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Optomechanical second-order sidebands and group delays in a spinning resonator
with a parametric amplifier and non-Markovian effects
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We investigate the generation of the frequency components at the second-order sidebands based on a spinning
resonator containing a degenerate optical parametric amplifier (OPA). We show that an OPA driven by different
pumping frequencies inside a cavity can enhance and modulate the amplitude of the second-order sideband
with different influences. We find that both the second-order sideband amplitude and its associated group delay
sensitively depend on the nonlinear gain of the OPA, the phase of the field driving the OPA, the rotation speed of
the resonator, and the incident direction of the input fields. Tuning the pumping frequency of the OPA can remain
the localization of the maximum value of the sideband efficiency and nonreciprocal behavior due to the optical
Sagnac effect, which also can adjust the linewidth of the suppressive window of the second-order sideband.
Furthermore, we extend the study of the second-order sideband to the non-Markovian bath, which consists of
a collection of infinite oscillators (bosonic photonic modes). We illustrate that the second-order sidebands in
a spinning resonator exhibit a transition from the non-Markovian to the Markovian regime by controlling the
environmental spectral width. We also study the influences of the decay from the non-Markovian environment
coupling to an external reservoir on the efficiency of second-order upper sidebands. This indicates a promising
way to enhance or steer optomechanically induced transparency devices in nonlinear optical cavities and provides
potential applications for precision measurement, optical communications, and quantum sensing.

DOI: 10.1103/PhysRevA.109.033701

I. INTRODUCTION

In recent years, much attention has been paid to the
field of optomechanics [1–5], in which considerably differ-
ent phenomena have been encountered. There are different
applications such as cooling of a mechanical resonator
[6–10], gravitational wave detection [11–13], optical bista-
bility [14–16], optomechanical mass sensors [17], quantum
measurement [18], and detection of weak microwave signals
[19–21] in merged quantum-mechanical systems with nano-
and micromechanics. A recent advance closely related to
the present study is optomechanically induced transparency
(OMIT) [22–26]. In OMIT, the intense red-detuned optical
control field produces anti-Stokes scattering, which alters the
optical response of the optomechanical cavity, making it trans-
parent in a narrow bandwidth around the cavity resonance
for a probe beam [27]. As an analog of electromagnetically
induced transparency [28,29], OMIT plays an essential role in
optical storage and optical telecommunication [30–33]. In the
past several years, primary advancements have concentrated
on the linearization of the optomechanical interaction, where
we properly explain OMIT by linearizing the optomechanical
interaction while ignoring the intrinsic nonlinear nature of
the optomechanical coupling [29,34]. In recent years, it has
been found that nonlinear optical interactions in materials
can increase the photons circulating in microcavities, such as
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parametric amplification and the optical Kerr effect [35–38],
which has emerged as an important new frontier in cavity
optomechanics. In the classical mechanism, nonlinear op-
tomechanical interaction brings about unconventional photon
blockade [39–41], optomechanical chaos [42], and sideband
generation [43].

Nonreciprocal transmission plays a very important role in
the process of quantum information [44–47] due to the char-
acteristics of unidirectional transmission. The nonreciprocal
transmission of the optical signal allows the flow of light
from one side but blocks it from the other, which resem-
bles the traditional semiconductor p − n junction. Recently,
OMIT has been demonstrated in a rotating optomechani-
cal system with a whispering-gallery-mode microresonator
[48–50]. The experiment [51] showed that optical nonrecip-
rocal devices can be achieved by spinning an optomechanical
resonator. In such a spinning resonator, due to the Sagnac
effect, the frequencies of the clockwise and counterclock-
wise modes experience Sagnac-Fizeau shifts. Additionally,
it also suggested a new scheme to achieve optical nonre-
ciprocity wherein the optical sidebands strongly rely on the
rotary direction of the resonator, which is different from
what the nonlinearity-based schemes demonstrated [52–56].
The spinning resonator systems have developed rapidly,
including nanoparticle sensing [57], mass sensing [58], non-
reciprocal photon blockades [59,60], nonreciprocal phonon
lasers [61], unidirectional signal amplification [62], break-
ing anti-parity-time symmetry [63], and optical solitons
[64].
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It has been shown that combining nonlinear optics and
optomechanics has resulted in many kinds of physical phe-
nomena to enhance quantum effects [65,66]. An optical
parametric amplifier (OPA) inside the optomechanical cavity,
which is pumped by an external laser, can directly lead to
optical amplification and modulate the optomechanical cou-
pling in a way analogous to periodic cavity driving [67–69].
The OPA is able to generate pairs of down-converted pho-
tons, which shows nearly perfect single or dual squeezing.
Therefore, the OPA can modify the dynamical instabilities and
nonlinear dynamics of the system [70–72]. Numerous appli-
cations have been studied owing to these features, such as the
realization of strong mechanical squeezing [73], enhancing
optomechanical cooling [74], the normal-mode splitting [75],
controlling the photon blockade [76–78], and the increase of
atom-cavity coupling [79].

Recently, studying the nonlinear optomechanical interac-
tions in the presence of a coherent mechanical pump has
emerged as an important frontier [80–83]. Due to the existence
of nonlinear optomechanical interactions, second-order and
higher-order sidebands have been generated in optomechan-
ical systems [43,84–88]. Generation of spectral components
at high-order OMIT sidebands has been demonstrated analyt-
ically, which may have great potential in precise sensing of
charges [89,90], phonon number [91], weak forces [92,93],
single-particle detection [94], magnetometer [95], mass sen-
sor [96,97], and high-order squeezed frequency combs [98].
However, actually, high-order OMIT sidebands are generally
much weaker than the probe signal, which imposes many dif-
ficulties in detecting and utilizing the second-order sideband.
Therefore, the enhancement and control of second-order side-
bands have attracted much interest. Moreover, by controlling
the group delay of the output light field, which is caused by
rapid phase dispersion, slow light or fast light effects can
be achieved [48,99–104]. The fast and slow light effects of
the optomechanical system have a wide range of applications
in optical communications and interferometry [105,106]. The
hybrid nonlinear optomechanical system provides an impor-
tant platform for further study of the tunable slow and fast
effects.

For open systems [107,108], only if the coupling between
the system and environment is weak, where the characteris-
tic times of the bath are sufficiently smaller than those of
the quantum system under study, is the Markovian approxi-
mation valid. This means that the Markovian approximation
may fail in some cases, e.g., two-state systems, harmonic
oscillators, coupled cavities, etc. [109–137], where we need
to consider the influences of non-Markovian effects on the
system dynamics. Moreover, we show that the non-Markovian
process proves to be useful in quantum information processing
including quantum state engineering, quantum control, and
quantum channel capacity [138–142] and has been realized
in experiment [143–158].

The above considerations motivate us to explore how to
enhance and control the second-order OMIT sidebands and
group delays in a spinning resonator with a parametric ampli-
fier and non-Markovian effects.

In this paper we consider the influence of the OPA driven
with different pumping frequencies on the second-order side-
band generation in a rotating optomechanical system, which

is coherently driven by a control field and a probe field. The
results show that the second-order sidebands in the rotating
resonator can be greatly enhanced in the presence of the
OPA while maintaining the nonreciprocal behavior due to
the optical Sagnac effect. The second-order sidebands can be
adjusted simultaneously by the pumping frequency and phase
of the field driving the OPA, the gain coefficient of the OPA,
the rotation speed of the resonator, and the incident direction
of the input fields. We compare the differences in efficiency
of the second-order sideband generation when the OPA is
driven by different pumping frequencies. Due to the Sagnac
transformation and the presence of the OPA, we find that
the group delay of the second-order upper sideband can be
tuned by adjusting the nonlinear gain and phase of the field
driving the OPA, the rotation speed of the resonator, and the
incident direction of the input fields in the spinning optome-
chanical system. The second-order OMIT sidebands in the
spinning resonator are then generalized to the non-Markovian
regimes and compared with the Markovian approximation
in the wideband limit. The influence of the decay from the
non-Markovian environment coupling to an external reservoir
on the efficiency of second-order upper sidebands is also in-
vestigated. Our paper indicates an advantage of using a hybrid
nonlinear system, which provides an effective way to further
control and enhance second-order and higher-order sidebands
in a nonreciprocal optical device.

The rest of this paper is organized as follows. In Sec. II
we give the efficiency of the second-order sideband and its
group delay by solving the Heisenberg-Langevin equations.
In Sec. III we discuss the influence of the OPA excited by
a pump driving with the frequency being the sum of the
frequencies of the strong control field and the weak probe field
driving the resonator on the second-order upper and lower
sidebands generation in the spinning resonator. In Sec. IV we
study the group delay of the second-order upper sideband. In
Sec. V we show the influence of the OPA on the second-order
sideband generation when the OPA is excited by a pump
driving with the frequency setting to twice the frequency of
the strong control field. In Sec. VI we extend nonreciprocal
second-order sidebands in the spinning resonator to a non-
Markovian bath and compare it with that in the Markovian
regime. Moreover, we also study the influence of the decay
from the non-Markovian environment coupling to an external
reservoir on the efficiency of second-order upper side-
bands. Section VII summarizes our work and discusses the
conclusions.

II. MODEL

As schematically shown in Figs. 1(a) and 1(b), the model
we consider is a rotating whispering-gallery-mode microres-
onator (containing an optical parametric amplifier), which is
coupled to a stationary tapered fiber. The resonator (driven
by a strong control field at frequency ωl and a weak probe
field at frequency ωp), with optical resonance frequency ω0

and intrinsic loss κa = ω0/Q (Q is the optical quality factor),
supports a mechanical breathing mode (frequency ωm and
effective mass m). A control laser and a probe laser are ap-
plied to the system via the evanescent coupling of the optical
fiber and resonator, and the field amplitudes are given by
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FIG. 1. Schematic diagram of the spinning optomechanical sys-
tem. A rotating whispering-gallery-mode microresonator (containing
an OPA [159–164] with frequency ωg) is coupled to a stationary
tapered fiber. The resonator supports a mechanical mode at frequency
ωm. We fix the clockwise rotation of the resonator, which causes
the light circulating in the resonator to experience a Sagnac-Fizeau
shift. The control-probe fields come from (a) the left side �s > 0
and (b) the right side �s < 0. The nonlinear crystal is pumped by
an additional laser beam to produce parametric amplification. Also
shown is the level schematic of the optomechanical system with an
OPA, with pump frequencies (c) ωg = ωl + ωp and (d) ωg = 2ωl ,
where |np〉 and |nm〉 denote the number states of the cavity and the
mechanical mode, respectively.

εl = √
Pl/h̄ωl and εp = √

Pp/h̄ωp, where Pl and Pp are the
control and probe powers, respectively. It is well known that
due to the rotation, the optical mode frequency experiences
Sagnac-Fizeau shift [51,165,166], which transforms as

ω0 → ω0 + �s, (1)

�s = nR�ω0

c

(
1 − 1

n2
− λ

n

dn

dλ

)
, (2)

where � = φ̇ is the angular velocity of the spinning resonator;
n and R are the refractive index and radius of the resonator,
respectively; and c and λ are the speed of light and the light

wavelength in a vacuum, respectively. The dispersion term
dn/dλ represents a negligibly small relativistic (dispersion)
correction in the Sagnac-Fizeau shift [51,61]. In Eq. (2), the
first term in the parenthesis shows the Sagnac contribution
which arises from the rotation of the resonators, while the two
last terms with negative signs take into account the Fizeau
drag due to the light propagation through a moving res-
onator medium. As shown in Refs. [73,167,168], the operating
mechanism of the OPA is standard two-photon squeezing.
Embedding the OPA in an optomechanical cavity makes the
squeezed state transfer between a photon of a cavity field and a
phonon of mechanical mode, which can amplify nonlinear op-
tical responses of the system and reduce mechanical thermal
noise and photon shot noise. The Hamiltonian formulation of
the system reads

Ĥ = Ĥmech + Ĥopt + ĤOPA + Ĥdrive, (3)

with

Ĥmech = p̂2

2m
+ 1

2
mω2

mx̂2 + p̂2
φ

2m(R + x̂)2 ,

Ĥopt = h̄(ω0 + �s)â†â − h̄ξ â†âx̂,

ĤOPA = ih̄G(â†2eiθ e−iωgt − H.c.),

Ĥdrive = ih̄
√

κex(εl â
†e−iωl t + εpâ†e−iωpt − H.c.), (4)

where p̂, x̂, φ̂, and p̂φ denote the momentum, position, ro-
tation angle, and angular momentum operators, respectively,
with commutation relations [x̂, p̂] = [φ̂, p̂φ] = ih̄ [169]; H.c.
stands for the Hermitian conjugate; â (â†) is the annihilation
(creation) operator of the cavity field with resonance fre-
quency ω0; ξ = ω0/R is the optomechanical coupling; ĤOPA

describes the coupling of the intracavity field with the OPA
(pump frequency ωg); G is the nonlinear gain of the OPA,
which is proportional to the pump power driving amplitude;
and θ is the phase of the field driving the OPA [170]. We
assume that this OPA with a second-order nonlinearity crystal
is excited by a pump driving with the frequency ωg = ωl + ωp

[96] in Fig. 1(c), so the signal light and idler light in the
OPA have the same frequency (ωl + ωp)/2 [161–163,171]. In
addition, Ĥdrive denotes the interaction of the cavity field with
the control field and that of the cavity field with the probe
field, with κex the loss caused by the resonator-fiber coupling.

In the rotating frame at the control frequency ωl , the
Hamiltonian (3) becomes

Ĥeff = h̄(�0 − ξ x̂ + �s)â†â + p̂2

2m
+ 1

2
mω2

mx̂2

+ p̂2
φ

2m(R + x̂)2 + ih̄G(â†2e−i�pt eiθ − H.c.)

+ ih̄
√

κex[(εl + εpe−i�pt )â† − H.c.], (5)

where �0 = ω0 − ωl and �p = ωp − ωl . When the control
field is injected at the red-detuned sideband of the cavity reso-
nance (�p = ωm), the transition |np, nm + 1〉 ↔ |np + 1, nm〉
occurs. Moreover, |np, nm〉 couples with |np + 1, nm〉 through
the probe field, which is in resonance with the cavity mode
(ωp = ω0). In this case, the destructive interference of these
two excitation pathways occurs, which leads to OMIT [22]
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in Fig. 1(c) with pump frequency ωg = ωl + ωp (discussed
in Secs. II–IV and VI) and Fig. 1(d) with pump frequency
ωg = 2ωl (Sec. V), where the OPA has almost no influence on
the interference paths. With the operator expectation values
defined by a ≡ 〈â〉, x ≡ 〈x̂〉, φ ≡ 〈φ̂〉, and pφ ≡ 〈p̂φ〉, the
Heisenberg-Langevin equations of the spinning optomechan-
ical system can be derived as

ȧ = −[κ + i(�0 − ξx + �s)]a

+ √
κex(εl + εpe−i�pt ) + 2Ga∗eiθ e−i�pt , (6)

m
(
ẍ + �mẋ + ω2

mx
) = h̄ξa∗a + p2

φ

mR3
, (7)

φ̇ = pφ

mR2
, (8)

ṗφ = 0, (9)

where κ = (κa + κex)/2 and �m are the dissipations of the
cavity and the damping of the mechanical mode, respectively.
The derivation of Eqs. (6)–(9) can be found in the Appendix.
Focusing on the mean response of the system to the probe
field, we write the operators for their expectation values by
means of the mean-field approximation and safely ignore the
quantum noise terms with strong driving conditions.

In this case, we assume the control field is much stronger
than the probe field (εl 	 εp), which means we can use the
perturbation method to deal with Eqs. (6)–(9). The control
field provides a steady-state solution of the system, while the
probe field is treated as the perturbation of the steady state.
We then follow the standard procedure, which decomposes
the expectation value of all operators as a sum of their steady-
state value and small fluctuations around the steady-state
value [22,43]

a = as + A+
1 e−i�pt + A−

1 ei�pt + A+
2 e−2i�pt + A−

2 e2i�pt ,

x = xs + X +
1 e−i�pt + X −

1 ei�pt + X +
2 e−2i�pt + X −

2 e2i�pt ,

(10)

in which A+
2 (A−

2 ) is the amplitude of second-order upper
(lower) sideband and corresponds to the responses at the orig-
inal frequencies 2ωp − ωl (3ωl − 2ωp). We are committed to
the fundamental OMIT and its second-order sideband process,
so the higher-order sidebands in Eq. (10) are ignored. By
substituting Eq. (10) into Eqs. (6)–(9) and comparing the
coefficients of the same order, the steady-state solutions are
obtained as

as =
√

κexεl

κ + i�
,

xs = h̄ξ |as|2
mω2

m

+ R

(
�

ωm

)2

, (11)

where � = �0 − ξxs + �s and � = dφ/dt is the angular
velocity of the spinning resonator. It is clear that the revolving
speed of the resonator and Sagnac-Fizeau shift �s affect the
values of both the mechanical displacement xs and intracavity
photon number |as|2. Substituting Eq. (10) into Eqs. (6)–(9),
we gain six algebraic equations, which can be divided into
two groups. The first group describes the linear response of

the probe field

σ1(�p)A+
1 = iξasX

+
1 + 2Geiθ a∗

s + √
κexεp,

σ2(�p)A−∗
1 = −iξa∗

s X +
1 ,

χ (�p)X +
1 = h̄ξ (asA

−∗
1 + a∗

s A+
1 ), (12)

while the second group corresponds to the second-order side-
band process

σ1(2�p)A+
2 = iξ (asX

+
2 + A+

1 X +
1 ) + 2Geiθ A−∗

1 ,

σ2(2�p)A−∗
2 = −iξ (a∗

s X +
2 + A−∗

1 X +
1 ),

χ (2�p)X +
2 = h̄ξ (a∗

s A+
2 + asA

−∗
2 + A−∗

1 A+
1 ), (13)

with

σ1(n�p) = κ + i� − in�p,

σ2(n�p) = κ − i� − in�p,

χ (n�p) = m
(
ω2

m − i�mn�p − �2
p

)
.

Moreover, we can easily get the linear and second-order non-
linear responses of the system

A+
1 = D + σ2(�p)χ (�p)

f3(�p)
(
√

κexεp + 2Geiθ a∗
s ),

X +
1 = h̄ξa∗

s σ2(�p)

D + σ2(�p)χ (�p)
A+

1 ,

A−∗
1 = −iξa∗

s

σ2(�p)
X +

1 (14)

and

A+
2 = −Dξ 2asX

+2
1 + iξ f1A+

1 X +
1 − 2iξGeiθa∗

s f2X +
1

σ2(�p) f3(2�p)
,

X +
2 = h̄ξ [σ2(2�p)a∗

s A+
2 + σ2(2�p)A+

1 A−∗
1 − iξasA

−∗
1 X +

1 ]

f2
,

A−
2 = iξ

σ2(2�p)∗
(asX

−
2 + A−

1 X −
1 ), (15)

where

D = ih̄ξ 2|as|2,
f1 = iD�p + σ2(�p)σ2(2�p)χ (2�p),

f2 = D + σ2(2�p)χ (2�p),

f3(n�p) = 2iD� + σ1(n�p)σ2(n�p)χ (n�p).

By using the standard input-output relations, i.e.,

aout(t ) = ain(t ) − √
κexa(t ), (16)

we obtain the expectation value of the output field of this
system

aout(t ) =C1e−iωl t + C2e−iωpt − √
κexA−

1 e−i(2ωl −ωp)t

− √
κexA+

2 e−i(2ωp−ωl )t − √
κexA−

2 e−i(3ωl −2ωp)t ,

(17)

where C1 = εl − √
κexas and C2 = εp − √

κexA+
1 . The first

term of Eq. (17) denotes the output with control frequency ωl ,
while the second and third terms represent the anti-Stokes and
Stokes fields, respectively. The terms −√

κexA+
2 e−i(2ωp−ωl )t
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and −√
κexA−

2 e−i(3ωl −2ωp)t are concerned with the second-
order upper and lower sidebands, respectively [43].

We now introduce the dimensionless quantity to define
the efficiency of the second-order upper and lower sidebands
[43,172]

η1 =
∣∣∣∣−

√
κexA+

2

εp

∣∣∣∣, (18)

η2 =
∣∣∣∣−

√
κexA−

2

εp

∣∣∣∣, (19)

where the amplitude of the probe pulse is treated as a basic
scale to gauge the amplitudes of the output sidebands η1 and
η2. The associated group delay of the second-order upper
sideband turns out to be [23,173,174]

τ1 =
d arg

(−√
κexA+

2
εp

)
2d�p

∣∣∣∣∣∣
�p=ωm

. (20)

A positive group delay (τ1 > 0) corresponds to the slow light
phenomenon, while a negative group delay (τ1 < 0) corre-
sponds to the fast light phenomenon [23,175].

III. RESULTS AND DISCUSSION

In our numerical simulations, to demonstrate that the ob-
servation of the second-order sidebands in a resonator assisted
by an OPA is within current experimental reach, we calcu-
late Eqs. (18)–(20) with parameters from Refs. [51,176,177]:
λ = 1550 nm, R = 0.25 mm (the resonator radius), m = 25
ng, n = 1.44, Q = ω0/κ = 4.5 × 107, ωm = 100 MHz, �m =
0.1 MHz, κa = κex = ω0/Q, Pp = 0.05Pl , and �0 = ωm. We
rotate the resonator clockwise, where � > 0 stands for
the light coming from the left-hand side and � < 0 denotes
the light coming from the right-hand side.

To see the influence of resonator rotation and the OPA
on the second-order sideband generation, the efficiency of
second-order upper sideband generation is investigated as a
function of frequency �p/ωm shown in Fig. 2. In Fig. 2(a) we
show that the efficiency η1 of the second-order upper sideband
varies with �p without the participation of the OPA, i.e.,
the nonlinear gain of the OPA G = 0 and the phase of the
field driving the OPA θ = 0. For a stationary resonator, we
find two peaks of second-order sideband spectra and a local
minimum near the resonance condition �p = ωm. By spinning
the resonator, the peak position of η1 has different moves
when the driving fields come from different directions. By ad-
justing the frequency �p/ωm, we can get enhanced efficiency
of the second-order sideband while driving the resonator from
one direction and suppressed efficiency while driving from the
opposite direction. For example, within �p/ωm in the range
from 0.99 to 1, η1 is enhanced in the case of � > 0, while it
is suppressed in the case of � < 0. Obviously, this spinning-
induced direction-dependent nonreciprocal behavior can be
attributed to the optical Sagnac effect induced by a spinning
resonator. As shown in Fig. 2(b), the efficiency η1 gets larger
in the presence of the OPA. To be more specific, for G = 0.2κ ,
θ = 0, and � = 20 kHz, the efficiency η1 can increase from
19.5% to 27.2% at �p = 0.997ωm. When the system is driven
from the right, i.e., � = −20 kHz, the efficiency η1 also can

FIG. 2. Efficiency η1 of the second-order upper sideband gen-
eration as a function of �p for different values of � and incident
directions of light, where the nonlinear gain and phase of the probe
field of the OPA are fixed at (a) G = 0 and θ = 0, (b) G = 0.2κ and
θ = 0, and (c) G = 0.2κ and θ = 3π/2. The η1 varies with �p and
� for different values (d) G = 0 and θ = 0, (e) G = 0.2κ and θ = 0,
and (f) G = 0.2κ and θ = 3π/2. The other parameters are Pp =
0.05Pl , Pl = 1 mW, λ = 1550 nm, R = 0.25 mm, m = 25 ng, n =
1.44, Q = ω0/κ = 4.5 × 107, ωm = 100 MHz, �m = 0.1 MHz, κa =
κex = ω0/Q, Pp = 0.05Pl , and �0 = ωm. With these parameters, we
obtain the Sagnac-Fizeau shift �s = (15.082 MHz, 0, 15.082 MHz)
or �s/ωm = (0.1508, 0, −0.1508), which corresponds to the angular
velocity � = (20 kHz, 0, −20 kHz) of the cavity.

increase from 12.4% to 21.6% at �p = 1.004ωm. Figure 2(c)
shows that the efficiency η1 can also be adjusted by tuning
θ . As can be seen clearly when θ changes from θ = 0 to
θ = 3π/2, in the case of G = 0.2κ and � = 20 kHz, the
maximum value of η1 increases to 37.4%. In the case of � =
−20 kHz, the maximum value increases to 29.2%. We see that
the efficiency of the second-order upper sideband is sensitive
to the variation of the nonlinear gain of the OPA and phase
of the field driving the OPA, which indicates the advantage
of using a hybrid nonlinear system. According to Eqs. (14)
and (15), such phenomena coming from the amplitudes of
second-order sidebands A+

2 and A−
2 are directly related to the

Sagnac-Fizeau shift and the OPA. To show the influence of the
OPA on the second-order sideband generation more clearly,
the efficiency η1 is shown as a function of both �p and � in
Figs. 2(d)–2(f).

To explore the role of the OPA in this resonator, we il-
lustrate in Fig. 3 the efficiency η1 of the second-order upper
sideband versus the probe-pulsed detuning �p with differ-
ent nonlinear gain G of the OPA and phase θ of the field
driving the OPA, when the system is driven from the right-
hand side (� = −20 kHz). We find in Fig. 3(a) that when
the nonlinear gain G of the OPA increases from 0 to G =
0.6κ , the efficiency η1 can be significantly enhanced. The
enhancement effect at the probe-pulsed detuning �p/ωm < 1
is much weaker than at �p/ωm > 1. Figure 3(c) shows that
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FIG. 3. Efficiency η1 of the second-order upper sideband gen-
eration as a function of the probe-pulsed detuning �p for different
(a) nonlinear gain G of the OPA with θ = 0 and (c) phase θ with
G = 0.2κ . (b) Variation of η1 with �p and G for θ = 0. (d) Variation
of η1 with �p and θ for G = 0.2κ . The angular velocity of the
spinning resonator is fixed at � = −20 kHz. The other parameters
are the same as in Fig. 2.

the second-order sideband behavior of the output field can
also be adjusted by tuning θ . In the case of G = 0.2κ , we find
that compared with θ = 0, both θ = π/2 and θ = π result in
lower efficiency η1 of the second-order upper sideband, but
θ = 3π/2 leads to enhanced efficiency. Figure 3(d) plots η1

as a function of detuning �p and the phase θ of the OPA. In
the range shown, the maximum value of efficiency η1 is about
30.2% at θ = 1.6π and �p = 1.004ωm. Specifically, the ef-
ficiency is enhanced when θ ∈ (1.6π, 2π ) and suppressed at
other values. In addition, as is illustrated in Figs. 3(b) and 3(d),
regardless of whether the nonlinear gain G and θ increases,
the maxima of the efficiency η1 are still located at the same
position of the probe-pulsed detuning. This phenomenon can
be explained by Refs. [22,43], which show there are some
connections between OMIT and the second-order sideband
process. When OMIT occurs, the second-order sideband pro-
cess is subdued. The linewidth of the OMIT window is related
to the intracavity photon number

�OMIT ≈ �m + ξ 2x2
ZPF

κ
|as|2, (21)

where xZPF = √
h̄/2mωm. By perturbation theory, we can get

the intracavity photon number |as|2 in Eq. (11), which is in-
dependent of other perturbation terms such as the probe pulse
and nonlinear gain of the OPA. In other words, the positions of
these local maxima of the sideband spectra only depend on the
intrinsic structural parameters of an optomechanical system
and the intensity of the control field. As a result, the OPA
not only improves the sideband efficiency of the second-order
sideband but also keeps the locality of maximum values of the
sideband efficiency.

In Fig. 4 we show the influence of resonator rotation
and the OPA on the second-order lower sideband generation.

FIG. 4. Efficiency η2 of the second-order lower sideband gen-
eration as a function of �p for different values of � and incident
directions of light, where the nonlinear gain and phase of the probe
field of the OPA are fixed at (a) G = 0 and θ = 0, (b) G = 0.2κ and
θ = 0, and (c) G = 0.2κ and θ = 3π/2. The η2 varies with �p and
� for different values (d) G = 0 and θ = 0, (e) G = 0.2κ and θ = 0,
and (f) G = 0.2κ and θ = 3π/2. The other parameters are the same
as in Fig. 2.

As shown in Fig. 4(a), unlike the second-order upper side-
band, the second-order lower sideband has no local minimum
but only one peak. The efficiency is much smaller than the
second-order upper sideband. Specifically, with neither res-
onator rotation nor the OPA drive (G = 0 and � = 0), both
peaks of η1 are about 19.6% and the peak of η2 is only 0.82%.
Furthermore, the second-order lower sideband exhibits non-
reciprocal characteristics due to the rotation of the resonator,
which is more pronounced at �p/ωm > 1. Specifically, com-
pared with the stationary resonator (i.e., no spinning with
� = 0), the spinning resonator increases for � = −20 kHz,
while it decreases for � = 20 kHz at �p/ωm > 1 in Fig. 4(a).
In Fig. 4(d) we find that for the same resonator speed, the
enhancement effect is more pronounced when the device is
driven from the right side (� < 0) than from the left side
(� > 0). For example, for � = −60 kHz, the maximum value
of η2 is 3.04% at �p/ωm = 1.003. For � = 60 kHz, the max-
imum value of η2 is 0.97% at �p/ωm = 0.999. In Figs. 4(b)
and 4(c), as with the second-order upper sideband, the pres-
ence of the OPA significantly improves the efficiency of the
second-order lower sideband, which also keeps the locality
of maximum values of the sideband efficiency. Specifically,
for � = −20 kHz, when the nonlinear gain G of the OPA
increases from 0 to 0.2κ , the maximum value of η2 increases
from 1.08% to 1.75% at �p/ωm = 1.001. In addition, when
the phase θ of the OPA increases from 0 to 3π/2, the max-
imum value of η2 can be increased to 2.51%, which is more
than twice the value without the OPA.

We show that the presence of the OPA only causes a
change in the peak of η1 and has almost no influence on
asymmetry [see black solid line in Figs. 2(a)–2(c) for � = 0

033701-6



OPTOMECHANICAL SECOND-ORDER SIDEBANDS AND … PHYSICAL REVIEW A 109, 033701 (2024)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

60

FIG. 5. Efficiency η1 of the second-order upper sideband gener-
ation as a function of the nonlinear gain G of the OPA for different
probe-pulsed detuning �p, where θ = 0 and � = 0. The other pa-
rameters are the same as in Fig. 2.

and black solid line in Figs. 4(a)–4(c) for � = 0]. Without
the OPA (G = 0), the asymmetric line shape of η1 with regard
to �p = ωm and the η2 peak being not exactly at �p = ωm

come from the spinning of the resonator. In this case, the mean
mechanical displacement xs in Eq. (11) is made up of two
terms. The first term is proportional to the intracavity photon
number |as|2, which is closely related to the Sagnac-Fizeau
shift �s = nR�ω0

c (1 − 1
n2 − λ

n
dn
dλ

) in Eq. (2) or, equivalently,
very sensitive to the angular velocity � of the resonator and
incident direction of input fields, thus giving rise to the non-
reciprocal behavior. The second term R(�/ωm)2 of xs makes
the mechanical displacement larger due to the rotation. The
existence of these two terms together affects the second-order
upper and lower sidebands in Eqs. (18) and (19), which lead
to the asymmetry of η1 with regard to �p = ωm and the η2

peak being not exactly at �p = ωm, as shown in Figs. 2–4.
In this case, R(�/ωm)2 of xs in Eq. (11) originates from an

extra term in the Hamiltonian of our model due to the rota-
tion, i.e., the rotational kinetic energy term p̂2

φ/2m(R + x̂)2

in Eq. (4), which is different from the usual situation in
Ref. [43]. Since x/R � 1 (x = 〈x̂〉 denotes the expectation
value of x̂), the term p̂2

φ/2m(R + x̂)2 is approximately equal to
−p̂2

φ x̂/mR3 + p̂2
φ/2mR2 (neglecting second- and higher-order

small quantities about x/R). This means that there is an extra
force −p̂2

φ x̂/mR3 exerted on the mechanical mode making it
deviate from its original equilibrium position.

To clearly see the influence of the nonlinear gain G of the
OPA on the second-order sideband generation, the efficiency
η1 is investigated as a function of the nonlinear gain G for
different probe-pulsed detuning �p, as shown in Fig. 5. In de-
tail, when G increases from 0 to 0.6κ in the case of �p/ωm =
1.002, the system provides an enhancement of more than five
times for the sideband efficiency η1. In general, with the non-
linear gain G increasing, the efficiency η1 of the second-order
upper sideband generation increases obviously. The reason is
that when the OPA is pumped at ωg = ωl + ωp, i.e., twice the
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FIG. 6. Optical group delay of the second-order upper sideband
τ1 plotted as a function of Pl with different values of � and incident
directions of light (a) without the OPA and (b) in the presence of the
OPA effect at G = 0.4κ and θ = 0. The τ1 is plotted as a function
of Pl with different (c) nonlinear gain G and (d) phase θ of the field
driving the OPA, where � = 0. The other parameters are the same as
in Fig. 2.

frequency of the anti-Stokes field, the parametric frequency
conversion between this anti-Stokes field and phonon mode
can provide another way to generate an optical second-order
sideband, leading to the enhancement of a second-order side-
band.

IV. TUNABLE SLOW AND FAST LIGHT

We know the slow light effect is an important result of
OMIT, which can be described by the optical group delay
[23,101–104]. It is similar to that of electromagnetically in-
duced transparency; in the region of the narrow transparency
window, the rapid phase dispersion can cause the group delay
given by Eq. (20). A positive group delay (τ1 > 0) corre-
sponds to slow light propagation and a negative group delay
(τ1 < 0) indicates fast light propagation.

In previous work [23,175], it has been demonstrated that
the delay of the transmitted light is only relevant to the
pump power in a conventional optomechanical system. In
our model, we see clearly from Fig. 6 that the delay time of
the second-order upper sideband can be adjusted not only by
tuning the speed and direction of rotation of the resonator but
also by adjusting the nonlinear gain of the OPA and phase of
the field driving the OPA. In Figs. 6(a) and 6(b) we investigate
the group delay of the second-order upper sideband τ1 as a
function of control laser power Pl for different �. We find
that when the resonator is stationary (� = 0), with the power
increasing, τ1 tends to advance and even switches into fast
light. However, in the presence of resonator rotation, the delay
time of the second-order upper sideband will be prolonged at
high control powers, which is useful for storage. In detail, as
shown in Fig. 6(a), for a resonator speed of 20 kHz, the group
delay time τ1 increases when the resonator is driven from the
right side (� = −20 kHz) and decreases when the resonator
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is driven from the left side (� = 20 kHz). The group delay
can still reach the conversion from fast light to slow light at
this point. Increasing the resonator speed to 40 kHz, at high
control power, when the resonator is driven from the right
side (� = −40 kHz), the group delay of the second-order
sideband is always positive, i.e., slow light is obtained. When
the resonator is driven from the left side (� = 40 kHz), the
group delay is always negative and fast light can be obtained.
At this point, the switching between fast and slow light dis-
appears. In Fig. 6(b) we show the results of group delay τ1

versus control laser power Pl in the presence of the OPA. In
the low-power range, the addition of the OPA increases the
value of τ1. More interestingly, at � = −40 kHz, the fast and
slow light conversion behavior of the group delay disappears,
where only a slow light effect is obtained.

Now we discuss the influence of the presence of the OPA
on the delay time of the second-order sideband. In Figs. 6(c)
and 6(d) we display the group delay τ1 as a function of
the control power Pl for different parameters of nonlinear
gain G and phase θ of the field driving the OPA, where
the resonator is stationary. When the OPA is considered
in the optomechanical system, as is expected, the delay time
of the second-order upper sideband generation obviously in-
creases with the increasing power. With the nonlinear gain
G increasing from 0 to 0.4κ , the group delay τ1 accordingly
increases, while the trend of switching between fast and slow
light effects remains unchanged. In Fig. 6(d) we see that the
τ1 is sensitive to the variation of the phase of the OPA. When
θ = π/2, τ1 exhibits a significant transition from fast to slow
light; in other words, the delay time significantly decreases
at low power and increases at high power. Interestingly, for
θ = 3π/2, the valley of the τ1 disappears in the low-power
range, whereas the group delay exhibits a fast light effect
(τ1 < 0) in the high-power range. Physically, from Eq. (15),
when the OPA is added inside the optomechanically coupled
system, the quantum interference effect between the probe
field and second-order sideband process is directly related to
the phase of the OPA, so the optical-response properties for
the probe field become phase sensitive.

As shown in Fig. 7, the group delay τ1 varies with the rota-
tion speed of the resonator |�| at a fixed control power, where
the red sideband �p = ωm is also presented. We find that the
group delay can achieve the transition from fast to slow light
regardless of the direction of incidence of the input fields but
with very significant differences. If � > 0 (the driving fields
come from the left-hand side of the fiber), when the rotation
speed reaches 101 kHz, the group delay τ1 experiences the
conversion from τ1 < 0 to τ1 > 0. However, if � < 0 (driving
from the right-hand side of the fiber), when the rotation speed
reaches 30 kHz, τ1 experiences the conversion from τ1 < 0 to
τ1 > 0. Therefore, we realize the conversion between the fast
light and slow light by controlling the incident direction of the
input fields in the spinning system. In the above discussion,
we see that the group delay of the second-order upper side-
band is sensitive to the variation of the rotation speed of the
resonator, the direction of incidence of the input fields, and the
phase of the field driving the OPA. In Fig. 8(a) the group delay
τ1 of the second-order upper sideband is plotted as a function
of control power Pl and the rotation speed of the resonator
�. In Fig. 8(b) τ1 is plotted as a function of control power Pl

FIG. 7. Group delay of the second-order upper sideband τ1 vary-
ing with the spinning angular velocity |�| at � > 0 and � < 0, with
G = 0.4κ and θ = 0. The power of the control field Pl is 1 mW. The
other parameters are the same as in Fig. 6.

FIG. 8. Group delay of the second-order upper sideband τ1 vary-
ing with (a) Pl and � at G = 0 and θ = 0 and (b) Pl and θ at
G = 0.4κ and � = 0. The black curves correspond to τ1 = 0. The
other parameters are the same as in Fig. 6.
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and the phase θ of the field driving the OPA. The black curves
correspond to τ1 = 0. In this case, we can obtain the slow light
effect or fast light effect by properly selecting the values of Pl ,
�, and θ . Moreover, a tunable switch from fast to slow light
can be realized by adjusting their values.

V. INFLUENCE OF CHANGING THE DRIVING
FREQUENCY OF THE OPA ON THE EFFICIENCY

The optical degenerate parametric amplifier, a second-
order optical crystal in nature, can generate pairs of down-
converted photons and show nearly perfect single or dual
squeezing [159–164]. As is well known, placing an OPA
pumped by an external laser in the optomechanical cavity
can modulate the optomechanical coupling, which can lead
directly to optical amplification [68]. We can discuss the in-
fluence of different pump frequencies of the driving OPA on
the sidebands and compare the amplification of the second-
order sidebands in both cases. Now we vary the frequency of
the laser field driving the OPA, so the OPA is excited by a
pump drive with the frequency ωg = 2ωl [160], as shown in
Fig. 1(d). The pump photon with frequency ωg = 2ωl is down-
converted into an identical pair of photons with frequency ωl

after passing through the second-order nonlinearity crystal.
The ĤOPA reads

ĤOPA = ih̄G(â†2eiθ e−2iωl t − H.c.). (22)

The total Hamiltonian of the system in the rotating frame at
the laser frequency ωl is given by

Ĥeff = h̄(�0 − ξ x̂ + �s)â†â + p̂2

2m
+ 1

2
mω2

mx̂2

+ p̂2
φ

2m(R + x̂)2 + ih̄G(â†2eiθ − H.c.)

+ ih̄
√

κex[(εl + εpe−i�pt )â† − H.c.]. (23)

We can get the equations of motion

ȧ = −[κ + i(�0 − ξx + �s)]a

+ √
κex(εl + εpe−i�pt ) + 2Geiθ a∗, (24)

m
(
ẍ + �mẋ + ω2

mx
) = h̄ξa∗a + p2

φ

mR3
, (25)

φ̇ = pφ

mR2
, (26)

ṗφ = 0, (27)

where we write the operators for their expectation values by
the mean-field approximation. The steady-state solutions of
the system are obtained as

ãs = 2Geiθ + κ − i�̃

κ2 + �̃2 − 4G2
,

x̃s = h̄ξ |ãs|2
mω2

m

+ R

(
�

ωm

)2

, (28)

where �̃ = �0 − ξ x̃s + �s. It is worth noting that here, unlike
Eq. (11), the intracavity photon number |ãs|2 and displace-
ment of mechanical oscillator x̃s strongly depend on the

magnitude of nonlinear gain G and phase θ of the OPA. Equa-
tions (24)–(27) can be solved analytically with the linearized
ansatz

a = ãs + Ã+
1 e−i�pt + Ã−

1 ei�pt + Ã+
2 e−2i�pt + Ã−

2 e2i�pt ,

x = x̃s + X̃ +
1 e−i�pt + X̃ −

1 ei�pt + X̃ +
2 e−2i�pt + X̃ −

2 e2i�pt .

After the ansatz, we obtain six algebra equations, which can
be divided into two groups

σ̃1(�p)Ã+
1 = iξ ãsX̃

+
1 + 2Geiθ Ã−∗

1 + √
κexεp,

σ̃2(�p)Ã−∗
1 = −iξ ã∗

s X̃ +
1 + 2Ge−iθ Ã+

1 ,

χ (�p)X̃ +
1 = h̄ξ (ãsÃ

−∗
1 + ã∗

s Ã+
1 ) (29)

and

σ̃1(2�p)Ã+
2 = iξ (ãsX̃

+
2 + Ã+

1 X̃ +
1 ) + 2Geiθ Ã−∗

2 ,

σ̃2(2�p)Ã−∗
2 = −iξ (ã∗

s X̃ +
2 + Ã−∗

1 X̃ +
1 ) + 2Ge−iθ Ã+

2 ,

χ (2�p)X̃ +
2 = h̄ξ (ãsÃ

−∗
2 + ã∗

s Ã+
2 + Ã+

1 Ã−∗
1 ), (30)

with

σ̃1(n�p) = κ + i�̃ − in�p,

σ̃2(n�p) = κ − i�̃ − in�p,

χ (n�p) = m
(
ω2

m − i�mn�p − �2
p

)
.

We get the linear and second-order nonlinear responses of the
system

Ã+
1 = D̃ + σ̃2(�p)χ (�p)

f̃4(�p) + f̃3(�p)

√
κexεp,

X̃ +
1 = h̄ξ [2Ge−iθ ãs + ã∗

s σ̃2(�p)]

D̃ + σ̃2(�p)χ (�p)
Ã+

1 ,

Ã−∗
1 = −iξ ã∗

s

σ̃2(�p)
X̃ +

1 + 2Ge−iθ

σ̃2(�p)
Ã+

1 (31)

and

Ã+
2 = ih̄ξ 2 f̃6Ã+

1 Ã−∗
1 + f̃7Ã−∗

1 X̃ +
1 + iξ f̃2Ã+

1 X̃ +
1

f̃4(2�p) + f̃3(2�p)
,

X̃ +
2 = h̄ξ [ f̃5Ã+

2 − iξ ãsÃ
−∗
1 X̃ +

1 + σ̃2(2�p)Ã+
1 Ã−∗

1 ]

f̃2
,

Ã−
2 = iξ

σ̃2(2�p)∗
(ãsX̃

−
2 + Ã−

1 X̃ −
1 ) + 2Geiθ

σ̃2(2�p)∗
Ã+∗

2 , (32)

where

D̃ = ih̄ξ 2|ãs|2,
f̃2 = D̃ + σ̃2(2�p)χ (2�p),

f̃3(n�p) = 2iD̃� + σ̃1(n�p)σ̃2(n�p)χ (n�p),

f̃4(n�p) = 2ih̄ξ 2G
(
ã∗2

s eiθ − ã2
s e−iθ

) − 4G2χ (n�p),

f̃5 = 2Ge−iθ ãs + ã∗
s σ̃2(2�p),

f̃6 = −2Geiθ ã∗
s + ãsσ̃2(2�p),

f̃7 = h̄ξ 3ã2
s − 2iξGeiθχ (2�p).
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FIG. 9. Efficiency η̃1 of the second-order upper sideband gen-
eration as a function of the probe-pulsed detuning �p for different
(a) nonlinear gain G for θ = 0 and (c) phase θ of the field driving
the OPA for G = 0.2κ . (b) Variation of η̃1 with �p and G for θ = 0.
(d) Variation of η̃1 with �p and θ for G = 0.2κ . The resonator is
stationary (� = 0). The other parameters are the same as in Fig. 2.

We obtain the amplitude of the sidebands, which are substi-
tuted into the efficiency of the second-order upper sideband
η̃1 = | − √

κexÃ+
2 /εp| and second-order lower sideband η̃2 =

| − √
κexÃ−

2 /εp|. To illustrate the different influences on the
second-order sidebands of the OPA excited by a pump drive of
frequency ωg = 2ωl , the efficiency of the second-order upper
sideband generation with the resonator stationary is investi-
gated as a function of frequency �p/ωm in Fig. 9. As shown
in Fig. 9(a), in the absence of the OPA, the efficiency η̃1 pos-
sesses two near-symmetrical peaks and a local minimum near
the resonance condition �p/ωm = 1. When G = 0, with the
nonlinear gain G of the OPA increasing, the peak of efficiency
η̃1 decreases gradually. However, in the driven frequency �p

range away from the resonance condition �p = ωm, such as
�p > 1.01ωm, the efficiency η̃1 is enhanced. Moreover, it is
noted that the larger the nonlinear gain G of the OPA is,
the wider the linewidth of the suppressive windows of the
efficiency η̃1 is. Due to the presence of the OPA, the suppres-
sive window will be asymmetric. The result can be applied to
determine the excitation number of atoms and plays important
roles in nonlinear media in the optical properties of the output
field. Interestingly, when G increases to G = 0.8κ , a clear
asymmetric linear pattern of the efficiency η̃1 emerges, with
a much larger peak at �p = 1.01ωm than at �p = 0.987ωm.
In Fig. 9(c) we show the efficiency η̃1 for different phase θ of
the field driving the OPA. We find that the phase θ amplifies
the efficiency of the second-order sideband generation, so the
peak of η̃1 increases from 9.52% to 11.53% for θ = π/2. This
is due to the fact that the degenerate parametric amplifier is
a phase-sensitive amplifier, where the phase relationship be-
tween the control laser and signal laser driving the degenerate
parametric amplifier determines the direction of the energy
flow, i.e., whether the signal light is effectively amplified
or not. Figures 9(b) and 9(d) show η̃1 as a function of the
detuning �p and phase θ of the field driving the OPA. We can

FIG. 10. Efficiency η̃2 of the second-order lower sideband gen-
eration as a function of the probe-pulsed detuning �p for different
(a) nonlinear gain G for θ = 0 and (c) phase θ of the field driving
the OPA for G = 0.2κ . (b) Variation of η̃2 with �p and G for θ = 0.
(d) Variation of η̃2 with �p and θ for G = 0.2κ . The resonator is
stationary (� = 0). The other parameters are the same as in Fig. 2.

see that the efficiency of the second-order sideband generation
is sensitive to both the nonlinear gain G and phase θ changes
of the OPA. When �p ∈ (ωm, 1.02ωm), the influence of G and
θ on the efficiency η̃1 becomes more obvious. In particular,
as shown in Fig. 9(d), it can be found that at θ ∈ (0, 1.28π ),
the efficiency η̃1 is amplified. When θ = 0.64π and �p =
1.003ωm, η̃1 obtains the maximum value 11.73%. Next we
discuss the influence of the OPA on the second-order lower
sideband efficiency η̃2. In Figs. 10(a) and 10(c) we can see
that both G and θ change the peak of η̃2 [for detailed results
refer to Figs. 10(b) and 10(d)]. As G increases, the position of
the peak shifts to the right, i.e., a larger value of �p is needed
to bring η̃2 to its maximum. In particular, when G = 0.8κ , η̃2

appears as a local minimum at �p = 0.993ωm. As shown in
Fig. 10(d), η̃2 is amplified when θ ∈ (0, 1.14π ), which obtains
the maximum value of 0.95%. In general, when the pump
laser frequency driving the OPA is ωg = 2ωl , the nonlinear
gain G of the OPA is not significant for the amplification
of the second-order upper and lower sidebands. Compared
with the case where the pump laser frequency driving the
OPA is ωg = ωl + ωp, G can change the linewidth of the
suppressive window of η̃2 and localization of the sideband
efficiency maximum. As shown in Fig. 11, we discuss the
influence of the OPA on the second-order upper sideband
generation when the resonator is rotating. In Fig. 11(a) it can
be seen that when the system is driven from the left-hand side
(� = 20 kHz), the increase of the nonlinear gain G of the OPA
enhances the second-order sideband peak. However, the effect
of the OPA in the transmission window (near �p/ωm = 1)
is small, while at �p/ωm < 0.996 and �p/ωm > 1.004 the
OPA has a significant enhancement effect. In Fig. 11(b) we
find that when the system is driven from the right-hand side
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FIG. 11. Efficiency η̃1 of the second-order upper sideband gen-
eration as a function of the probe-pulsed detuning �p for different G
with θ = 0 at (a) � = 20 kHz and (b) � = −20 kHz and efficiency
η̃1 as a function of the probe-pulsed detuning �p for different θ

with G = 0.2κ at (c) � = 20 kHz and (d) � = −20 kHz. The other
parameters are the same as in Fig. 2.

(� = −20 kHz), changing the nonlinear gain G cannot en-
hance the second-order sideband peak. However, the increase
in the nonlinear gain G of the OPA still makes the linewidth of
the efficiency η̃1 broaden. In Figs. 11(c) and 11(d) η̃1 is plotted
as a function of detuning �p for different θ at G = 0.2κ . In
this case, � = 20 and −20 kHz are fixed in Figs. 11(c) and
11(d), respectively. In detail, the second-order sideband peak
is significantly enhanced when θ = π at � = −20 kHz, but
decreased at � = 20 kHz.

In the above discussion, we note that when the frequency
ωg of the laser field driving the OPA is changed from ωl + ωp

to 2ωl , the influence of the resonator speed, the direction
of incidence of the input fields, the nonlinear gain of the
OPA, and phase of the field driving the OPA on the second-
order sideband efficiency is significantly different in the
system. In Figs. 12 and 13 we find in such a hybrid non-
linear system containing the OPA that the spinning-induced
direction-dependent nonreciprocal behavior remains. We fix
the clockwise speed of the resonator at 20 kHz and vary the
nonlinear gain G and phase θ of the field driving the OPA,
plotting η̃1 as a function of �p and � when the spinning
system is driven from the left-hand side and right-hand side,
respectively. In Fig. 12 we choose the same OPA gain as in
Fig. 2 to compare two different OPA cases (ωg = ωl + ωp and
ωg = 2ωl ). When the control laser frequency driving the OPA
is ωg = 2ωl , changing the nonlinear gain G cannot enhance
the second-order sideband peak. The efficiency of the second-
order upper sideband is not sensitive to the variation of the
nonlinear gain of the OPA and phase of the field driving the
OPA. It is interesting though that we can see that, with the res-
onator speed increasing, the second-order sideband peak shifts
to the right regardless of the direction from which the system
is driven, as shown in Figs. 12(e) and 12(f). Furthermore, there
are also similarities between the two different OPA cases, such
as, compared with the case where the system is driven from

FIG. 12. Efficiency η̃1 of the second-order upper sideband gen-
eration as a function of �p for different values of � and incident
directions of light, where the nonlinear gain and phase of the probe
field of the OPA are fixed at (a) G = 0 and θ = 0, (b) G = 0.2κ and
θ = 0, and (c) G = 0.2κ and θ = 3π/2. The η1 varies with �p and
� for different values (d) G = 0 and θ = 0, (e) G = 0.2κ and θ = 0,
and (f) G = 0.2κ and θ = 3π/2. These parameters are the same as
in Fig. 2.

the right side (� < 0), the influence of resonator rotation on
the second-order sideband enhancement is much more signif-
icant when the system is driven from the left side (� > 0).

FIG. 13. (a) and (b) Efficiency η̃1 of the second-order upper
sideband generation as a function of �p for different values of �

and incident directions of light. (c) and (d) Variation of η̃1 with �p

and �. The parameters are (a) and (c) G = 0.4κ and θ = π/2 and
(b) and (d) G = 0.4κ and θ = 3π/2. The other parameters are the
same as in Fig. 2.
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VI. NONRECIPROCAL SECOND-ORDER SIDEBANDS
IN NON-MARKOVIAN SYSTEMS

When the system interacts with the environment, the dy-
namics of the system is affected by the environment, that is,
the dissipation or the backflow oscillation of the photon from
the environment, where the former corresponds to the Marko-
vian approximation, while the latter exhibits non-Markovian
effects [107,113,157,158]. In Secs. II–V we studied the op-
tomechanical second-order sidebands under the Markovian
approximation. In this section we investigate the influence
of non-Markovian effects on the efficiency of second-order
sidebands. For this purpose, we consider that the cavity in-
teracts with the non-Markovian environment consisting of a
series of boson modes (eigenfrequency ωk) [143–158], where
the non-Markovian environment couples to an external reser-
voir. In a rotating frame defined by ÛS (t ) = exp[−iωl t (â†â +∑

k b̂†
kb̂k + ∑

j ĉ†
j ĉ j )], the total Hamiltonian (5) is changed to

Ĥeff = h̄(�0 − ξ x̂ + �s)â†â + p̂2

2m
+ 1

2
mω2

mx̂2

+ p̂2
φ

2m(R + x̂)2 + ih̄G(â†2e−i�pt eiθ − H.c.)

+ ih̄
√

κex[(εl + εpe−i�pt )â† − H.c.]

+ h̄
∑

k

�kb̂†
kb̂k + ih̄

∑
k

(gkâb̂†
k − H.c.)

+ h̄
∑

j

(ω̃ j − ωl )ĉ
†
j ĉ j + ih̄

∑
jk

(v jk ĉ j b̂
†
k − H.c.),

(33)

where �k = ωk − ωl defines the detuning of the kth mode
(eigenfrequency ωk) of the non-Markovian environment from
the driving field, b̂k (b̂†

k) is the annihilation (creation) operator,
gk is the coupling coefficient between the cavity and environ-
ment, v jk denotes the coupling strength between the kth mode
of the non-Markovian environment and the jth mode of the
external reservoir with frequency ω̃ j , and ĉ j and ĉ†

j represent
annihilation and creation operators of the external reservoir,
respectively. The dynamics of the system can be derived as

d

dt
â(t ) = −

(
κ

2
+ i(�0 − ξ x̂(t ) + �s)

)
â(t ) −

∑
k

g∗
kb̂k (t )

+ √
κex(εl + εpe−i�pt ) + 2Gâ†(t )eiθ e−i�pt , (34)

d

dt
b̂k (t ) = −i�kb̂k (t ) + gkâ(t ) +

∑
j

v jk ĉ j (t ), (35)

d

dt
ĉ j (t ) = −i(ω̃ j − ωl )ĉ j (t ) −

∑
k1

v∗
jk1

b̂k1 (t ), (36)

d2

dt2
x̂(t ) + �m

d

dt
x̂(t ) + ω2

mx̂(t ) = h̄ξ

m
â†(t )â(t ) + p̂2

φ (t )

m2R3
,

(37)
d

dt
φ̂(t ) = p̂φ (t )

mR2
, (38)

d

dt
p̂φ (t ) = 0, (39)

with the intrinsic loss rate κa = κ/2 phenomenologically
added in the above equations. Equation (36) gives

ĉ j (t ) = e−i(ω̃ j−ωl )t ĉ j (0)

−
∑

k1

v∗
jk1

∫ t

0
e−i(ω̃ j−ωl )(t−τ )b̂k1 (τ )dτ. (40)

Substituting Eq. (40) into Eq. (35), we get

d

dt
b̂k (t ) = −i�kb̂k (t ) + gkâ(t ) +

√
2πck,in

−
∑

k1

∫ t

0
Dkk1 (t − τ )b̂k1 (τ )dτ , (41)

where the input-field operator of the reservoir ĉk,in(t ) = 1√
2π∑

j v jke−i(ω̃ j−ωl )t ĉ j (0), the correlation function Dkk1 (t − τ ) =∑
j v jkv

∗
jk1

e−i(ω̃ j−ωl )(t−τ ) = ∫
J̃kk1 (ω)e−i(ω−ωl )(t−τ )dω, and

the spectral density of the reservoir J̃kk1 (ω) =∑
j v jkv

∗
jk1

δ(ω − ω̃ j ), with δ(ω) the Dirac delta function.
Taking J̃kk1 (ω) = μk

π
δkk1 (δkk1 represents the Kronecker delta

symbol, i.e., δkk1 = 1 for k = k1 and δkk1 = 0 otherwise) and
then Dkk1 (t − τ ) = 2μkδ(t − τ )δkk1 [107,178], we obtain

d

dt
b̂k (t ) = −i�̃kb̂k (t ) + gkâ(t ) +

√
2π ĉk,in, (42)

with �̃k = �k − iμk . To simplify the calculation, we assume
μk ≡ μ below, where μ denotes the decay from the non-
Markovian environment coupling to an external reservoir. The
solution of Eq. (42) is

b̂k (t ) = b̂k (0)e−i�̃kt + gk

∫ t

0
â(τ )e−i�̃k (t−τ )dτ

+
√

2π

∫ t

0
ĉk,in(τ )e−i�̃k (t−τ )dτ . (43)

The first term on the right-hand side of Eq. (43) represents the
freely propagating parts of the environmental fields and the
second term describes the influence of the non-Markovian en-
vironment on the cavity. The third term on the right-hand side
of Eq. (43) denotes the influence of the input-field operator
of the reservoir on the non-Markovian environment. Substi-
tuting Eq. (43) into Eq. (34), we obtain an integro-differential
equation

d

dt
â(t ) = −

(
κ

2
+ i[�0 − ξ x̂(t ) + �s]

)
â(t )

+ √
κex(εl + εpe−i�pt ) + 2Gâ†(t )eiθ e−i�pt

+ K̂ (t ) + L̂(t ) −
∫ t

0
â(τ ) f (t − τ )dτ , (44)

where K̂ (t ) = −∑
k g∗

kb̂k (0)e−i�̃kt = ∫ ∞
−∞ h∗(t − τ )âin(τ )dτ ,

L̂(t ) = −√
2π

∑
k g∗

k

∫ t
0 ĉk,in(τ )e−i�̃k (t−τ )dτ , the input-field

operator âin(t ) = 1√
2π

∑
k e−i�̃kt b̂k (0), the impulse response

function h(t ) = −1√
2π

∑
k ei�̃kt gk ≡ −1√

2π

∫
ei(ω−ωl )t+μt g(ω)dω

[we have made the replacement gk → g(ω) in the continuum
limit], and the correlation function f (t ) = ∑

k |gk|2e−i�̃kt =∫
J (ω)e−i(ω−ωl )t−μt dω, with the spectral density of the non-

Markovian environment J (ω) = ∑
k |gk|2δ(ω − ωk ). Both
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âin(t ) and ĉk,in are the input fields with zero expectation value
ain(t ) = 〈âin(t )〉 = 0 and ck,in(t ) = 〈ĉk,in(t )〉 = 0 for the en-
vironment and reservoir initialization in the vacuum states,
which lead to K (t ) = 〈K̂ (t )〉 = 0 and L(t ) = 〈L̂(t )〉 = 0. We
define the spectral response function as

g(ω) =
√

κex

2π

λ1

λ1 − i(ω − ωl )
, (45)

where λ1 is the environmental spectrum width and κex = κ is
the cavity dissipation through the input and output ports. The
spectral density of the environment is [179–183]

J (ω) = κex

2π

λ2
1

λ2
1 + (ω − ωl )2

, (46)

which corresponds to the Lorentzian spectral density.
With Eqs. (45) and (46) we get h(τ − t ) = −√

κexλ1

e−(λ1+iμ)(t−τ )θ (t − τ ) and f (t − τ ) = 1
2κexλ1e−(λ1+iμ)|t−τ |,

where θ (t − t ′) is the unit step function; θ (t − t ′) = 1 for
t � t ′, which represents a Gaussian Ornstein-Uhlenbeck pro-
cess [184–186]. For convenience, we take the expectation
values of the operator equations by defining a ≡ 〈â〉, x ≡ 〈x̂〉,
φ ≡ 〈φ̂〉, and pφ ≡ 〈p̂φ〉. The steady-state solution of the non-
Markovian system can be obtained from Eq. (44) as

a′
s =

√
κexεl

κ + i�′ ,

x′
s = h̄ξ |a′

s|2
mω2

m

+ R

(
�

ωm

)2

, (47)

where �′ = �0 − ξx′
s + �s. We make the ansatz

a = a′
s + A′+

1 e−i�pt + A′−
1 ei�pt + A′+

2 e−2i�pt + A′−
2 e2i�pt ,

x = x′
s + X ′+

1 e−i�pt + X ′−
1 ei�pt + X ′+

2 e−2i�pt + X ′−
2 e2i�pt .

We get the linear response of the probe field

σ ′
1(�p)A′+

1 = �(�p)(iξa′
sX

′+
1 + 2Geiθ a′∗

s + √
κexεp),

σ ′
2(�p)A′−∗

1 = −iξ�(�p)a′∗
s A′+

1 ,

χ (�p)X ′+
1 = h̄ξ (a′

sA
′−∗
1 + a′∗

s A′+
1 ) (48)

and second-order sideband process

σ ′
1(2�p)A′+

2 = �(2�p)[iξ (a′
sX

′+
2 + A′+

1 X ′+
1 ) + 2Geiθ A′−∗

1 ],

σ ′
2(2�p)A′−∗

2 = −iξ�(2�p)(a′∗
s X ′+

2 + A′−∗
1 X ′+

1 ),

χ (2�p)X ′+
2 = h̄ξ (a′∗

s A′+
2 + a′

sA
′−∗
2 + A′−∗

1 A′+
1 ), (49)

with

�(n�p) = λ1 + iμ − in�p,

σ ′
1(n�p) = κλ1 − iκn�p

2
+ �(n�p)(i� − in�p),

σ ′
2(n�p) = κλ1 − iκn�p

2
− �(n�p)(i� + in�p),

χ (n�p) = m
(
ω2

m − i�mn�p − �2
p

)
. (50)

Through the non-Markovian input-output relation derived by
Eq. (44), we obtain the expected value of the output field

aout(t ) = ain(t ) +
∫ t

0
h(τ − t )a(τ )dτ. (51)

Thus, in the non-Markovian case, the efficiency of the second-
order upper sideband is defined as

η′
1 =

∣∣∣∣∣−
√

κexλ1A′+
2

1
λ1+iμ−2i�p

εp

∣∣∣∣∣. (52)

With Eq. (52), we consider the following two cases separately.
(i) In the first case, we take the decay μ = 0 in Eq. (52).

In Fig. 14(a) with the decay μ = 0 and the resonator sta-
tionary but without the participation of the OPA, we show
the efficiency of second-order upper sideband generation as
a function of �p with different spectral widths of the envi-
ronment λ1. For a given spectral width of the environment,
decreasing from λ1 = 10ωm to λ1 = 2ωm, we find from the
figure that the second-order upper sideband η′

1 gradually
decreases and its two located peaks become increasingly
asymmetric in the non-Markovian environment. Interestingly,
from Fig. 14(b) with the decay μ = 0, when the light comes
from the right side and � = 7.7 kHz, η′

1 becomes symmet-
ric in the non-Markovian environment at λ1 = 2ωm. In other
words, by controlling the rotation speed of the resonator and
incident direction of the input fields, the symmetry of the
second-order sideband is restored, but with a change in height
compared with the Markovian environment. With the purpose
of seeing the influence of the environmental spectrum width
on the second-order sideband generation more clearly, the
efficiency η′

1 as a function of both �p and λ1 is shown in
Figs. 14(c) and 14(d) with the decay μ = 0.

As the spectrum width of the environment is further
increased, the efficiency of second-order upper sideband gen-
eration increases. For the sake of clarity, we separately draw
in Fig. 15 the non-Markovian case and the Markovian limit
case where the environmental spectrum width λ1 = 200ωm for
the condition that the resonator is stationary and no OPA is
involved with the decay μ = 0. This figure shows the con-
sistency of the nonreciprocal second-order upper sideband
between the non-Markovian limit with λ1 = 200ωm and the
Markovian approximation, regardless of the incident direc-
tion of the input fields. This originates from the fact that the
correlation function f (t ) and impulse response function h(t )
tend to κexδ(t ) and −√

κexδ(t ) in the wideband limit (i.e., the
spectrum width λ1 approaches infinity), respectively, which
leads to Eqs. (44) and (51) in the non-Markovian regime
returning to Eqs. (6) and (16) under the Markovian approx-
imation. Figures 16(a)–16(d), with decay μ = 0, show the
spinning-induced direction-dependent nonreciprocal behavior
of the second-order upper sideband in the non-Markovian
environment but without the participation of the OPA. We note
that, on the one hand, the efficiency of the second-order side-
band η′

1 is very sensitive to the environmental spectrum width.
On the other hand, the operating bandwidth for observing an
obvious nonreciprocal enhancement of second-order sideband
changes in the non-Markovian environment. Compared with
the Markovian environment in Fig. 15 with the decay μ = 0,
the operating bandwidth becomes significantly wider at fre-
quency �p > ωm and narrower at �p < ωm.

Figures 14–16, with decay μ = 0, present the influence of
a pure non-Markovian effect on the second-order sideband
without the participation of the OPA (G = 0). In Fig. 17, with
decay μ = 0, we show the variation of second-order upper
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FIG. 14. (a) and (b) Efficiency η′
1 of the second-order upper sideband generation as a function of �p, which corresponds to the Markovian

and non-Markovian environments with the different environmental spectrum width λ1 without the OPA involvement (G = 0). (c)–(f) Variation
of η′

1 with �p and λ1. The rotation speed is set at (a), (c), and (e) � = 0 and (b), (d), and (f) � = 7.7 kHz. The parameter μ denotes the
decay from the non-Markovian environment coupling to an external reservoir, where (c) and (d) μ = 0 and (e) and (f) μ = 5ωm. The other
parameters are the same as in Fig. 2.

sideband efficiency in the presence of both the non-Markovian
effect and the OPA. As expected, when the nonlinear gain
G of the OPA increases from 0 to 0.6κ , the efficiency η′

1 is
significantly enhanced. Moreover, the non-Markovian effect
is more pronounced for η′

1 when the environmental spectrum
width is small (i.e., λ1 < 2ωm). As shown in Fig. 17(d), with
decay μ = 0 at λ1 = 30ωm, the enhancement effect of the
OPA for the second-order sideband is almost identical to the
case of the Markovian limit.

(ii) In the second case, we take the decay μ = 5ωm

in Eq. (52). The influences of the decay from the non-
Markovian environment coupling to an external reservoir on
the efficiency of second-order upper sidebands are shown in

0.985 0.99 0.995 1 1.005 1.01 1.015
0
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15
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FIG. 15. Efficiency η′
1 of the second-order upper sideband

generation as a function of �p for different values of � and in-
cident directions of light, where we take G = 0. The consistency
of nonreciprocal second-order sidebands is shown between the
non-Markovian limit with λ1 = 200ωm and the Markovian approx-
imation. The other parameters are the same as in Fig. 2.

Figs. 14–16 with μ = 5ωm. We find that the decay μ has
a large influence on the efficiency of second-order upper
sidebands in non-Markovian regimes, while it has almost
no influence on the efficiency of second-order upper side-
bands under the Markovian approximation. This is because
the decay μ is comparable to the spectral width λ1 of the
non-Markovian environment revealed from Eqs. (50) and (52)
[see Figs. 14(a), 14(b), 14(e), and 14(f) and Figs. 16(a), 16(b),
16(e), and 16(f)] since the spectral width λ1 takes finite values
in non-Markovian regimes. However, the spectral width λ1

tends to infinity (i.e., λ1 → ∞) under the Markovian approx-
imation, which leads to a decay μ that is negligible compared
with the spectral width λ1 due to μ � ∞ in Eqs. (50) and (52)
[see Figs. 14(a), 14(b), and 15].

VII. CONCLUSION

In summary, we have studied theoretically the second-
order OMIT sidebands and group delays in a spinning
resonator containing an optical parametric amplifier. We dis-
cussed the influence of the OPA driven by different pumping
frequencies on the second-order sideband generation. The
results show that the second-order sidebands in the rotating
resonator can be greatly enhanced in the presence of the
OPA and still maintain the nonreciprocal behavior due to
the optical Sagnac effect. The second-order sidebands can
be adjusted simultaneously by the pumping frequency and
phase of the field driving the OPA, the gain coefficient of
the OPA, the rotation speed of the resonator, and the incident
direction of the input fields. When the OPA is excited by a
pump driving with the frequency ωg = ωl + ωp, the higher the
nonlinear gain of the OPA is, the stronger the second-order
sidebands are. At this point, the OPA can only enhance the
second-order sidebands but cannot change the position of the
peaks and the nonreciprocal nature due to resonator rotation,
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FIG. 16. (a) and (b) Efficiency η′
1 of the second-order upper sideband generation as a function of �p for different values of � and incident

directions of light in the non-Markovian environment and without the participation of the OPA (G = 0). (c)–(f) Variation of η′
1 with �p and

�. The environmental spectrum widths are (a), (c), and (e) λ1 = 0.5ωm and (b), (d), and (f) λ1 = 2ωm. The decay (c) and (d) μ = 0 and (e)
and (f) μ = 5ωm. The other parameters are the same as in Fig. 2.

which maintains the localization of the maximum value of
the sideband efficiency. When the OPA is excited by a pump
driving with the frequency ωg = 2ωl , the nonlinear gain of
the OPA cannot enhance the second-order sidebands, which
can only be achieved by adjusting the phase of the field
driving the OPA. The OPA can also change the linewidth
of the suppressive window of the second-order sidebands,
which can be applied to determining the excitation number
of atoms and plays important roles in nonlinear media in the
optical properties of the output field. Combining the Sagnac
transformation and the presence of the OPA, we demonstrated
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FIG. 17. Efficiency η′
1 of the second-order upper sideband gen-

eration as a function of �p for different nonlinear gain G of the
OPA, where θ = 0, � = 0, and the decay μ = 0. The environmental
spectrum widths are (a) λ1 = 0.5ωm, (b) λ1 = 2ωm, (c) λ1 = 5ωm,
and (d) λ1 = 30ωm. The other parameters are the same as in Fig. 2.

that the group delay of the second-order upper sideband can
be tuned by adjusting the nonlinear gain and phase of the
field driving the OPA, the rotation speed of the resonator,
and incident direction of the input fields, which allowed
us to realize a tunable switch from slow light to fast light
in the spinning optomechanical system. Moreover, we ex-
tended the study of second-order sidebands from the Marko-
vian to the non-Markovian bath, which consists of a collection
of infinite oscillators (bosonic photonic modes). We found
that the second-order OMIT sidebands in a spinning resonator
exhibit a transition from the non-Markovian to the Marko-
vian regime by controlling the environmental spectral width.
Finally, we investigated the influence of the decay from the
non-Markovian environment coupling to an external reservoir
on the efficiency of second-order upper sidebands.

These results indicate the advantage of using a hybrid
nonlinear system and contribute to a better understanding of
light propagation in nonlinear optomechanical devices, which
provides potential applications for precision measurement,
optical communications, and quantum sensing. Expansions of
the above non-Markovian nonreciprocal second-order side-
bands to various general nonlinear physical models, e.g.,
(a) χ (2) nonlinear materials â2b̂† + b̂â†2 [187,188], (b) Kerr
nonlinear mediums â†2â2 [189,190], and (c) quadratic op-
tomechanical systems â†â(b̂ + b̂†)2 [1,18,191–194], deserve
further investigation.
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APPENDIX: DERIVATION OF EQS. (6)–(9)

In order to give the origin of �m in Eq. (7), we add the
coupling Hamiltonian Ĥcpl [195–202] between the mechanical
mode and a bosonic bath consisting of a set of harmonic
oscillators with mass ml and frequency �l to Eq. (5) as

Ĥcpl =
∑

l

[
P̂2

l

2Ml
+ Ml�

2
l

2

(
Ĉl − vl

Ml�
2
l

x̂

)2
]
, (A1)

where Ĉl and P̂l are the coordinate and momentum of
the harmonic oscillators, respectively, and vl denotes the
coupling strength between the mechanical mode and bath.
The counterterm proportional to x̂2 is typically introduced
in the Hamiltonian, which accounts for a renormalization of
the central oscillator frequency due to the interaction with the
bath [195–202]. The Heisenberg equations read

d

dt
â = −[κ + i(�0 − ξx + �s)]â

+√
κex(εl + εpe−i�pt ) + 2Gâ†eiθ e−i�pt , (A2)

d

dt
x̂ = p̂

m
, (A3)

d

dt
p̂ = −mω2

mx̂ +
∑

l

vlĈl −
∑

l

v2
l

Ml�
2
l

x̂ + h̄ξ â†â

+ p̂2
φ

mR3
, (A4)

d

dt
Ĉl = P̂l

Ml
, (A5)

d

dt
P̂l = −Ml�

2
l Ĉl + vl x̂, (A6)

d

dt
φ̂ = p̂φ

mR2
, (A7)

d

dt
p̂φ = 0, (A8)

where the Heisenberg operator x̂(t ) is abbreviated as x̂ ≡
x̂(t ) = eiĤT t/h̄x̂(0)eiĤT t/h̄, with ĤT = Ĥeff + Ĥcpl [Ĥeff is given
by Eq. (5)], and the other operators also have similar expres-
sions. Equations (6), (8), and (9) are consistent with Eqs. (A2),
(A7), and (A8), respectively. Differentiating Eqs. (A3) and
(A5), together with Eqs. (A4) and (A6), we have

m

(
d2

dt2
x̂ + ω2

mx̂

)
=

∑
l

vlĈl −
∑

l

v2
l

Ml�
2
l

x̂

+ h̄ξ â†â + p̂2
φ

mR3
, (A9)

d2

dt2
Ĉl + �2

l Ĉl = vl

Ml
x̂. (A10)

The solution of Eq. (A10) is

Ĉl = Ĉl (0) cos �l t + P̂l (0)

Ml�l
sin �l t

+ vl

∫ t

0

sin �l (t − τ )

Ml�l
x̂(τ )dτ. (A11)

Substituting Eq. (A11) into Eq. (A9) gives

m

(
d2

dt2
x̂ + ω2

mx̂ +
∫ t

0
η(t − τ )x̂(τ )dτ

)
+

∑
l

v2
l

Ml�
2
l

x̂

= F̂ (t ) + h̄ξ â†â + p̂2
φ

mR3
, (A12)

with F̂ (t ) = ∑
l vl{Ĉl (0) cos �l t + [P̂l (0)/Ml�l ] sin �l t}.

The kernel η(t ) equals dα(t )
dt , where the correlation function

α(t ) = ∑
l v2

l cos �l t/mMl�
2
l ≡ ∫

I (ω) cos(ω)dω, with

the spectral density I (ω) = ∑
l

v2
l

mMl �
2
l
δ(ω − �l ). Taking

expectation values (the states of each part for the system
are initially prepared in their respective vacuum states) to
Eq. (A12) leads to

m

(
d2

dt2
x + ω2

mx +
∫ t

0
η(t − τ )x(τ )dτ

)
+

∑
l

v2
l

Ml�
2
l

x

= h̄ξa∗a + p2
φ

mR3
, (A13)

where we have used the expectation value F (t ) = 〈F̂ (t )〉 of
F̂ (t ) equaling zero. With the partial integration and x(0) = 0
[the expectation value of x̂(0) is x(0) = 〈x̂(0)〉], Eq. (A13) is
reduced as

m

(
ẍ +

∫ t

0
α(t − τ )ẋ(τ )dτ + ω2

mx

)
= h̄ξa∗a + p2

φ

mR3
.

(A14)

With the Lorentzian spectral density I (ω) = �m�2/π (ω2 +
�2) [107,113,157,158], we obtain α(t ) = �m�e−�|t |, where
the parameter � defines the spectral width of the bath, which
is connected to the bath correlation time TB by the relation
TB = �−1, while the timescale for the state of the system
changing is given by TS = �−1

m . Under the Markovian approx-
imation (� → ∞), we get

α(t ) → 2�mδ(t ). (A15)

Equation (7) can be obtained by substituting Eq. (A15)
into Eq. (A14), where we have used the identity∫ t

0 δ(t − τ )ẋ(τ )dτ = 1
2 ẋ(t ) [178].

[1] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity
optomechanics, Rev. Mod. Phys. 86, 1391 (2014).

[2] M. Aspelmeyer, P. Meystre, and K. Schwab, Quantum op-
tomechanics, Phys. Today 65(7), 29 (2012).

[3] T. J. Kippenberg and K. J. Vahala, Cavity optomechanics:
Back-action at the mesoscale, Science 321, 1172 (2008).

[4] F. Marquardt and S. M. Girvin, Optomechanics, Physics 2, 40
(2009).

033701-16

https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1063/PT.3.1640
https://doi.org/10.1126/science.1156032
https://doi.org/10.1103/Physics.2.40


OPTOMECHANICAL SECOND-ORDER SIDEBANDS AND … PHYSICAL REVIEW A 109, 033701 (2024)

[5] S. Sainadh U. and M. A. Kumar, Effects of linear and quadratic
dispersive couplings on optical squeezing in an optomechani-
cal system, Phys. Rev. A 92, 033824 (2015).

[6] C. H. Metzger and K. Karrai, Cavity cooling of a microlever,
Nature (London) 432, 1002 (2004).

[7] S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer,
J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer,
and A. Zeilinger, Self-cooling of a micromirror by radiation
pressure, Nature (London) 444, 67 (2006).

[8] A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and
T. J. Kippenberg, Resolved-sideband cooling and position
measurement of a micromechanical oscillator close to the
Heisenberg uncertainty limit, Nat. Phys. 5, 509 (2009).

[9] O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A.
Heidmann, Radiation-pressure cooling and optomechanical
instability of a micromirror, Nature (London) 444, 71 (2006).

[10] P. Meystre, A short walk through quantum optomechanics,
Ann. Phys. (Berlin) 525, 215 (2013).

[11] A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S.
Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero,
K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E.
Zucker, LIGO: The laser interferometer gravitational-wave
observatory, Science 256, 325 (1992).

[12] C. M. Caves, Quantum-mechanical radiation-pressure fluctua-
tions in an interferometer, Phys. Rev. Lett. 45, 75 (1980).

[13] V. B. Braginsky and S. P. Vyatchanin, Low quantum noise
tranquilizer for Fabry-Perot interferometer, Phys. Lett. A 293,
228 (2002).

[14] A. A. Nejad, H. R. Askari, and H. R. Baghshahi, Optical
bistability in coupled optomechanical cavities in the presence
of Kerr effect, Appl. Opt. 56, 2816 (2017); J. Y. Sun and H. Z.
Shen, Photon blockade in non-Hermitian optomechanical sys-
tems with nonreciprocal couplings, Phys. Rev. A 107, 043715
(2023).

[15] B. Sarma and A. K. Sarma, Controllable optical bistability in
a hybrid optomechanical system, J. Opt. Soc. Am. B 33, 1335
(2016).

[16] S. Shahidani, M. H. Naderi, M. Soltanolkotabi, and S.
Barzanjeh, Steady-state entanglement, cooling, and tristability
in a nonlinear optomechanical cavity, J. Opt. Soc. Am. B 31,
1087 (2014).

[17] C. Jiang, Y. S. Cui, and K.-D. Zhu, Ultrasensitive nanome-
chanical mass sensor using hybrid opto-electromechanical
systems, Opt. Express 22, 13773 (2014).

[18] J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt,
S. M. Girvin, and J. G. E. Harris, Strong dispersive cou-
pling of a high-finesse cavity to a micromechanical membrane,
Nature (London) 452, 72 (2008).

[19] T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E.
Zeuthen, J. Appel, J. M. Taylor, A. Sørensen, K. Usami, A.
Schliesser, and E. S. Polzik, Optical detection of radio waves
through a nanomechanical transducer, Nature (London) 507,
81 (2014).

[20] R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W.
Simmonds, C. A. Regal, and K. W. Lehnert, Bidirectional
and efficient conversion between microwave and optical light,
Nat. Phys. 10, 321 (2014).

[21] A. A. Nejad, H. R. Askari, and H. R. Baghshahi, Optomechan-
ical detection of weak microwave signals with the assistance
of a plasmonic wave, Phys. Rev. A 97, 053839 (2018).

[22] S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A.
Schliesser, and T. J. Kippenberg, Optomechanically induced
transparency, Science 330, 1520 (2010).

[23] A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield,
M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter,
Electromagnetically induced transparency and slow light with
optomechanics, Nature (London) 472, 69 (2011).

[24] W. Z. Jia, L. F. Wei, Y. Li, and Y.-X. Liu, Phase-dependent
optical response properties in an optomechanical system by
coherently driving the mechanical resonator, Phys. Rev. A 91,
043843 (2015).
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