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Superresolution capacity of variance-based stochastic fluorescence microscopy: From random
illumination microscopy to superresolved optical fluctuation imaging
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Improving the resolution of fluorescence microscopy beyond the diffraction limit can be achieved by acquiring
and processing multiple images of the sample under different illumination patterns (periodic grids, focused
beams, or more generally speckles). When the illuminations are known, the superresolved reconstruction is
generally formed from a linear combination of the multiple diffraction-limited images, and the resolution gain
is easily determined. On the other hand, when the illuminations are unknown, the resolution gain is seldom
well defined. In this work, we consider the recent random illumination microscopy (RIM) technique where the
illuminations are unknown speckles and the reconstructions are formed from the variance of the images. We
show that an unambiguous twofold resolution gain can be obtained only when the speckle correlation length
coincides with the width of the observation point spread function. Last, we analyze the difference between the
variance-based techniques using random speckled illuminations (as in RIM) and those obtained using random
fluorophore activation (as in superresolution optical fluctuation imaging).
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I. INTRODUCTION

The light intensity recorded by the camera of a fluores-
cence microscope cannot exhibit spatial frequencies above
2/λ where λ is the wavelength of the emitted light. This
low-pass filtering, due to the loss of the evanescent waves
at the detector plane, cannot be circumvented. Therefore the
challenge of superresolution imaging is to recover spatial fre-
quencies of the sample fluorescence density beyond 2/λ from
data that are frequency limited to 2/λ. A widespread solution
consists in processing multiple images obtained by changing
the illumination, such as translating focused spots [1–4] or
rotating and translating periodic light patterns [5,6]. The data
processing of most techniques using structured illuminations
requires the knowledge of the illumination patterns, either
explicitly as in structured illumination microscopy [5,6] or
implicitly as in confocal or image scanning microscopy [1].
In this context, random illumination microscopy (RIM) [7]
stands out as an exception as it does not require knowl-
edge of the illumination patterns: the superresolved image
is formed from the variance of multiple diffraction-limited
images recorded under different random speckled illumina-
tions. While attractive because of its simplicity and significant
image improvement [7], RIM variance-based processing lacks
a rigorous analysis of its resolution potential, the nonlinearity
of the variance being a significant obstacle to its derivation.
In this work, we study the sample information that can be
extracted from the variance of speckled images as a function
of the statistical properties of the random illumination and we
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derive the condition under which the variance can provide a
resolution gain.

II. DEFINING THE RESOLUTION IN THE SPATIAL
FREQUENCY SPACE

To model the data provided by a fluorescence microscope
under an inhomogeneous illumination, we introduce the point
spread function of the microscope h and the illumination
intensity function E . Importantly, these two functions are
defined at a macroscopic scale inside the sample, through the
averaging over regions large enough to contain thousands of
atoms (typically of the order of a thousand nm3), to wash out
the microscopic fluctuations. In this context, we define the
macroscopic fluorescence density ρ such that V ρ(r)E (r) is
the energy (detected by the camera) of the fluorescent light
emitted by a macroscopic volume V centered about r. Here-
after we neglect the Poisson noise. The fluorescence density
depends on the fluorophore concentration and the molecular
brightness.

With these definitions, the microscope image can be
written as,

I (r) =
∫

ρ(r′)E (r′)h(r − r′)dr′, (1)

where r indicates a position in the image domain that is
conjugated to a point in the object domain. This model can be
applied to two- or three-dimensional (3D) imaging configura-
tions. In the spatial frequency space (Fourier space), Eq. (1)
reads,

Ĩ (ν) = h̃(ν)
∫

ρ̃(ν − ν′)Ẽ (ν′)dν′, (2)
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where f̃ (ν) = ∫
f (r)e−i2πν·rdr stands for the Fourier trans-

form of f .
If E is a constant, as in a standard fluorescence micro-

scope, the recorded image depends only on the sample spatial
frequencies belonging to the support of the optical transfer
function (OTF) h̃, noted Wh, which is at best a disk of radius
2/λ (in the 2D case) or exhibits a toruslike shape in the 3D
case [8].

We now consider cases where the illumination E is inho-
mogeneous. In periodic structured illumination microscopy
(SIM), the illumination is a periodic light grid generally
formed from the interference of two or three collimated laser
beams that is translated and rotated [6]. In point-scanning
microscopy, the illumination is a focused beam that is scanned
across the sample [4]. In random illumination microscopy,
the illumination is a random speckle obtained, for example,
by passing a laser beam through a diffuser. Noting WE the
support of Ẽ , the recorded image depends on the sample
spatial frequencies in the domain

WhE = {ν − μ | ν ∈ Wh,μ ∈ WE }, (3)

which is no longer limited by 2/λ and corresponds to the
frequency support of hE .

Yet, sensitivity to spatial frequencies of the sample outside
Wh is a necessary but not a sufficient condition for being able
to form a superresolved image. One also needs a technique
for extracting the high spatial frequencies of the sample from
the diffraction-limited images In obtained for various illumi-
nation intensities En. Hereafter, the gain of resolution of a
superresolved technique will be measured through the ability
to recover ρ̃ beyond Wh.

III. RESOLUTION OF TECHNIQUES USING KNOWN
INHOMOGENEOUS ILLUMINATIONS

When the illumination function is well known, as in
periodic SIM or point-scanning microscopy, the superre-
solved image is obtained through a linear combination of
the recorded data, and the superresolution capacity of the
technique is easily determined. In periodic SIM, the sample
is illuminated successively by N different light grids En=1...N .
The resolution of a system of linear equations permits the
recovery of the object spatial frequencies in

⋃N
n=1 WhEn [6].

In point-scanning microscopy, one records images for dif-
ferent positions of a focused illumination. We note E (r) the
illumination intensity at r when the beam is focused at the
origin. The image that is recorded when the illumination is
focused at ro reads,

I (r, ro) =
∫

ρ(r′)E (r′ − ro)h(r − r′)dr′. (4)

Taking the Fourier transform of I (r, ro) with respect to (r, ro)
yields,

Ĩ (ν, νo) = h̃(ν)ρ̃(ν − νo)Ẽ (νo). (5)

In theory, it is possible to recover the sample frequencies ρ̃(μ)
for any μ ∈ WhE whatever the shape of the translated illumi-
nation. Yet, in practice, this reconstruction scheme is never
used. In confocal microscopy, for example, the superresolved
image is obtained without numerical processing, by simply

recording the signal at the (conjugated) position of the fo-
cused beam, ISR(r) = I (r, r) = ∫

ρ(r′)E (r′ − r)h(r − r′)dr′.
The frequency support of the function E (−u)h(u) being WhE ,
the confocal approach directly recovers the sample frequen-
cies over the whole accessible superresolved domain. Yet, this
ideal resolution requires the use of an infinitely small pinhole,
which is impossible in practice.

We now turn to microscopy configurations where the in-
homogeneous illuminations are unknown. These approaches
ease the experimental implementation, as the control of the
illuminations becomes minimal, but require more complex
reconstruction schemes.

IV. RESOLUTION OF TECHNIQUES USING RANDOM
ILLUMINATIONS (RIM)

In the last 15 years, it was observed that superresolved im-
ages of the sample could be built from multiple low-resolution
images acquired with random speckled illuminations. The first
reconstruction techniques [9–12] estimated both the sample
and the illuminations using advanced regularization tech-
niques, such as sparsity or binarity. The complexity of the
reconstruction procedures and the influence of the regulariza-
tion in the final result prevented any rigorous determination of
the superresolution capacity of these approaches.

Recently [13], it was proposed to reconstruct the sample
from the second-order statistics of the speckled images. The
major interest of this statistical approach (known as RIM for
random illumination microscopy) is that it does not require
the knowledge (nor the estimation) of the illuminations. It
only requires the knowledge of the speckle statistics (namely
the mean and autocovariance), which are theoretically well
defined and very robust to misalignments or aberrations [14].
More precisely, RIM consists in recording multiple images of
a sample under different fully developed speckled illumina-
tions En. The speckled patterns can be considered different
realizations of a second-order stationary random process E ,
with constant mean 〈E〉 (where 〈·〉 indicates the ensemble av-
erage) and autocovariance, C(r − r′) = 〈E (r)E (r′)〉 − 〈E〉2.
The frequency support of C is the same as the frequency sup-
port of each speckled illumination and is noted WE [14,15]. It
is demonstrated mathematically in Ref. [13] that, if WE = Wh,
the sample frequencies in the enlarged domain Wh2 can be
recovered from the square root of the covariance matrix of
the speckled images defined as,

Cov(r, r′) = 〈I (r)I (r′)〉 − 〈I (r)〉〈I (r′)〉. (6)

Yet, forming the covariance matrix, let alone its square root,
is numerically untractable. In practice, RIM reconstruction
method, named algoRIM, processes only the variance Vρ (r) =
Cov(r, r) of the speckled images. The sample is estimated
iteratively so as to minimize a distance between the experi-
mental variance image V exp and the simulated variance image
for a given ρ, Vρ [7,16]. The minimization procedure is not
a simple task as the variance image is quadratically linked to
the sample ρ through [7,17]

Vρ (r) =
∫

dr1dr2h(r − r1)

× ρ(r1)C(r1 − r2)ρ(r2)h(r − r2). (7)
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On many calibrated and biological samples, RIM exhibited
a resolution twice better than that of a classical fluorescence
microscope, which indicated that the sample estimated by
algoRIM presented spatial frequencies in the enlarged domain
Wh2 [7,17]. Now, to be fully confident in RIM results, it is
necessary to show that the solution of the variance-matching
procedure (which ideally provides the same variance image as
the experimental one, Vρ = V exp) has the same spectrum ρ̃ as
the actual sample in a domain about Wh2 . The question is: if
two samples yield the same variance image, do they have the
same spectrum in a domain larger than Wh? If yes, the size of
this domain will define RIM superresolution capacity.

We recall that the variance is formed from the square of
raw images that are frequency limited to Wh but depend on
the sample spectrum in WhE . The variance is sensitive to
the spatial frequencies of the sample in WhE (we show on a
specific example in Appendix B that this is indeed the case),
but its frequency support is Wh2 . In other terms, the number
of unknowns (the sample frequencies in WhE ) is, in general,
different from the number of data (the variance frequencies in
Wh2 ). Thus, it is likely that the answer to the question raised
above will be different when WhE is the same as, included in,
or bigger than, Wh2 .

In the classical RIM configuration, the illumination is per-
formed through the same objective as the observation. If the
Stokes shift can be neglected [7,14] the frequency support
of the speckled illumination WE is the same as that of the
point spread function, Wh. Hence, the frequency support of the
variance Wh2 matches the support of the sample spectrum it
depends on, WhE . In this case, we demonstrate in Appendix A
that if two samples have the same variance image, they have
necessarily the same sample spectrum within Wh2 . This result
ensures the unicity of the variance-matching solution and de-
termines the superresolution capacity of RIM: RIM achieves
the same resolution as an ideal confocal microscope in which
the focused beam and the point spread function share the same
frequency support.

We now consider the case where the speckle correlation
length is larger than the width of the point spread function, i.e.,
WE ⊂ Wh. In this case, it is always possible to filter the raw
images to transform h into C and the variance of the modified
images gives access to the sample spatial frequencies in WE2

at least. Yet, this result is not totally satisfactory. Indeed, in
this case, the frequency support of the variance Wh2 is larger
than the frequency support of the sample spectrum it depends
on, WhE . In other terms, we have more data than unknowns.
It is likely that, with some approximations, the resolution can
be improved further (maybe up to WhE ), but this remains to be
demonstrated.

Last, we study the configurations where the speckle cor-
relation length is smaller than the width of the point spread
function, Wh ⊂ WE . In this case, we have fewer data than
unknowns (Wh2 ⊂ WhE ), and we foresee major difficulties.
Indeed, we show in Appendix B, that there is a loss of infor-
mation in the variance image that prevents the reconstruction
of the sample spectrum in WhE and even in Wh2 . In particular,
two samples with different spectra in Wh2 can provide the same
variance image. These issues can be reduced with a priori
information on the sample and regularization techniques, but
the resolution gain, if any, will not be universal. The ambiguity

of the variance image when Wh ⊂ WE applies in particular to
configurations where the speckles are assumed to be spatially
uncorrelated. This assumption amounts to considering that
the observation point spread function and the fluorescence
density vary slowly over the speckle grain size. This is the
case when near-field speckles are used together with far-field
detection [18] or optical speckles with acoustic detection [19].
In these techniques, hereafter called speckle-SOFI, the expres-
sion of the variance simplifies to,

Vspeckle−SOFI(r) ≈ C0

∫
h2(r − r′)ρ2(r′)dr′. (8)

where C0 = ∫
C(r)dr. We observe that the variance is now

linearly linked to the square of the sought parameter (optical
absorption or fluorescence density) that is filtered over Wh2 .
Now, knowing the Fourier transform of ρ2 in Wh2 does not
mean that ρ̃ can be retrieved over Wh2 (except if ρ is binary).
We show in Appendix B that, when the speckled illumination
is spatially uncorrelated, it is possible to find samples with
different fluorescence density spectra in Wh2 that have the
same variance image.

V. RESOLUTION OF TECHNIQUES USING RANDOM
ACTIVATION OF THE FLUOROPHORES (SOFI)

In this last section, we differentiate fluctuation imaging
using quasiuncorrelated speckled illuminations from super-
resolution optical fluctuation imaging (SOFI). In SOFI, the
intensity fluctuations observed in the recorded images come
from the random activation of the fluorophores and not from
the illumination (which is kept homogeneous and equal to
E0 during the whole experiment). To account for this phe-
nomenon, one needs to explain further the characteristics of
the fluorescence density ρ, which is related to the fluorophore
concentration and the molecular brightness. We define the
fluorophore concentration g at the macroscopic scale such that
V g(r) is the number of fluorophores contained in a macro-
scopic volume V centered about r. Next, we introduce the
mean molecular brightness b, which accounts for the fluo-
rophores’ quantum yield and for the environment-dependent
ability of the incident (emitted) photons to reach the fluo-
rophore (detector). If all the fluorophores are activated in V ,
the mean brightness b is defined such that V g(r)b(r)E0 is
the energy measured by the camera of the photons emitted
from V . In other terms, if all the fluorophores are activated,
the fluorescence density is the product of the fluorophore
concentration times the mean brightness, ρ = g × b.

In SOFI, only a few fluorophores of V are activated during
the image recording and they change at each novel image. Let
us assume that they follow a Poisson point process of intensity
proportional to the total number of fluorophores in V . Then,
the number of activated fluorophores in V observed when
recording one image becomes a Poisson variable of parameter
V g(r)p(r) where p is the mean percentage of activation. Un-
der this assumption, we show in Appendix D that the variance
of SOFI images reads,

VSOFI(r) = E2
0

∫
h2(r − r′)b2(r′)g(r′)p(r′)dr′. (9)
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While RIM is able to recover the fluorescence density ρ =
g × b over Wh2 , SOFI has a similar superresolution capac-
ity, but the latter applies to a distinct density g × b2 × p =
ρ × b × p.

It is worth noting that if the mean brightness b is homo-
geneous, RIM and SOFI are able to restore the fluorophore
concentration g over Wh2 , (provided the mean activation per-
centage p in SOFI is also homogeneous). On the contrary,
even if b is homogeneous, fluctuation imaging using quasi-
uncorrelated speckled illuminations (speckle-SOFI) can only
restore the square of the fluorophore concentration, g2, over
Wh2 . Thus, SOFI and speckle-SOFI yield a priori different re-
sults and their umbrella denomination as fluctuation imaging
can be misleading.

VI. CONCLUSION

There exist three main superresolved microscopy tech-
niques that form superresolved images from the variance
of multiple diffraction-limited images. RIM uses speckled
illuminations that are correlated over a distance compara-
ble to the width of the observation point spread function,
speckle-SOFI uses quasiuncorrelated speckled illuminations,
and SOFI takes advantage of the random activation of flu-
orophores. In this work, we have shown that while these
three techniques can offer a doubling of resolution, this is
not applied to the same sample parameters. SOFI recovers the
fluorophore concentration times the square of the brightness
while speckle-SOFI recovers the square of the fluorophore
concentration times the square of the brightness. For its part,
RIM recovers the fluorescence density, i.e., the fluorophore
concentration times the brightness, in the same way as an ideal
confocal microscope. Our demonstration provides a solid the-
oretical ground for the twofold resolution gain, the optical
sectioning, and the linearity to fluorescence observed in the
last RIM experiments [7,17].
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APPENDIX A: SUPERRESOLUTION CAPACITY
OF RIM WHEN WE = Wh

In this Appendix, we consider the classical RIM con-
figuration where the speckle autocovariance C is similar to
the observation point spread function h. Experimentally, this
condition is fulfilled in epifluorescence microscopy when the
speckled illumination fills the pupil of the collection objective
and the Stokes shift is negligible. In this case, we show that
if two samples ρ1 and ρ2 have the same variance image, they
have the same spectrum in Wh2 .

1. Demonstration of the bijection between the variance image
and the sample spectrum in Wh2

First of all, we recall that the variance is formed from
the square of images acquired under random illuminations
whose frequency support WE is equal to Wh. From Eq. (3)
we deduce that the variance is only sensitive to the sample

spectrum in WhE = Wh2 . Thus, two samples with the same
spectrum in Wh2 will provide the same variance image. The
reciprocal is significantly more difficult to demonstrate due
to the quadratic link between the variance and the sample.
It requires the introduction of a bilinear symmetric operator
BU,V acting on real integral functions (U,V ),

BU,V (r) =
∫

dr1dr2h(r − r1)

× U (r1)C(r1 − r2)V (r2)h(r − r2) (A1)

such that the variance Vρ is equal to Bρ,ρ .
The bilinear operator BU,V can be cast as the product of

linear operators acting on U and V . To this aim, we define hE

such that h̃E =
√

C̃ (we recall that C̃ is always positive as C is
an autocovariance function), which satisfies∫

hE (r1 − x)hE (r2 − x)dx = C(r1 − r2). (A2)

Introducing hE in Eq. (A1), we obtain,

BU,V (r) =
∫

MU (r, x)MV (r, x)dx (A3)

with

MV (r, x) =
∫

h(r − r1)V (r1)hE (r1 − x)dr1. (A4)

At this point, we note that the Fourier transform of MV with
respect to (r, x),

M̃V (ν,μ) = h̃(ν)Ṽ (μ + ν)h̃E (μ), (A5)

is bounded, so MV is an analytic function. In addition, if h =
C, we demonstrate (at the end of this section) that,∫

BU,V (r)V (r)dr =
∫

|MV (r, x)|2U (r)drdx. (A6)

We now consider two fluorescence densities, ρ1(r) � 0 and
ρ2(r) � 0 that have the same RIM variance, Bρ1,ρ1 (r) =
Bρ2,ρ2 (r). Using the bilinearity and symmetry of BU,V , we can
show that Bρ1,ρ1 − Bρ2,ρ2 = Bρ1+ρ2,ρ1−ρ2 = 0. This last prop-
erty implies, in particular, that,∫

Bρ1+ρ2,ρ1−ρ2 (r)[ρ1(r) − ρ2(r)]dr = 0, (A7)

which, using Eq. (A6), can be cast as,∫
|Mρ1−ρ2 (r, x)|2[ρ1(r) + ρ2(r)]drdx = 0. (A8)

We now assume that ρ1 + ρ2 stays strictly positive in a
nonempty open set �. In this case, Eq. (A8) is satisfied if and
only if Mρ1−ρ2 (r, x) = 0 for r ∈ � and for all x. Since Mρ1−ρ2

is analytic, Mρ1−ρ2 (r, x) = 0 for all x and for r ∈ � implies
that Mρ1−ρ2 (r, x) = 0 for all x and all r, thus M̃ρ1−ρ2 (ν,μ) =
0 for all ν and μ. From Eq. (A5), the nullity of M̃ρ1−ρ2 is
obtained only if ρ̃1(η) − ρ̃2(η) = 0 for η ∈ Wh2 . Hence, if ρ1

and ρ2 have the same RIM variance, they have the same spatial
frequencies in Wh2 .

We have thus demonstrated that there is a one-to-one cor-
respondence between the spatial frequencies of the variance
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of diffraction-limited speckled images and the spatial fre-
quencies of the sample fluorescence density in the enlarged
frequency domain Wh2 provided C = h.

2. Proof of Eq. (A6)

The demonstration of Eq. (A6) requires that h = C. In this
case, Eq. (A1) can be rewritten as,

BU,V (r) =
∫

dr1dr2h(r − r1)

× U (r1)h(r − r2)V (r2)h(r1 − r2).

Using h(r − r2) = ∫
hE (r − x)hE (r2 − x)dx, one obtains∫

BU,V (r)V (r)dr

=
∫

drdr1dr2dxh(r − r1)V (r)

×hE (r − x)h(r1 − r2)V (r2)hE (r2 − x)U (r1).

Recalling the expression of MV in Eq. (A4) and the symmetry
of h and hE , we get∫

BU,V (r)V (r)dr =
∫

|MV (r1, x)|2U (r1)dxdr1.

APPENDIX B: WHAT HAPPENS WHEN Wh ⊂ WE?

We now study the configurations where Wh ⊂ WE , namely
the speckle correlation length is smaller than the width of the
point spread function. This situation is encountered with near-
field speckles or when the illumination pupil is larger than the
collection pupil. In this case, we show that even if the variance
is sensitive to the sample spectrum in WhE , there is a loss of
information that prevents its recovery. In addition, we show
that two samples with different spectra in Wh2 can provide the
same variance image.

To simplify the discussion, we assume that (Wh,WE ) are
centered plain disks with frequency cutoffs νh and νE , respec-
tively, with νh < νE . We further assume that the point spread
function h is symmetric so that h̃ is a real positive symmetric
function, like C̃. We consider a sample whose spectrum is
restricted to the null frequency and a high frequency ±k,
ρ(r) = A + B cos(2πk · r + ϕ) with (A, B) real positive such
that ρ is real positive. The variance of the raw images, given
by Eq. (7), obtained with such sample reads,

Vρ (r) = A2α + B2β(k) + 2ABγ (k) cos(2πk · r + ϕ)

+ B2η(k) cos(4πk · r + 2ϕ), (B1)

with

α =
∫

|h̃|2(ν)C̃(ν)dν,

β(k) =
∫

|h̃|2(ν + k)C̃(ν)dν,

γ (k) =
∫

h̃(k − ν)h̃(ν)C̃(ν)dν,

η(k) =
∫

h̃(ν)h̃(2k − ν)C̃(k − ν)dν.

We observe that as long as k < νh + νE , β(k) 	= 0 and the
variance depends on the high spatial frequency of the sam-
ple, B. This result confirms the sensitivity of the variance
to sample spatial frequencies in WhE . However, if 2νh < k �
νh + νE , γ (k) = η(k) = 0 so that Vρ (r) = αA2 + β(k)B2. In
this case, the variance is sensitive to the amplitudes of the null
and high frequencies of the sample, (A, B), but it has lost the
information about the phase of the high frequency, ϕ. Worse,
this example shows that a uniform sample defined by ρ1(r) =
(A2 + β(k)B2)

1
2 /α will have the same variance as the inhomo-

geneous sample defined by ρ(r) = A + B cos(2πk · r + ϕ).
Thus, when νh < νE , the identifiability of the sample spatial
frequencies from the variance is lost, even for frequencies be-
longing to Wh2 . This assertion is particularly counterintuitive
as it shows that decreasing the size of the speckle grains below
the width of the observation point spread function is a priori
detrimental to the sample reconstruction.

APPENDIX C: IMAGING WITH QUASIUNCORRELATED
SPECKLES, SPECKLE-SOFI

When the point spread function and fluorescence density
vary slowly over the width of the speckle autocovariance func-
tion, the variance of the diffraction-limited images is linearly
linked to the square of ρ filtered over Wh2 . In this section,
we provide an example of two positive functions with dif-
ferent spectra in the superresolved domain Wh2 , which, when
squared, have exactly the same spectra in Wh2 .

We consider g the sum of a constant and a one-dimensional
cosine along the x axis with a frequency k laying in Wh2 but
not in Wh, and f the sum of a constant and two cosines with
period k and 2k. Note that 2k lays outside Wh2 . We adapt the
constant and the cosine amplitudes so that f and g are positive
and f 2 and g2 are equal in Wh2 . A possible solution is,

f (x) = 6 +
√

2 cos(2πkx) + cos(4πkx)

g(x) =
√

101 + 7

2
√

2
+

√
101 − 7

2
cos(2πkx). (C1)

Noting F the low-pass filter operator that removes all the
frequencies outside Wh2 , we find,

F[ f 2](x) = F[g2](x) = 75 + 13
√

2 cos(2πkx).

APPENDIX D: MODELING SOFI AT THE MACROSCOPIC
SCALE

Generally, SOFI data are modeled with a discrete sum
that depends on the fluorophore positions [20]. However, it is
clearly impossible to recover the fluorophores positions from
SOFI (second-order) image, except if a constraint of sparsity
is assumed. It may thus be interesting to relate SOFI images to
sample characteristics that are defined at a macroscopic scale,
such as the fluorophore concentration.

In structured illumination microscopy, one assumes that all
the fluorophores are activated. The fluorescence density ρ is
written as the product of the fluorophore concentration g with
a mean brightness b. The intensity recorded by the camera is
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modeled as,

I (r) =
∫

h(r − r′)E (r′)g(r′)b(r′)dr, (D1)

where E is the inhomogeneous illumination intensity and h
the microscope point spread function.

In SOFI, the illumination E0 is homogeneous but the fluo-
rophores oscillate between an activated and nonactivated state.
Thus, only a subset of the fluorophores present in the sample
contributes to the image intensity at a given time t . The acti-
vated fluorophores in the (macroscopic) volume V centered
about r can be seen as points popping up at random and
independently of one another. This process is conveniently
modeled with a Poisson point process of intensity proportional
to the number of fluorophores in V . Under this assumption,
the number of activated fluorophores in V at time t , written as
V q(r, t ), where q is the activated fluorophore concentration,

is a Poisson variable of parameter V g(r)p(r) with p the mean
percentage of activation. With this definition, the intensity of
the image recorded at t can be written as,

I (r, t ) = E0

∫
h(r − r′)q(r′, t )b(r′)dr′. (D2)

It is thus a filtered Poisson variable whose time variance
reads [21],

VSOFI(r) = E2
0

∫
h2(r − r′)b2(r′)g(r′)p(r′)dr′.

Note that this result recovers the expression given in the
original SOFI paper [20] if one expresses the fluorophore
concentration distribution as

∑K
k=1 δ(r − rk ) where rk is the

position of the kth fluorophore.
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