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Exact formulas are derived for systems involving Landau-Zener transition rates and for absorption spectra
in quantum dots. These rectify previous inaccurate approximations utilized in experimental studies. The exact
formulas give an explicit expression for the maxima and minima of the transition rate at any oscillating period
and reveal a number of striking physical consequences, such as the suppression of oscillations for half-integer
values of the detuning parameter and that the periodic dependence on the detuning parameter changes at special
values of the driving field amplitude. The fluorescence spectra of quantum dots exhibit similar properties.
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I. INTRODUCTION

The production of a coherent superposition between
quantum states in nanoelectronic circuits is one of the cor-
nerstones for the development of quantum technology [1]. A
distinguished example of this is Landau-Zener-Stückelberg-
Majorana (LZSM) interferometry [2,3], which formerly was
also simply known as Landau-Zener interferometry. The
LZSM theory, first developed in the context of the study of
spin dynamics and slow atomic collisions, demonstrated that
transitions are possible between two approaching levels as
a control parameter is swept across the point of minimum
energy splitting. (For a detailed account of all the different
aspects and nuances of the first four seminal contributions,
see [3–6].)

In LZSM interferometry, a quantum two-level system is
driven strongly across an avoided energy-level crossing pro-
ducing first a quantum superposition between the two states
of the system. The temporal evolution of the two states occurs
with different dynamical phases and, after a second passage
through the anticrossing, coherent interference between these
two states occurs. A periodically driven field can also induce
coherent Rabi oscillations for a different regime of param-
eters. Rabi oscillations occur when the driving frequency
ν = ω/2π is of the same order as the energy-level separation
�E/h̄. The rate-equation-based description, where transitions
occur through the Landau-Zener effect, arises at h̄ν � �E
and strong driving amplitude A ∼ �E (for discussions, see
[3,7]).

There is an analogy between LZSM interferometry and
Mach-Zehnder interferometry since the beam splitters can be
realized by Landau-Zener (LZ) transitions at a level avoided
crossing and, over one oscillation period of the driving field,
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the qubit is swept through the avoided crossing twice. This
point of view was developed in, for example, [3,8] and it is
applicable to settings discussed below, such as the double-
passage setting (which is related to optical Mach-Zehnder
interferometry [3]).

Landau-Zener-Stückelberg-Majorana interferometry has
been studied in a number of platforms. In the first part of
this paper, we will be focusing on works where the plat-
form is based on superconducting Josephson junctions [7,9]
(see also [10]). These works are characterized by the pres-
ence of noise, but Landau-Zener transitions in externally
driven systems have been considered, for example, also under
dissipation [11,12] and in the context of other mesoscopic
systems [13].

We will thoroughly reanalyze the transition rate in [7,9],
providing an exact analytical expression for it as well as an
improved asymptotic characterization of the rate, which will
include a more accurate portrayal of the oscillations with full
analytical control.

The mathematical formula describing the LZSM transition
rate also appears in the study of the absorption spectrum of
quantum dots, with a reinterpretation of the parameters. In
the second part we will examine settings involving various
external fields. An example consists in a system describ-
ing the dipole coupling of the quantum dot to a laser field.
Concretely, we consider InAs/GaAs quantum dots (nanoscale
islands of InAs embedded in a GaAs matrix) as studied in
[14] and study the absorption spectrum for two different
configurations.

We will also study the two-level system with modulated
laser light discussed in [15], which appeared prior to the
discovery of quantum dots, but it is nevertheless governed by
related physics. Finally, we will examine the power spectrum
of quantum dots in the presence of a bichromatic electro-
magnetic field, investigated in [16], which is expressed as an
infinite series of Mollow triplets [17]. Here the corresponding
infinite sums will be computed analytically.
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FIG. 1. Plot of W (in units of �2/ω) as a function of A (in units of ω) for the approximation (4) (brown curve) and the exact formula (9)
(red curve), with �2 = 5ω/2π and (a) E = 5.5ω and (b) E = 20.5ω.

II. ANALYSIS OF THE TRANSITION RATE

Consider the two-level system studied in [7] of a periodic
driving on a qubit, with the Hamiltonian

H = −1

2

(
h(t ) �

� −h(t )

)
, (1)

where h(t ) = E + δE (t ) + A cos ωt is the energy detuning (or
bias) from an avoided crossing, modulated by the driving
field. The term δE (t ) describes classical noise and � is the
energy gap between the two levels. The LZ transition rate was
computed in perturbation theory in [7], with the result

W = �2

2

∞∑
n=−∞

�2J2
n (x)

(E − ωn)2 + �2
2

, x ≡ A

ω
, (2)

where Jn is the Bessel function of the first kind. Note the
symmetry property W (−E ) = W (E ). The parameter E is the
energy bias and �2 is the decoherence rate [3,7].1

The sum in Eq. (2) is usually evaluated numerically.
However, attempts have been made to provide analytic ap-
proximations, as analytic formulas can reveal properties that
are difficult to identify using numerical methods with generic
parameters. In particular, in [7], and later on in [3,18], this
sum was computed by assuming that the main contributions
come from large-n terms, with the replacement

Jn(x) ≈ a Ai[a(n − x)], a = (2/x)1/3. (3)

This approximation works well for a few oscillations, but then
the two functions Jn(x) and a Ai[a(n − x)] get out of phase.

The assumption that the main contributions come from
large-n terms requires that E � ω so that the sum is dom-
inated by terms with n ≈ n0, where n0 is the integer part
of E/ω. In [7], the remaining sum was approximated by the
heuristic formula

Wapp = πa2�2

2ω
Im[cot(πμ∗)]Ai2

(
a

ω
(E − A)

)
,

μ ≡ 1

ω
(E + i�2). (4)

1If the relaxation time T1 is taken into account, the upper level
occupation probability can be calculated as in [3] (see Sec. 3.6 and
Appendix B.4.2 therein). The resulting expression [Eq. (B.62) in [3]],
the stationary solution of the rate equation, cannot be evaluated using
our analytic formulas.

A numerical comparison shows that this formula approx-
imates the sum (2) provided E

ω
is approximately equal to

an integer much greater than 1 and �2 � 1. A comparison
between the original expression (2) and the approximation (4)
is shown in Fig. 1. We see big deviations between W and Wapp

because in the figures E/ω is not an integer. Since physically
there is no reason for E/ω to be an integer, generically Wapp

significantly deviates from the actual rate W . This evident
deviation does not affect Fig. 4 in [7], as the fits with experi-
mental data in that figure have been carried out by means of a
numerical evaluation of the sum (2).

At large A, we can use the asymptotic formula for the Airy
function, giving

Wapp ≈ �2

2xω
Im[cot(πμ∗)]

(
1 − ε

x

)−1/2

× cos2

[
2
√

2

3
x
(

1 − ε

x
− π

4

)]
. (5)

As will become clear in the following, this formula gives an
incorrect asymptotic frequency.

The formula (4) reproduces some qualitative features of
the actual rate W : In particular, Wapp is very small for A < E
(with E � ω), so transitions occur only for A > O(E ). The
frequencies of oscillations are similar. However, it should be
noted that minima and maxima are very different and also
oscillations get out of phase after a few periods. Importantly,
Wapp has an infinite number of zeros as a function of x, but the
exact W never vanishes for any finite �2 and generic values
of E . The limit �2 → 0 will be discussed below.

We will now show that one can actually compute the sum
(2) exactly and in closed form, using a summation formula de-
rived in [19] (reviewed in Appendix A). Consider, in general,
μ = μ1 + iμ2. We first split

∑
n

Jn(x)2

(n − μ1)2 + μ2
2

= 1

2iμ2

(∑
n

J2
n (x)

n − μ
−

∑
n

J2
n (x)

n − μ∗

)
.

(6)

Using the formula (A5), we thus find∑
n

Jn(x)2

(n − μ1)2 + μ2
2

= − 1

2iμ2

(
π

sin(πμ)
Jμ(x)J−μ(x)

− π

sin(πμ∗)
J∗
μ(x)J∗

−μ(x)

)
(7)
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or

∑
n

Jn(x)2

(n − μ1)2 + μ2
2

= − 1

μ2
Im

(
π

sin(πμ)
Jμ(x)J−μ(x)

)
,

(8)

where we used that Jμ∗ (x) = J∗
μ(x) for real x. Therefore,

W = −�2

2ω
Im

(
π

sin(πμ)
Jμ(x)J−μ(x)

)
. (9)

A numerical check shows that indeed the formula (9) exactly
reproduces the expression (2) given by the infinite sum.

Modulo an overall factor �2/ω, W depends on three pa-
rameters ε, γ , and x, with

ε ≡ E
ω

, γ ≡ �2

ω
, x ≡ A

ω
.

We can set ω = 1 and plot the rate W as a function of A for
different values of E and �2, as in Fig. 1. As noted above,
the most notable difference is that the approximated transi-
tion rate (4) vanishes for specific values of x. This disagrees
with the fact that the actual rate (2) and (9) does not vanish
anywhere for generic values of �2 and E .

The transition rate (2) exhibits an infinite set of resonances
created by the driving force, which appear at integer values of
the detuning ε. All resonances are encapsulated in the exact
formula (9). Indeed, at the special values Re(μ) = n, n ∈ Z,
we have

− Im

(
π

sin(πμ)
Jμ(x)J−μ(x)

)

= (−1)n π

sinh(πγ )
Re[Jn+iγ (x)J−n−iγ (x)]. (10)

This shows that for integer ε the transition rate undergoes the
expected enhancement at small γ ,

−Im

(
π

sin(πμ)
Jμ(x)J−μ(x)

)
≈ 1

γ
J2

n (x) + O(γ ), (11)

a result that is also evident from the original formula (2),
where the term E = ωn dominates. This is in contrast with
the behavior for generic (noninteger) values of ε, where the
transition rate is proportional to γ .

Equation (11) shows that the height of the resonance peak
is proportional to J2

n (x) and is therefore a function of the am-
plitude A = xω. For special values of the amplitude where the
Jn(x) has a zero, the peak at the detuning value ε = Re(μ) = n
disappears, but other peaks with ε = n′ (where n′ = n) re-
main. Since the Bessel function possesses an infinite number
of zeros, it is apparent that there are infinite special values
of amplitude where the peak at any given detuning ε = n is
suppressed.

Equation (11) also clarifies that the transition rate may have
zeros under two conditions: γ → 0 and integer ε. In these
cases, the zeros of the (rescaled) transition rate γW coincide
with the zeros of the Bessel function Jn(x).

A simple formula for W can also be given for large x, where
we have the well-known Bessel asymptotics [20]

Jμ(x) ≈
√

2√
πx

cos
(

x − μ
π

2
− π

4

)
, x � max{1, |μ|2}.

(12)

Thus, for large x,

−Im

(
π

sin(πμ)
Jμ(x)J−μ(x)

)
≈ −1

x
Im

(
cos(πμ)+ sin(2x)

sin(πμ)

)
.

(13)

Computing the imaginary part, we find

− Im

(
π

sin(πμ)
Jμ(x)J−μ(x)

)

≈ 2

x

sinh(πγ )

cosh(2πγ )− cos(2πε)
[cosh(πγ )+ cos(πε) sin(2x)].

(14)

Thus

Wasym = �2

xω

sinh(πγ )

cosh(2πγ ) − cos(2πε)
[cosh(πγ )

+ cos(πε) sin(2x)], (15)

which is clearly different from (4) and (5). This formula ex-
plicitly shows the correct asymptotic frequency of oscillations
in the x = A/ω variable, given by the factor sin(2x), which
therefore differs from the frequency in the old approximation
(5). It also provides an explicit expression for the amplitude
of oscillations, which can be read from the above formula. A
comparison between the exact W and Wasym is shown in Fig. 2.

The minimum and maximum values of the transition rate
at any oscillating period can also be read from (15),

Wasym|max = �2

2xω

sinh(πγ )

cosh(πγ ) − cos(πε)
,

Wasym|min = �2

2xω

sinh(πγ )

cosh(πγ ) + cos(πε)
, (16)

where we assumed cos(πε) > 0. As cos(πε) flips sign, all
minima become maxima and vice versa.

The general formula (8) can be applied in many exper-
imental setups involving harmonic periodic driving. Some
examples will be discussed below. The asymptotic formula
(15) reveals some remarkable features. To leading order in
the asymptotic expansion in 1/x, the oscillations in the x
variable are multiplied by cos(πε), so they vanish for the
special values of ε,

ε = n + 1
2 , n ∈ Z,

giving

2

x

sinh(πγ )

cosh(2πγ ) − cos(2πε)
[cosh(πγ ) + cos(πε) sin(2x)]

→ 1

x
tanh(πγ ). (17)

For such special values of the detuning parameter E = εω

there is a significant suppression in the amplitude of os-
cillations in x, which becomes of O(1/x2) [the residual
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FIG. 2. At large amplitudes, the behavior of the transition rate is governed by the simple asymptotic behavior of the Bessel functions (red
and blue curves correspond to W and Wasym). Here ε = 5, γ = 0.5, and W is given in units of �2/ω. (a) At small x, one can see a gap due to
the well-known turning point of the Bessel functions around x ∼ |μ| (i.e., A ∼ E). (b) When x � |μ|2, the asymptotic formula approaches the
exact result.

oscillating O(1/x2) contribution originates from corrections
to the asymptotic formula (12)]. This is shown in Fig. 3. This
important property is only revealed after carrying out the exact
summation over n, which may explain why it was overlooked
in previous analyses.

Another noteworthy property of the formula (15) regards
the γ dependence. For small γ and generic values of ε, the
transition rate is O(γ ) due to the factor sinh(πγ ). As dis-
cussed above, the expected resonances appear for integer ε,
a property that is also manifest from the asymptotic formula

Wasym → �2

2xω

1

sinh(πγ )
[cosh(πγ ) ± sin(2x)]

≈ 1

γ

�2

2πxω
[1 ± sin(2x)],

where the signs ± correspond to even and odd ε, respectively.
Thus the transition rate becomes large, O(1/γ ). An exception
arises for the special values of the amplitude where sin(2x) =
∓1, resulting in the suppression of the resonance peaks.
These specific values of the amplitude A = ωx correspond
to the asymptotic values of the zeros of Jn(x), as previously
discussed.

Note the marked change of behavior at special values of
x. For generic x, the asymptotic transition rate is a periodic
function of ε with period ε = ε + 2n. However, at the special
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0.20

W

FIG. 3. Exact W given in (9) (in units of �2/ω) as a function of
A (in units of ω). The oscillations are strongly suppressed at half-
integer values of the detuning parameter. Here γ = 0.3 and ε = 5/2
(red curve) and ε = 1.2 × 5/2 (blue curve).

values

x = nπ

2
, n ∈ Z,

we have sin(2x) = 0 and the period suddenly becomes ε =
ε + n. It would be extremely interesting to experimentally test
all these distinctive features.

Finally, it is also worth looking at the behavior of W at
small amplitudes. Using2 [21]

π

sin(πμ)
Jμ(x)J−μ(x)

= 1

μ

(
1+

∞∑
m=1

(2m)!

22m(m!)2

x2m

(μ2−12)(μ2−22) · · · (μ2−m2)

)
,

(18)

we find

W (x = 0) = �2γ

2ω|μ|2 . (19)

This formula is exact and encompasses the entire summation
in (2). This nonvanishing value is clearly visible in Fig. 1(a)
[where W (x = 0) ∼= 0.013]. This contrasts the exponentially
small value inaccurately predicted by the old and commonly
used approximation (4).

A number of studies extend the study of transitions to
multiple energy levels and use W as a building block as the
transition rate between a given pair of energy levels [22–24].
This introduces of course multiple energy bias parameters,
one for each pair, and our evaluation applies directly to
each W .

A. Upper-level occupation probability and Stückelberg phase

The formula (15) can also be written as

Wasym = �2

xω
b

[
a − sin2

(
x − π

2
ε − π

4

)

− sin2
(

x + π

2
ε − π

4

)]
, (20)

2The formula follows from an identity in [20].
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with

b ≡ sinh(πγ )

cosh(2πγ ) − cos(2πε)
, a ≡ 2 cosh2

(
1

2
πγ

)
. (21)

It should be noted that the oscillation frequency in the x =
A/ω variable is equal to 2. This is in sharp contrast with
the predicted asymptotic frequency of the approximation (4),
where, for large A, it has the form (5) and predicts an incorrect
frequency 4

√
2

3 = 2. As a consequence, at large x, the approx-
imation (4) gets completely out of phase.

The above asymptotic behavior (20) can be compared
with known results for the upper-level occupation probability,
obtained within the adiabatic-impulse model, in the double-
passage regime and in the fast passage limit �2/Aω � 1 [3].
The upper-level occupation probability is the square of the ab-
solute value of the probability amplitude and its time average
is a sum of Lorentzian-shape k-photon resonances of higher
analytical complexity than the transition rate [see Eq. (55) in
[2]], but in the above limit, it is proportionally related to the
transition rate, giving (see Appendix B4.4 in [3])

Pdouble
+ ≈ 2π�2

ωA
sin2

(
x − π

2
ε − π

4

)
. (22)

Thus we see that the asymptotic expression (20) corre-
sponding to the exact transition rate reproduces the expected
frequency and also the expected ε dependence, that is, it
reproduces the Stückelberg phase.

B. Fourier transforms of the transition rate

We now compute the Fourier transforms of W in both
variables E and A. The characteristic function of a Lorentzian
is an exponential, that is,∫ ∞

−∞

λeixt

π (λ2 + (x − x0)2)
dx = exp(x0it − λ|t |).

We want to Fourier transform with regard to E both in
itself and en route to the two-dimensional Fourier trans-
form, discussed by other means in [9]. So we consider∑

n∈Z
Jn(x)2�2

(E−nω)2+�2
2

and instead of using (9) and then the trans-
form, we carry out the term-by-term transform (the dominated
convergence theorem allows us to exchange integration and
summation) and then

Ŵ (kE , x) = �2

2

∑
n∈Z

∫ ∞

−∞

Jn(x)2�2 e−iEkE

(E − nω)2 + �2
2

dE

= π�2

2

∑
n∈Z

Jn(x)2 exp(−nωikE − �2|kE |). (23)

Notice that kE has the dimension of time. The summation can
be carried out. Recall Graf’s addition theorem [20]

∑
l∈Z

t l Jl (x)Jl+m(y)=
(

y − x/t

y − xt

)n/2

Jm

(√
x2 + y2−xy

t2 + 1

t

)
.

It simplifies since m = 0 in our case,

Ŵ (kE , x) = π�2

2
exp(−�2|kE |)J0(

√
2x2[1 − cos(ωkE )]),

(24)

i.e.,

Ŵ (kE , x) = π�2

2
exp(−�2|kE |)J0(2x| sin(ωkE/2)|). (25)

The formula shows that Ŵ (kE , x) has an infinite number of
zeros in the real x axes, given by the zeros of the Bessel func-
tion. The Ŵ (kE , x) exhibits an oscillatory behavior, with an
amplitude modulated by the exponential factor exp(−�2|kE |).
In particular, the formula (25) predicts the following oscilla-
tory behavior at small x:

Ŵ (kE , x) ≈ π�2

2
exp(−�2|kE |)

[
1 − x2 sin2

(
ωkE

2

)]
,

x � 1. (26)

We can now look for the Fourier transform with regard to
the x variable (the amplitude) using either (23) or (24) or both.
The route (24) seems simpler since we only have to transform
J0(αx), where α := 2| sin(ωkE/2)|, and we know that [25]∫ ∞

−∞
Jn(x)e−ikxxdx = 2(−i)nTn(kx )√

1 − k2
x

for |kx| < 1,

where Tn is the first degree Chebyshev polynomial (which will
not appear because n = 0 above). Then

˜̂W (kE , kx ) = π�2 exp(−�2|kE |)
α
√

1 − k2
x /α

2

= π�2 exp(−�2|kE |)√
2[1 − cos(ωkE )] − k2

x

. (27)

Recalling that x = A/ω, in terms of A this reads

˜̂W (kE , kA) = π�2 exp(−�2|kE |)√
4
ω2 sin2( ωkE

2 ) − k2
A

. (28)

This formula agrees with the double Fourier transform in E
and A given in (15) in [9]. However, here we find a new closed
formula (25) for the single Fourier transform in E [and below
also for the Fourier transform in A, Ŵ (E, kx )].

Fourier transform in A

The other partial (one-dimensional) Fourier transform,
with respect to the variable x, can also be evaluated. The
function Jμ(x)J−μ(x) is even in x; therefore [26]

Ŵ (E, kx ) = π

sin πμ

∫ ∞

−∞
Jμ(x)J−μ(x)eixkx dx

= 2π

sin πμ

∫ ∞

0
Jμ(x)J−μ(x) cos(kxx)dx. (29)

Computing the integral, we find

Ŵ (E, kx ) =
{

π
sin πμ

Pμ−1/2
( k2

x
2 − 1

)
for 0 � kx � 2

0 for kx < 0 or kx > 2,

(30)

where Pμ−1/2 is the Legendre function. Thus the Fourier
transform gives a compact support function: The Fourier
transformed transition vanishes identically outside the interval
0 < kx < 2.
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A version of the Paley-Wiener theorem guarantees pre-
cisely that the Fourier transform of a function which is the
real restriction of a complex entire function is a function of
compact support and vice versa. The Bessel function Jμ(z) is
indeed an entire function.

III. FLUORESCENCE SPECTRA OF QUANTUM DOTS

An examination of the literature and reviews on Floquet
physics, specifically quantum systems under external ac (har-
monic) field modulation, which includes a large number of
photoassisted processes, will reveal a plethora of expressions
of the type on the left-hand side of Eq. (A1). In previous
studies, this expression was invariably left in summation form
and customarily analyzed only numerically [27]. A prominent
example is the power spectrum of fluorescence in quantum
dots.

We recall that the transition rate in a modulated system
is given by the Fourier transform of the stationary two-time
correlation function of the Hamiltonian expressed in the in-
teraction picture. Therefore, it is given by the power spectral
density of the probe operator evaluated in the unperturbed
system. Absorptive transitions in the rotating-wave approxi-
mation can be written as [27]

S(ω) = g2
P

4

∫ ∞

−∞
eiωt 〈σ̂−(t )σ̂+(0)〉dt, (31)

where gP represents the strength of the probe and σ̂± are qubit
raising and lowering operators. For harmonic modulations,
this leads to the multiphoton sideband spectrum

S(ω) =
∞∑

m=−∞

g2
P

2

�2J2
m(x)

(δ + m)2 + �2
2

, (32)

where δ ≡ ω0 − ω is the detuning between the static qubit and
the probe. Thus we find the same expression arising in the
preceding section in the context of superconducting qubits.
Indeed, this formula controls the power spectrum in a broad
class of two-level systems with harmonic driving [27,28].

Let us now consider the setting of [14], studying
InAs/GaAs quantum dots. The formula (32) reappears in the
form of resolved sideband emission, due to surface acoustic
waves (SAWs) [14]. Indeed, some of the results in [14] are
formally equivalent to the previous LZSM results. We will
first present the equivalent model and subsequently discuss
the effect of adding an interaction term to the Hamiltonian.
This leads to a distinct application of the formula (A1).

The quantum dot (QD) is modeled as a two-level system
in [14], with electric dipole operator d̂ = dσx, and dynamics
governed by the Hamiltonian

H = h̄

2
[ω0 + χωs sin(ωst )]σz (33)

and relaxation terms that cause the off-diagonal elements of
the density matrix ρ to decay at a rate γ . The σi are Pauli
matrices and the modulation index χ is a dimensionless pa-
rameter that expresses the amplitude in units of ωs.

The fluorescence is proportional to the expectation value
〈 ˆd (t )〉 = Tr[ρ(t )d̂]. In the limit ωs � 2γ , where 2γ denotes
the linewidth, we find the following power spectrum of the

fluorescence [14]:

P[ω] =
∞∑

n=−∞

J2
n (χ )

γ 2 + (ω − ω0 + nωs)2
. (34)

Applying the summation formula (8), we find

P[ω] = − 1

γωs
Im

(
π

sin(πν)
Jν (χ )J−ν (χ )

)
,

ν = 1

ωs
(ω − ω0 + iγ ). (35)

For large χ , we can express this result in terms of trigono-
metric functions, as in (14), and read the frequency thereof.
We get

P[ω]asym = 2

χγωs
b

[
cosh

(
πγ

ωs

)

+ cos

(
π

ωs
(ω − ω0)

)
sin(2χ )

]
, (36)

where now

b ≡ sinh(πγ /ωs)

cosh(2πγ /ωs) − cos[2π (ω − ω0)/ωs]
. (37)

The power spectrum is governed by the same formula as the
transition rate in (15), with a reinterpretation of the parame-
ters. Therefore, it exhibits similar features. It has an oscillating
behavior in the parameter χ , but at the special frequencies

ω − ω0 = ωs
(
n + 1

2

)
, (38)

the oscillating behavior is suppressed by an additional factor
1/χ , as sin(2χ ) has a vanishing coefficient in this case. As
a function of ω, the asymptotic power spectrum is periodic
with period 2/ωs, but the period becomes 1/ωs at the special
values of χ = nπ/2 where sin(2χ ) = 0. On the other hand, at
the resonant frequencies ω − ω0 = −nωs, the power spectrum
undergoes the expected enhancement.

The experimental values in [14] for the modulation index
χ are in the range χ ≈ 0–2 [see Fig. 3(b) in [14]]. The driving
frequency is ωs/2π = νs = 1.05 GHz and the linewidth is
250 MHz. It is instructive to see the changes in the fluo-
rescence spectrum for these typical experimental values as
one varies the driving frequency. Consider a resonance peak
arising at ω − ω0 = −n0ωs, for some integer n0. Taking, for
example, n0 = 1, if the sum is approximated by keeping only
the terms n = n0, n0 ± 1, as compared to the exact formula,
the power spectrum around this peak changes between 5% and
20%, with bigger differences for larger χ . On the other hand,
one can also observe the suppression of oscillations in χ oc-
curring at half integer values of (ω − ω0)/ωs [corresponding
to the minima in Fig. 3(a) in [14]]. By setting, for example,
ω − ω0 = − 1

2ωs, ωs/2π = νs = 1.05 GHz, then the oscilla-
tions in the interval χ = 1–6 are significantly suppressed as
compared with the oscillations at a generic value of ω − ω0

(see Fig. 4). This illustrates the remarkable interference effect
predicted by the exact analytic formula.

The study of quantum dots naturally prompts considera-
tion of an area where the summation formula (A1) can have
multiple applications, namely, cavity optomechanics [29]. For
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FIG. 4. Exact P given in (35) (in units of GHz−2) as a func-
tion of the dimensionless modulation index χ . The oscillations are
strongly suppressed at half-integer values of (ω − ω0)/ωs. Here γ =
0.25 GHz and ω − ω0 = − 1

2 ωs (red curve) and ω − ω0 = −0.7ωs

(blue curve).

example, it is possible to have sideband cooling of a nanome-
chanical resonator with an embedded QD [30], which involves
the quantized transfer of energy from a mechanical mode of
the resonator to the applied optical field. This was studied with
resonant spectroscopy in [14].

The coupling of the resonant laser to the two-level system
is described by adding to the Hamiltonian an additional inter-
action term

Hint = −dE0 cos(ωLt )σx, (39)

describing the dipole coupling of the QD to a laser field
E0 cos(ωLt ). In [14] the power spectrum of the fluorescence
for weak excitations was found to be proportional to

P[ω] =
∞∑

�=−∞

∣∣∣∣∣
∞∑

n=−∞

J�+n(χ )Jn(χ )

γ − i(ωL − ω0 + nωs)

∣∣∣∣∣
2

× δ(ω − ωL + �ωs), (40)

which can be obtained by calculating the time dependence
of the atomic dipole moment in the steady state. This is of
the form of a series of discrete lines at frequencies ω� =
ωL − �ωs, spectrally separated from the excitation frequency
by multiples of the SAW frequency. We now give an analytical
evaluation of the strength of these lines.

The sum in (40) involves an alternative application of the
summation formula (A1), where now α or β may be dif-
ferent from zero. This structure will be ubiquitous in cavity
optomechanics. The emission frequencies differing from the
excitation frequency corresponds to the transfer of mechanical
energy to the light field.

Using (A2), we find

∞∑
n=−∞

J�+n(z)Jn(z)

n + μ
= π

sin(πμ)
J�−μ(z)Jμ(z), � � 0

∞∑
n=−∞

J�+n(z)Jn(z)

n + μ
= (−1)�

π

sin(πμ)
Jμ−�(z)J−μ(z), � < 0.

(41)

Therefore, we find

P[ω] = P+[ω] + P−[ω], (42)

where P+ and P− refer to the contributions from positive and
negative �, respectively, and they describe the two sets of
frequencies of the spectrum ω = ωs ∓ �ωs. Explicitly,

P+[ω] = 1

ω2
s

∣∣∣∣ π

sin(πμ)
Jμ(χ )

∣∣∣∣
2 ∞∑

�=0

|J�−μ(χ )|2

× δ(ω − ωL + �ωs), (43)

P−[ω] = 1

ω2
s

∣∣∣∣ π

sin(πμ)
J−μ(χ )

∣∣∣∣
2 ∞∑

�=1

|J�+μ(χ )|2

× δ(ω − ωL − �ωs), (44)

μ = ζ + iη, ζ ≡ ωL − ω0

ωs
, η ≡ γ

ωs
. (45)

The P+[ω] and P−[ω] exhibit an oscillatory behavior in χ and
in ζ .

For large χ , the Bessel functions can be replaced by their
asymptotic expressions. Explicit formulas are given in Ap-
pendix B. One can characterize the detailed features of the
power spectrum and read frequencies and amplitudes thereof
in terms of the physical parameters. The power spectrum has
different properties in the “even” sector ω = ωL − 2kωs and
in the “odd” sector ω = ωL − (2k + 1)ωs. In particular, for
ω = ωL − 2kωs, k ∈ Z, in the limit that the linewidth γ → 0,
the power spectrum takes the simple form

P[ω]even = [cos(2πζ ) + sin(2χ )]2

χ2ω2
s sin2(πζ )

∑
k

δ(ω − ωL + 2kωs).

(46)

The poles at integer ζ correspond to resonance peaks in the
complete formula with γ = 0 (see Appendix B). The height
of the peak is proportional to [1 + sin(2χ )]2/χ2, exhibiting a
1/χ2 decrease at large χ . Remarkably, for the special values

χ = −π

4
+ πn, n ∈ Z,

all resonance peaks in the detuning parameter ζ disappear
[modulo O(1/χ3) corrections]. On the other hand, at the same
special values of χ , P[ω]odd becomes O(1) instead of O(1/γ 2)
at the resonance peaks located at integer values of ζ .

Another feature is the fact that the power spectrum
(46) identically vanishes at parameters satisfying sin(2χ ) =
− cos(2πζ ) (more precisely, at these special values Peven[ω] is
strongly suppressed and becomes O(1/χ3)). Similar features
are shared by Podd[ω]. It should be possible to test these
intriguing properties in a laboratory setting.

A. Power spectrum in other QD systems

The use of Eq. (A2) is also applicable to a host of flu-
orescence spectra. The power spectrum is usually left in
summation form (see, for example, [15,16,31]). However, it
is now possible to compute all the infinite sums and provide
the corresponding analytical expressions. Just as in the earlier
examples, the closed formulas reveal important aspects of the
physics that become manifest after resummation.
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1. Coherent scattered light and atomic inversion

The spectrum of light scattered by a two-level atom in an
intense laser beam with amplitude modulated light was con-
sidered long ago and just a few years after foundational works
such as [17,32]. Analytical expressions already appeared in
[15], in summation form, of a type similar to Eq. (40).

Reference [15] studied analytically the fluorescence spec-
trum in an amplitude modulated field, composed of a strong
resonant component of frequency ω0 and two considerably
weaker sidebands of frequencies ω0 ± ω1. It was found that
the spectrum is characterized by a central component, insen-
sitive to the presence of the modulating fields, and a series of
sidebands centered about the Rabi frequency 0 of the reso-
nant field. The sidebands are located at frequencies 0 + ω1n
for n ∈ Z.

For the steady-state solution 〈σ+(t )〉 of the optical Bloch
equations, the spectral distribution of the coherently scattered
light is [15]

Icoh(ω) ≈ πγ 2

8

∞∑
k=−∞

YkY
∗

k δ(ω − ωL + kω1),

where

Yk ≡
∞∑

m=−∞
Jm

(
a0

ω1

)(
Jm−k

( a0
ω1

)
3
4γ − i(0 + mω1)

− Jm+k
( a0

ω1

)
3
4γ + i(0 + mω1)

)
. (47)

Using (A2), we obtain

Yk = iπ

ω1

(
(−1)k J−ρJk+ρ

sin(πρ)
+ Jρ∗Jk−ρ∗

sin(πρ∗)

)
for k � 0,

Yk = iπ

ω1

(
JρJ−k−ρ

sin(πρ)
+ (−1)k J−ρ∗J−k+ρ∗

sin(πρ∗)

)
for k � 0,

where

ρ ≡ 0

ω1
+ i

3γ

4ω1
. (48)

Therefore,

Icoh(ω) ≈ π3γ 2

8ω2
1

( ∞∑
k=0

akδ(ω − ωL + kω1)

+
−1∑

k=−∞
bkδ(ω − ωL + kω1)

)
,

with

ak =
∣∣∣∣(−1)k J−ρJk+ρ

sin(πρ)
+ Jρ∗Jk−ρ∗

sin(πρ∗)

∣∣∣∣
2

,

bk =
∣∣∣∣JρJ−k−ρ

sin(πρ)
+ (−1)k J−ρ∗J−k+ρ∗

sin(πρ∗)

∣∣∣∣
2

.

Here the argument of all Bessel functions is a0
ω1

as in the
original expression (47). The formula now displays the ex-
plicit dependence of the spectral distribution in all physical

parameters. It can be analyzed in the same form as done in
previous examples.

2. Steady-state solutions: Atomic inversion

The steady-state atomic dipole moment 〈σ+(t )〉 and in-
version 〈σz(t )〉 are time dependent and contain oscillations
for all the harmonics of the modulation frequency ω1. The
expectation value of 〈σz(t )〉 is equal to the difference between
the upper-state and lower-state populations (atomic inver-
sion) and γ denotes the spontaneous decay rate of the upper
level [15].

We can obtain approximate solutions of the optical Bloch
equations, valid for strong driving fields at resonance [(t ) �
γ 2/16]. The result is [15,33]

z(t ) = 〈σz(t )〉

= −γ Re

⎛
⎝ ∞∑

m,k=−∞

Jm−k
( a0

ω1

)
Jm

( a0
ω1

)
exp(−ikω1t )

3
4γ − i(0 + mω1)

⎞
⎠,

and y(t ) = −2i〈σ+(t )〉 is given by a similar double-sum ex-
pression, with −γ Re → γ Im [15].

Thus, using (A2), we can now evaluate the atomic in-
version term z0 (corresponding to k = 0) and also any other
subharmonic, for either positive or negative k. We obtain the
following exact formulas for the harmonics:

z(t ) =
∞∑

k=−∞
βke−ikω1t , (49)

βk = (−1)k πγ

ω1
Im

(
J−ρJk+ρ

sin(πρ)

)
for k � 0,

βk = πγ

ω1
Im

(
JρJ−k−ρ

sin(πρ)

)
for k < 0. (50)

The harmonics satisfy the following recurrence relations, in-
herited from the familiar recurrence relations of the Bessel
functions:

βk+1 + βk−1 = −2ω1(k + ρ)

a0
βk, k = 0. (51)

B. Asymmetric quantum dots with bichromatic
electromagnetic field

In [16] an asymmetric quantum dot with broken inversion
symmetry along the z axis together with a bichromatic field
was considered,

E(t ) = E1 cos ω1t + E2 cos ω2t, (52)

with E1 = (0, 0, E1) and E2 = (E2, 0, 0). It was also assumed
that the second frequency ω2 was close to the electronic res-
onance frequency, while the first frequency ω1 was far from
resonance. The resonance condition is

ω0 ± ω2 = nω1, (53)

and in [16] all modes except the resonant one are neglected.
Therefore, the parameter n above, denoting the number of
modes, will appear in the power spectrum below. Then

Fn = −(d12E2/2h̄)Jn(ω̃/ω1) (54)
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are the Rabi frequencies of the considered system and

ω̃ = E1(d22 − d11)

h̄
(55)

is the effective frequency, whereas ϕn = ω0 ± ω2 − nω1 is the
resonance detuning. The amplitudes of the fields are E1 and E2

and d11 = 〈1|ez|1〉, d22 = 〈2|ez|2〉, and d12 = d21 = 〈1|ex|2〉
are the matrix elements of the operator of the electric dipole
moment along the z and x axes, with e the electron charge.

The problem in [16] is thus reduced to the effective
two-level system driven by a monochromatic field with the
combined frequency ϕn. For simplicity in the formulas, we

also define n =
√

ϕ2
n

4 + F 2
n . Finally, using the dressed-atom

method to discuss resonant fluorescence, we find for the width
of the transitions [16]

�11 = γ

2

(
1 + ϕ2

n

42
n

)
, �12 = γ

4

(
3 − ϕ2

n

42
n

)
, (56)

where γ denotes the spontaneous emission rate.
The resulting inelastic power spectrum is given in terms of

an infinite set of Mollow triplets [17] (x ≡ ω̃/ω1):

S2(ω) ∼ d2
12

4π

[(
1 − �2

S

)(d12E2

2h̄n

)2

J2
n (x)

∑
m

J2
m(x)�11

[ω − (n − m)ω1 − ω2]2 + �2
11

+ 1

2

(
1 − ϕ2

n/42
n

)2(
1 + ϕ2

n/42
n

) ∑
m

(
J2

m(x)�12

[ω − (n − m)ω1 − ω2 + 2n]2 + �2
12

+ J2
m(x)�12

[ω − (n − m)ω1 − ω2 − 2n]2 + �2
12

)]
. (57)

The infinite sums can now be carried out using our summation formula (8), giving

S2(ω) ∼ − d2
12

4πω1

[(
1 − �2

S

)(d12E2

2h̄n

)2

J2
n (x)Im

(
π

sin(πν1)
Jν1 (x)J−ν1 (x)

)

+
(
1 − ϕ2

n/42
n

)2

2
(
1 + ϕ2

n/42
n

) Im

(
π

sin(πν2)
Jν2 (x)J−ν2 (x) + π

sin(πν3)
Jν3 (x)J−ν3 (x)

)]
, (58)

where the spectral parameters of the Bessel functions are

ν1 = n + 1

ω1
(ω2 − ω + i�11),

ν2 = n + 1

ω1
(ω2 − ω − 2n + i�12),

ν3 = n + 1

ω1
(ω2 − ω + 2n + i�12).

IV. CONCLUSION

Sideband multiphoton spectra similar to (2), (40), and (57)
are ubiquitous in two-level systems with harmonic modula-
tion. In this paper we provided exact formulas that compute
the infinite sums, enabling exploration of different spectra
across all parameter space.

In Sec. II we saw that the transition rate is an oscillating
function of the driving field amplitude that never vanishes.
At large amplitude the exact transition rate can be written
in terms of trigonometric functions, providing simple expres-
sions to test a number of features. In particular, one interesting
feature is the suppression of these oscillations for half-integer
values of the detuning.

As a function of the detuning parameter (represented by E
in Sec. II), the transition rate exhibits the expected resonance
peaks at integer E . We also noticed a significant change of be-
havior when x is an integer multiple of π/2, where the shape
of the spectrum is simplified and the period is halved. We

have also analytically determined the minimum and maximum
values for each period of oscillations in (16).

Analogous properties were identified in the absorption
spectra of quantum dots in Sec. III, where we also considered
coupling to a more general configuration of driving fields.
This included either the addition of an extra field or the con-
sideration of bichromatic fields. In these cases, the required
summation formula appeared in a different form, exploiting
other particular instances of the analytical expression (A2),
beyond the one employed in Sec. II. In all cases, closed for-
mulas for the various spectra were obtained, which displayed
explicit dependence on all physical parameters. Clearly, it
would be worthwhile to conduct experiments to test the prop-
erties predicted by the analytical formulas in superconducting
qubits or quantum dot devices.
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APPENDIX A: SUMMATION FORMULA

The more general form of the summation formula, found
in [19], is

∞∑
n=−∞

(−1)nJα+γ n(z)Jβ−γ n(x)

n + μ
= π

sin(πμ)
Jα−γμ(x)Jβ+γμ(x),

(A1)

where μ ∈ C/Z; α, β, x ∈ C; γ ∈ (0, 1]; and Re(α + β ) >

−1. It is useful to explicitly quote the particular case where
γ = 1, α = p, and β = q (with p, q ∈ Z), since this case
frequently arises in various fluorescence spectra. The formula
takes the form

∞∑
n=−∞

Jn+p(z)Jn−q(x)

n + μ
= (−1)q π

sin(πμ)
Jp−μ(x)Jq+μ(x),

(A2)

where we used J−n(x) = (−1)nJn(x) and convergence now
requires p + q > −1.

Here we provide a simple proof in the case α = β = 0 and
γ = 1, referring to [19] for the general case. Interestingly, the
product of two Bessel functions admits different integral rep-
resentations [20] in terms of the integration of a single Bessel

function and an additional simple trigonometric or hyperbolic
function. One of these representations is of Nicholson type,

Jn(x)J−n(x) = 2

π

∫ π/2

0
J0(2x cos θ ) cos(2nθ )dθ. (A3)

The Bessel function in the integrand is now independent of
the summation index. Therefore, the summation only involves
the cos term. The simple nature of the formula and of its
derivation lies in the fact that the result of the summation

∞∑
n=−∞

(−1)n cos nφ

n + μ
= π cos μφ

sin πμ
, (A4)

where φ ∈ [−π, π ], which is satisfied in our case, does not
modify the analytical form of the integrand, because the
right-hand side of (A4) also has a cosine with the integration
variable. Therefore, the resulting integral expression after the
summation has the same integral representation of the product
of two Bessel functions.3 Therefore,

∞∑
n=−∞

Jn(x)Jn(x)

n + μ
= 2

sin πμ

∫ π/2

0
J0(2x cos θ ) cos(2μθ )dθ

= πJμ(x)J−μ(x)

sin πμ
. (A5)

One of the first appearances, with a proof, of this formula is in
[21]. The very first reference we could trace is actually [34].
This formula was rediscovered by Newberger [19], who also
generalized it in the form (A1).

APPENDIX B: ASYMPTOTIC FORMULAS FOR THE FLUORESCENCE SPECTRUM

For large χ , we can again use the asymptotic formula for the Bessel function, giving

P[ω] ≈ P[ω]asym = P[ω]even + P+[ω]odd + P−[ω]odd, (B1)

with

P[ω]even = 4

χ2ω2
s

∣∣ cos
(
χ − μπ

2 − π
4

)∣∣2∣∣ cos
(
χ + μπ

2 − π
4

)∣∣2

| sin(πμ)|2
∑

k

δ(ω − ωL + 2kωs),

P+[ω]odd = 4

χ2ω2
s

∣∣ cos
(
χ − μπ

2 − π
4

)∣∣2∣∣ sin
(
χ + μπ

2 − π
4

)∣∣2

| sin(πμ)|2
∞∑

k=0

δ(ω − ωL + (2k + 1)ωs),

P−[ω]odd = 4

χ2ω2
s

∣∣ cos
(
χ + μπ

2 − π
4

)∣∣2∣∣ sin
(
χ − μπ

2 − π
4

)∣∣2

| sin(πμ)|2
∞∑

k=0

δ(ω − ωL − (2k + 1)ωs).

Computing the modulus, we find

P[ω]even = [cosh(2πη) cos(2πζ ) + sin(2χ )]2 + sin2(2πζ ) sinh2(2πη)

χ2ω2
s [sin2(πζ ) + sinh2(πη)]

∑
k

δ(ω − ωL + 2kωs),

P+[ω]odd = [cosh(2πη) sin(2πζ ) − cos(2χ )]2 + cos2(2πζ ) sinh2(2πη)

χ2ω2
s [sin2(πζ ) + sinh2(πη)]

∞∑
k=0

δ(ω − ωL + (2k + 1)ωs),

P−[ω]odd = [cosh(2πη) sin(2πζ ) + cos(2χ )]2 + cos2(2πζ ) sinh2(2πη)

χ2ω2
s [sin2(πζ ) + sinh2(πη)]

∞∑
k=0

δ(ω − ωL − (2k + 1)ωs).

3The integral representation (A3) holds the same way for more general indices, including complex.
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