a†

1(ω)|01〉 ⊗ |02〉, (11)

satisfying

〈in|in〉 =
∫ ∞

0
dω|	(ω)|2 = 1. (12)

According to the input-output formalism, the output mode
can be given by

|out〉 =
∫ ∞

0
dω	(ω)

[
t (ω)a†

3(ω) − r∗(ω)a†
4(ω)

]|0〉. (13)

The state |out〉 is an entangled state. To clearly see it, we
rewrite Eq. (13) as

|out〉 =
∫ ∞

0
dω	(ω)

[
t (ω)

∣∣1ω
3

〉 ⊗ ∣∣0ω
4

〉 − r∗(ω)
∣∣0ω

3

〉 ⊗ ∣∣1ω
4

〉]
.

(14)

We then apply a partially postselected filter, which is given by

FT = |04〉〈04| + p|14〉〈14|, (15)

where the postselection parameter |p| ∈ [0, 1]. Here the par-
tially postselected filter acts as a Kraus operator [57] for
the single-photon-state input. The state FT |out〉 can be easily
obtained by replacing r∗ with pr∗ in Eq. (13), namely,

FT |out〉 =
∫ ∞

0
dω	(ω)

[
t (ω)a†

3(ω) − pr∗(ω)a†
4(ω)

]|0〉.
(16)

If we can perform a quantum state filtering on the field
in mode 4, then the filter allows the |out〉 state to pass with
probability

A = 〈out|F †
T FT |out〉. (17)

We now focus on the photon number in the partially posts-
elected quantum detection experiments. The postselection is
realized by a projective measurement after a unitary evolution
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set by the beam splitter but before the final photon detection.
Then, the postselected state becomes

|p〉 = FT |out〉/
√

A. (18)

Note that this state should be renormalized by the passing
probability, which stems from the projective measurement
implemented by the partially postselected filter with limited
efficiency.

However, the filter effectively amplifies the average photon
numbers in mode 3,

〈n3〉p =
∫ ∞

0 dω|	(ω)t (ω)|2∫ ∞
0 dω|	(ω)|2[|t (ω)|2 + |pr(ω)|2]

. (19)

To illustrate the amplification effect occurring specifically at
frequency ω0, we employ the Dirac δ distribution, i.e.,

|	(ω)|2 = δ(ω − ω0). (20)

In this case, the mean photon number in channel 3 can be
readily obtained as

〈n3〉p = T (ω0)

T (ω0) + |p|2R(ω0)
. (21)

We observe that the |out〉 state is recovered for p = 1 with
〈n3〉p=1 = T (ω0) < 1, which is equal to the transmission ra-
tio without the operation of the partially postselected filter.
Another limit is the case of p = 0 with 〈n3〉p=0 = 1, which
implies that the effective transmission is enhanced. For a
generic value of 0 < p < 1, we can find from Eq. (21) that
〈n3〉p is larger than 〈n3〉p=1 since positive-valued T (ω0) and
R(ω0) satisfy the constraint that T (ω0) + R(ω0) = 1. This
clearly suggests that the partially postselected filter amplifies
the average photon numbers in channel 3. To better quantify
the effect, we thus define an amplified ratio given by

K = 〈n3〉p

〈n3〉p=1
. (22)

The larger the ratio K is, the better the amplification effect
is. A large average photon number is typically easier to detect
than a smaller one. If the average photon number 〈n3〉p=1 � 1,
then the partially postselected filter boosts the amplified ratio
K ≈ 1

|p|2 . The amplified ratio can be tuned to be arbitrarily
large if 〈n3〉p=1 is arbitrarily small.

The transmission enhancement scheme is applicable not
only to the δ distribution in Eq. (20) but also to the general
frequency distribution of the incident state. To illustrate this,
we consider a Gaussian frequency distribution:

	(ω) = 1√
σπ

e−i ω−ω0
ω0τ e− 1

2σ2

(
ω−ω0

ω0

)2

. (23)

Figure 2(a) illustrates how the average transmitted photon
number 〈n3〉 is affected by varying the value of p while keep-
ing the width of the photon field frequency distribution fixed.
As the value of p decreases, the efficiency of the transmission
is improved. This effect is more prominently demonstrated in
Fig. 2(b), where the gain K increases significantly with de-
creasing values of p. Figures 2(c) and 2(d) depict the impact of
the width of the frequency distribution of the photon field on
the amplification of transmission in the amplification scheme.

σ=1/40σ=1/40

ω0/ω

ω0/ω

σ=1/30
σ=1/40
σ=1/60

ω0/ω

σ=1/30
σ=1/40
σ=1/60

ω0/ω

FIG. 2. The results for Gaussian frequency distribution in
Eq. (23). (a) The average photon number in channel 3 〈n3〉 and
(b) the amplification ratio K as a function of incident frequency with
σ = 1/40 and p = 0.1, 0.5, 1.0. (c) The average photon number
in channel 3 〈n3〉 and (d) the amplification ratio K as a function of
incident frequency with σ = 1/30, 1/40, 1/60 and p = 0.7.

It is noteworthy that a narrower frequency distribution en-
hances the amplification effect, particularly in the vicinity of
the center of the distribution denoted as ω0.

III. IMPLEMENTATION OF PHOTON FILTERING
BY PHOTON CATALYSIS

Section II introduced a general approach for enhancing
transmission or reflection channels via photon filtering. How-
ever, the specific implementations of the photon-filtering
operation in Eq. (15) have not been discussed yet. To ad-
dress this gap, we will present two methods for implementing
Eq. (15). The first method, based on photon-catalysis tech-
nology, is primarily utilized for cooperative targets. Figure 3
shows implementations of the photon catalysis, which effec-
tively implements the filter in Eqs. (4) and (15). In Fig. 3(a),
the transmission ratio of beam splitter BS1 is T , and that of
BS2 is p2. The input in channel 1 is a single-photon state,
while channels 2 and 5 are in a vacuum state. If the single-
photon detector obtains zero photons, the entangled state of
channels 3 and 6 becomes

|ψ〉 =
√

T |1〉|0〉 + p
√

1 − T |0〉|1〉√
T + (1 − T )p2

, (24)

from which we obtain the measured photon number in channel
3 as follows:

〈n〉p = T

T + p2(1 − T )
, (25)

which recovers Eq. (21).
However, the scheme in Fig. 3(a) requires a single-photon

detector with 100% accuracy, or the single-photon state |1〉
will be faultily considered a vacuum |0〉. To accurately
detect the zero-photon state at detector D1, as shown in
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FIG. 3. A sketch for implementing quantum catalysis using
(a) zero-photon detection, (b) ideal single-photon detection, and
(c) realistic single-photon detection. Both detectors D1 and D2 are
ideal single-photon detectors. The beam splitter BS3 with a trans-
mittance of η, combined with the ideal single-photon detector D3

capable of photon number resolution, is used to simulate a realistic
single-photon detector with detection efficiency of η. The input opti-
cal quantum states in modes 2 and 8 are the vacuum state |0〉.

Fig. 3(a), a heralding technique on detection of zero photons
is necessary [42]. This, however, requires the addition of a
pulsed-laser light source, increasing the complexity and cost
of the setup. In this study, we propose alternative methodolo-
gies that circumvent the need for detecting the zero-photon
state. Specifically, we design the alternative scheme shown
in Fig. 3(b). If the single-photon detector D2 obtains a single
photon (D2 is a photon-number-resolving detector, which can
distinguish one from two photons), the entangled state of
channels 3 and 6 becomes

|ψ〉 = p
√

T |1〉|0〉 + (
2p2 − 1

)√
1 − T |0〉|1〉√

p2T + (1 − T )(2p2 − 1)2
, (26)

from which we obtain the measured photon number in channel
3 as follows:

〈n〉p = T p2

p2T + (1 − T )(2p2 − 1)2 , (27)

which also enhances the photon number.

FIG. 4. Amplification ratio K as a function of p. η is chosen to
be 0.80, 0.85, 0.90, and 0.95, from bottom to top.

The scheme in Fig. 3(b) also works when the detector
is a realistic single-photon detector with nonunit detection
efficiency. In Fig. 3(c) we use beam splitter BS3 with trans-
missivity η and an ideal single-photon detector to represent
a detector with efficiency η. The input modes of channels 2
and 8 are injected with the vacuum state |0〉, and the outgoing
mode channel 8′ is discarded. When detector D3 registers
a single photon, the photon catalysis process is considered
successful. The probability of photon catalysis is as follows:

Pp,η = η[p2T + (1 − T )(4p4η − 4p2η + 1)], (28)

and the output states in channels 3 and 6 are now a mixed state
given by

ρp,η = 4p2(1 − p2)(1 − T )η(1 − η)|0〉|0〉〈0|〈0| + |ψ̃〉〈ψ̃ |
Pp,η

,

(29)

with |ψ̃〉 being an un-normalized state,

|ψ̃〉 = √
η[p

√
T |1〉|0〉 + √

1 − T (2p2 − 1)|0〉|1〉]. (30)

For η → 1, it can be easily checked that |ψ̃〉 (if normalized)
is exactly the state in Eq. (26). Moreover, one can see that the
nonunit detection efficiency induces a non-negligible vacuum
state component |0〉|0〉 in ρp,η, which does not ultimately
contribute to the average photon number in channel 3. This
explains why the scheme shown in Fig. 3(b) remains robust
even with a realistic single-photon detector. The average pho-
ton number in Fig. 3(c) is now calculated as follows:

〈n〉p,η = T p2

p2T + (1 − T )(4p4η − 4p2η + 1)
. (31)

The amplification ratio in the case of the nonunit detector is
given by

Kp,η = p2

p2T + (1 − T )(4p4η − 4p2η + 1)
. (32)

A large amplification ratio, K � 1, can be observed even
when using realistic detectors. In Fig. 4, we show the ampli-
fication ratio for η values of 0.80, 0.85, 0.90, and 0.95. For
p > 0.5, a rapid increase in K is observed.
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FIG. 5. A general schematic representation of a reflection sys-
tem. “PEC” refers to a perfect electric conductor with total reflection,
and the black portion represents its absorbing material surface. The
input channel is labeled a, the reflection is denoted b, the noise
from the absorbing surface is represented as f , and the transmission
channel is labeled h.

Quantum radar aiming to detect the absorption. In an anal-
ogous way, the above scheme to enhance the transmission can
be applied to improve the detection of the reflected signal and
thus can be employed to build a quantum radar for detecting
cooperative targets. Figure 5 depicts a reflection process on an
absorbing material. The incidents received through channel
a are split into a reflected channel and an absorbed channel
on the surface, known as channel b and channel h. A noise
caused by the material of channel f should be included. Com-
paring the transmission process in Fig. 1, there is a simple
mapping relation between the indices of channels {1, 2, 3, 4}
and {a, f , h, b}.

The general relation between the input and output opera-
tors including loss is(

b(ω)
h(ω)

)
= T (ω) ·

(
a(ω)
f (ω)

)
, (33)

where

T (ω) =
(

r(ω) k(ω)
−k∗(ω) r∗(ω)

)
, (34)

with

|r(ω)|2 + |k(ω)|2 = 1. (35)

Thus, the input operators and output operators obey the com-
mutation relations, i.e., [η(ω1), η†(ω2)] = δ(ω1 − ω2), η =
a, b, h, f , while they commute otherwise. The input multi-
mode single-photon state at channel a can be expressed as

|in〉 =
∫ ∞

0
dω	(ω)a†(ω) | 0〉. (36)

The scattered output field should be

|out〉 =
∫ ∞

0
dω	(ω)

[
r(ω)b†(ω) − k∗(ω)h†(ω)

]|0〉. (37)

Consider a frequency-independent quantum filter

FR = |0h〉〈0h| + p
∣∣1ω

h

〉〈
1ω

h

∣∣. (38)

ω0/ω ω0/ω

FIG. 6. (a) The average photon number in channel b and (b) the
corresponding amplification ratio K as a function of incident fre-
quency with different values of p under δ distribution.

Under the partially postselected filter, the average photon
number of a multimode single-photon scattering state in
channel b is

〈nb〉 =
∫ ∞

0 dω|	(ω)r(ω)|2
|p|2 + (1 − |p|2)

∫ ∞
0 dω|	(ω)r(ω)|2 , (39)

and the amplified ratio is

K = 1

|p|2 + (1 − |p|2)
∫ ∞

0 dω|	(ω)r(ω)|2 . (40)

Figure 6 displays the relation between the parameter p and
the average photon number in channel b under the δ distri-
bution. In particular, Fig. 6(a) highlights that as the value
of p decreases, the average photon number 〈nb〉 gradually
increases, confirming the effectiveness of our scheme in
enhancing reflection. Furthermore, Fig. 6(b) presents a visu-
ally striking representation, illustrating that the enhancement
effect becomes more pronounced as p increases.

IV. IMPLEMENTATION OF PHOTON FILTERING
BY HERALDING ON ZERO PHOTONS

A crucial ingredient in the transmission-enhancement and
reflection-enhancement schemes described above is the re-
alization of the photon-filtering scheme, which implements
operators FT and FR, respectively. To implement the photon-
filtering scheme as outlined in Eq. (15), we propose a second
method for detecting noncooperative targets. This method uti-
lizes a heralding technique on zero photons [42] to achieve
signal enhancement.

Figure 7 shows the scheme we designed. The basic phys-
ical process of this device is as follows. A photon with a
frequency of 2ω is generated by the ultrapulse laser, and is
subsequently converted into a pair of entangled photons, both
with a frequency of ω, through a parametric down-conversion
process using the β-barium borate crystal (BBO). One entan-
gled photon enters the reflection system, and one enters the
auxiliary optical path. In the reflection system, the reflection
and transmission of photons are determined by the reflection
matrix. In other words, this photon has a probability of |r|2
of being captured by detector D3. In the auxiliary light path,
another photon is reflected with a probability of p2, and the
probability of detection by detector D2 is also p2.

In order to achieve signal enhancement, it is neces-
sary to repeat the above process many times. Through this

033704-6



OPTIMIZING SINGLE-PHOTON QUANTUM RADAR … PHYSICAL REVIEW A 109, 033704 (2024)

FIG. 7. An implementation of the partially postselected filter us-
ing the technique of heralding on zero photons. The lower left corner
of the illustration shows a list of correlated measurement data.

iterative procedure, we obtain a data list, as depicted in the
bottom left corner of Fig. 7. Suppose the number of en-
tangled photon pairs produced by BBO is N . Detectors D2

and D3 are measured at the same time. N (D2, D3) denotes
the times of coincidence counting when D2 and D3 simul-
taneously obtain readings. N (D2, 0) indicates the number of
times D2 has a reading but D3 has no reading. N (0, D3)
indicates the number of times D3 has a reading but D2 has
no reading. N (0, 0) indicates the number of times D2 and
D3 have no readings at the same time. It is worth noting
that N (D2, 0), N (0, D3), and N (0, 0) can be measured us-
ing the technique of heralding on zero photons [42]. Based
on the principle of probability, we can establish a relation-
ship between {N, N (D2, D3), N (D2, 0), N (0, D3), N (0, 0)}
and {r, p}. These entities are interconnected in the following
manner:

N (D2, D3)/N = R|p|2,
N (D2, 0)/N = (1 − R)|p|2,
N (0, D3)/N = R(1 − |p|2),

N (0, 0)/N = (1 − R)(1 − |p|2). (41)

Accordingly, we can construct a measured quantity, given by

M(T, p) ≡ N (1, 1) + N (0, 1)

N − N (0, 0)
= |r(ω)|2

|p|2 + (1 − |p|2)|r(ω)|2 .

(42)

Considering the relation

〈nb〉 = |r(ω)|2
|p|2 + (1 − |p|2)|r(ω)|2 , (43)

we can readily find

M(T, p) = 〈nb〉. (44)

This means that the measurement of 〈nb〉 can be replaced by
the statistical measurement of M.

In practical experiments, the value of M(T, p) not only is
determined by Eq. (42) but also includes fluctuations. Specif-
ically, after considering the fluctuation effect, M(T, p) can be

ω0/ωω0/ω

ω ω

ω ω

ω ω

ω ω

FIG. 8. Illustration of the details of the Monte Carlo simulation.
(a) and (b) show the simulation values of N [M(T, p)] spanning 2000
Monte Carlo steps at different frequencies ω0/ωp for two different
values of p. Here p = 1 for (a), and p = 0.1 for (b). (c) The average
effective reflection photon number as a function of frequency ω0/ωp

for different values of parameter p (1 and 0.1). (d) The gain K as a
function of frequency ω0/ωp for a specific value of p = 0.1.

represented as

M(T, p) = N (1, 1) + �N (1, 1) + N (0, 1) + �N (0, 1)

N − [N (0, 0) + �N (0, 0)]
.

(45)

Without loss of generality, M(T, p) can be further simplified
into

M(T, p) = N (1, 1) + N (0, 1)

N − N (0, 0)
+ �. (46)

The � term in Eq. (46) encompasses all fluctuation effects and
is assumed to follow a Gaussian noise distribution, character-
ized by the probability density function as

f (�) = 1√
2πσ

exp

(
− �2

2σ 2

)
. (47)

The Monte Carlo (MC) simulation results for the M(T, p)
behavior are shown in Fig. 8. The following outlines the steps
of the MC simulation. First, given a frequency ω0/ωp and
a specific value of p, we generate a data list as depicted
in Fig. 7 under these conditions. In each row, the value of
D2 is 1 with probability p2 and 0 with probability 1 − p2,
and the value of D3 is 1 with probability |r|2 and 0 with
probability 1 − |r|2. In our simulation process, the list length
is 1000. Then, from the data list we can count four values
of N (D2, D3). In addition, we also need to consider the noise
term in the formula in Eq. (46), which is also calculated by
random-number simulation. Gathering all these, we can ob-
tain the value of M(T, p). In order to account for the average
impact of various noise sources, we evaluate 2000 different
noise samples for a given frequency ω0/ωp and a postselec-
tion parameter p. The simulation results for several specific
frequencies ω0/ωp and p parameters are shown in Figs. 8(a)
and 8(b). By averaging these simulation results, we can obtain
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FIG. 9. Illustration of the imaging simulation. (a) The material
with the pattern of the number 207, where the white part has the prop-
erty of complete reflection and the black part is made of absorbing
material. The inset in (a) shows a normal noise distribution with the
standard deviation σ = 0.02. (b) to (f) depict the imaging results as
the parameter p gradually decreases, with p = 1.0, 0.8, 0.6, 0.4, 0.2,
respectively.

the relationship between the effective average reflected photon
number 〈nb〉 and frequency ω0/ωp. Figure 8(c) shows that for
different p values, 〈nb〉 is a function of frequency ω0/ωp. It
can be observed that when p = 0.1, it effectively enhances
〈nb〉 compared to p = 1 (no optimization case) throughout
the frequency domain. This enhancement effect is particu-
larly significant near the resonance frequency. Figure 8(d)
depicts the change in amplification rate with respect to the
frequency.

Figure 9 shows the imaging results of the medium ma-
terial labeled with the number 207. We depict imaging
results as the parameter p gradually decreases, with p =
1, 0.8, 0.6, 0.4, 0.2. In Fig. 9(b), the original imaging result is
shown with p = 1, representing no enhancement effect. Due
to noise, the image of the medium material is nearly indis-
cernible in this case. However, as the value of p decreases,
the enhancement effect gradually intensifies. Consequently,
in Figs. 9(c) to 9(f), the number 207 becomes progressively
clearer. This visual demonstration serves as a clear and in-
tuitive depiction of the substantial improvement in imaging
enhancement achieved in this work.

Note that the photon-filtering operation defined in Eq. (2)
can be implemented using the setup illustrated in Fig. 7. Con-
sequently, the application of the partial postselection method
is justified. Furthermore, it is essential to address the impact of
data loss following the implementation of our scheme. Typi-
cally, the effectiveness of an estimation procedure is evaluated
using the mean-square error (MSE) [49], given by

MSE(p) = 1

Nstep

∑
i

[Mi(T, p) − 〈nb〉i )]
2, (48)

in which Nstep represents the number of independent measure-
ments. Figure 10 shows the MSE for different step sizes with
various values of p. In Fig. 10(a), it becomes evident that the
MSE for all p < 1 (when employing the enhanced scheme)
exceeds that for p = 1 (without utilizing the enhanced
scheme). One observes that in Fig. 10(b) the MSE exhibits
a downward trend as p increases. Intriguingly, at a step value
of Nstep = 104, we observe that although the MSE initially

FIG. 10. (a) The MSE versus the number of independent mea-
surements for different values of the postselection parameter p with
r = 0.2. The MSE is calculated by repeating N = 1000 photons in
each measurement. The MSE with respect to p after performing a to-
tal of (b) Nstep = 10 and (c) Nstep = 104 independent measurements.

rises with decreasing p, it begins to decrease after surpassing a
certain threshold, approximately around p = 0.15. Thus, it is
important to find a delicate balance between the improvement
of the imaging SNR and an acceptable value of MSE for future
practical applications, which has been successfully demon-
strated in optical experiments, such as partially postselected
amplification [44].

V. CONCLUSION

In this work, we proposed a scheme that enhances
the transmission and reflection of absorbing materials. We
achieved this by applying joint measurement to a pair of
entangled photons, with one used as a signal and the other
used as an auxiliary to enhance the signal. We first illustrated
how our scheme can enhance the transmission of the incident
photon state. The surface of the material acts as a beam
splitter, dividing the incident photon state into the reflected
and transmitted channels. Since the superposition state of
these channels is entangled, we can use photon catalysis on
the reflected channel to change the transmission channel state.
By encoding the parameter p into the transmissive state, we
showed that the transmission is effectively enhanced. Simi-
larly, we can apply the scenario to enhance the reflection of
absorbing materials. The signal channel, vacuum channel, re-
flection channel, and transmission channel in the transmission
enhancement scheme correspond, respectively, to the signal
channel, noise channel, absorption channel, and reflection
channel in the reflection enhancement scheme. We apply the
photon catalysis to the absorption channels, and the parameter
p is encoded into the changed reflected state to enhance the
reflected measurement. This results in an overall enhancement
effect.

In order to experimentally implement reflection enhance-
ment according to our scheme, we devised an approach
based on heralding on zero photons that applies statistical
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counting methods to simulate the effects of this enhance-
ment. Specifically, we executed a Monte Carlo simulation
on Gaussian white noise to validate our idea. The numerical
tests showed that our enhancement scheme is effective for
significantly improving the imaging signal-to-noise ratio. The
potential implications of our research are exciting, as our
approach could have practical applications in quantum radar
implementation.
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