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Correlation measurement of few-phonon interference
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The interferometer is a vital technology in achieving coherent control and measurement in quantum systems.
In this study, we present a few-phonon interferometer based on an optomechanical crystal cavity, which is cooled
down with several phonons even less. Through the phonon counting, the competition between the thermal and
coherent phonons is demonstrated by the interference. The interference visibility is monotonically increased with
increasing the coherent phonons. However, the interference on second-order correlation g(2)(0) occurs in reverse
because of the different statistical properties of thermal and coherent phonons, which also leads to an unnatural
interference visibility with great coherent phonons. The investigation of this correlation interference technology
will advance the development of cavity optomechanics systems in the quantum precision sensing and quantum
information processing fields.
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I. INTRODUCTION

The interference method of separated oscillating fields can
produce atomic and molecular transition frequencies with
unrivaled precision and accuracy [1,2]. Several remarkable
applications have been reported, ranging from atomic fre-
quency standards [3–6] and Bose-Einstein condensates [7],
to quantum information processing [8–12] and the study of
phase coherence in two-level systems [13,14]. In recent years,
this method has been extended to investigate mechanical mo-
tion degrees of freedom [15–18]. This is mainly due to the
increasing role of cavity optomechanics in precision mea-
surement [19–23], frequency conversion [24,25], topological
lattice [26], quantum entanglement [27,28], and mesoscopic
quantum state engineering [29–31]. As the interference fringe
is sensitive to the dynamical changes of mechanical state in
the phase, phonon interferometry is an important technol-
ogy for detecting the dynamic processes of optomechanical
systems.

In the previous optomechanical interferometer [16], the
population of coherent phonons was large, and the interfer-
ence fringes were obtained by using heterodyne detection
without considering thermal phonons, which would directly
participate and influence the interference. To explore the in-
terferometer under the influence of few thermal phonons,
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an alternative method is correlation measurement based on
photon counting, as intensity correlations provide statistic
information that is not available from the measurements of
first-order coherence. This approach has been not only used
for astronomical research of thermal light using Hanbury
Brown–Twiss (HBT) technology [32,33], but also for early
research on photon statistics of lasers and resonance fluo-
rescence [34,35]. The introduction of photon counting and
correlation measurement will promote the use of phonon in-
terferometer for coherent control and detection of quantum
cavity optomechanical systems.

Here, we have demonstrated few-phonon interferometer
using an optomechanical crystal (OMC) nanobeam cavity,
which is placed in a cryostat and cooled down with several
phonons even less. The interference fringes of phonons are
observed using photon counting and second-order correlation.
And the interference visibility of the former is monotonically
increased with increasing the coherent phonons. However, the
interference on second-order correlation g(2)(0) exhibits a π

phase shift because of the different statistical properties of
thermal and coherent phonons, which also leads to a decreas-
ing interference visibility with great coherent phonons. The
research of this single phonon level interference technology
will promote the application of cavity optomechanics sys-
tems in quantum precision sensing and quantum information
processing.

II. THEORY

In the phonon interferometry, two pairs of pulses with
separation time T , including the drive and probe fields, are
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FIG. 1. (a) The spectral diagram and pulse sequences of the
phonon interferometry. (b) The drive field converts the probe photons
to coherent phonons in the presence of the mechanical thermal bath
(i), and meanwhile serves as a parametric source to up-convert a
phonon, including the thermal phonon occupation, into the cavity
resonance (ii). (c) The phonon interference can be verified by the
scattered photons by the residual phonons from pulse 1 (I) and the
regenerated phonons from pulse 2 (II). The color code corresponds
to the interaction diagrams involved in these two paths. (d) Scanning
electron microscope (SEM) image of the OMC device. (e) SEM
image of an individual nanobeam OMC and the coupling waveguide
(top), finite-element method simulations of the optical field (middle)
and mechanical displacement profile (bottom).

sent to the optomechanical cavity, as shown in Fig. 1(a). When
the drive field (ωd) is red-detuned from the optical mode (ωc)
by one mechanical frequency ωm, the effective Hamiltonian
of the system with the weak probe laser (ωp) is

Heff = �(c†c + m†m) + G(c†m + cm†)

+ i
√

κexεpc† + i
√

γmmthm† + H.c., (1)

where � = ωc − ωp, and c (c†) and m (m†) are annihilation
(creation) operators for the optical and mechanical mode,
respectively. G = g0

√
nd is the optomechanical coupling rate,

which is enhanced via the intracavity photon number nd

from the drive laser. εp is the amplitude of the probe laser
with the coupling rate κex. Different from the coherent state
of the probe laser, the mechanical mode with the decay rate
of γm is motivated by the thermal noise mth. It is noticed
that the phonon interference is affected by the competition
between the coherent phonon and the thermal phonon, which
is the fundamental difference from the traditional interference
process that is only determined by the detuning � and the
separation time T .

To provide a more intuitive explanation of the entire pro-
cess, the interaction diagram is plotted in Fig. 1(b). The
well-known photon–phonon coherent conversion occurs via
a beam-splitter-like interaction [36,37], resulting in two pro-
cesses during the pulse pair: (i) the drive field converts
the probe photons to coherent phonons in the presence of
the thermal bath through the mechanical interaction, and (ii)
the drive field served as a parametric source upconvert a

phonon, including the thermal phonon occupation, into the
cavity resonance. During the first pulse, these two processes
will produce coherent phonon occupancy and cavity photons
with thermal noise. The cavity photons decay quickly to zero
during the free evolution, while the mechanical excitations
have almost no decay except for accumulating an additional
phase ωmT until the second pulse arrives, since the decay
time 1/γm is longer than T and the decay time of photon (see
Appendixes). The cavity photons interference during pulse 2
consists of two parts, one scattered by the residual phonons
from pulse 1 (I), and others scattered by the regenerated
phonons from pulse 2 (II), as shown in Fig. 1(c). There-
fore, the interference fringes observed in the optical domain
represent the interference between phonons created by pulse
1 and 2. It is worth noting that two probe pulses cannot
interfere directly as the free evolution time is much longer
than the optical decay time. Meanwhile, the participation
of the thermal phonon will affect the interference visibility
of the phonon interferometry, which is also distinguished from
the direct interference of coherent light.

The dynamics of the optomechanical system can be de-
scribed by the following equations:

dc

dt
= −

(κc

2
+ i�

)
c − iG(t )m + √

κexεp,

dm

dt
= −

(γm

2
+ i�

)
m − iG(t )c + √

γmmth, (2)

where κc is the decay rate of the optical mode. When two pairs
of pulses meet with the separation time T , the mechanical field
can be solved as

m = √
nth

mth

|mth| + √
ncoh1eiϕ1

εp,1

|εp,1| + √
ncoh2eiϕ2

εp,2

|εp,2| ,

which is decomposed into the thermal phonon occupation
(nth) and coherent phonon population ncoh1(2) created by pulse
1 (2), respectively. The coherent phonons decay with time,
showing Lorentzian-like response in the frequency distribu-
tion (see Appendixes). Additionally, our detection cannot
distinguish nth with different frequencies. Therefore, all fre-
quency of thermal phonon population should be considered
when calibrating nth at any ωp. For the sake of simplicity,
we still depict this integral mean thermal phonon occupation∫
ωp

nthdωp as nth in the following description. Therefore, the
mean phonon occupation of the system can be written as

〈m†m〉 = nth + ncoh1 + ncoh2 + 2
√

ncoh1ncoh2 cos (δ), (3)

where the last term represents the interference of coherent
phonons with different phases, i.e., δ = ϕ1 − ϕ2. The cos(δ)
is approximately cos(�T ) for the short enough pulse 2 but
not involve nth due to its disordered phase. According to the
input-output theory, when it is near critical coupling, the field
reflected from the resonator is cout ≈ −i

√
κexPsm, where Ps

represents the scattering probability of a phonon to a photon.
Thus the output photons can be used for the detection of
the interference fringes of phonons described above. From
Eq. (3), we find that the phonon interference is attributed to
the coherent phonons, and the thermal phonons weaken the
interference. Especially, there is no oscillation for the disor-
dered phase of the thermal noise when ncoh = ncoh1 + ncoh2 +
2
√

ncoh1ncoh2 cos(δ) � nth. However, the measurement of
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light intensity can only reflect the difference between the
thermal and coherent phonons, and the nonclassical states are
even more impossible to distinguish from the coherent states.

The second-order correlation of the phonons can be calcu-
lated as

g(2)(τ ) = m†(0)m†(τ )m(τ )m(0)〉
〈m†(0)m(0)〉2

,

which can be mapped by the second-order correlation of the
output photons. Here, we measure g(2)(0), which can be de-
rived as

g(2)(0) ≈ 2 − 1

(1 + nth/ncoh )2 . (4)

It shows the correlation interference fringes 1 � g(2)(0) �
2, where g(2)(0) = 1(2) is corresponding to the condition
nth(coh) = 0. This originates from the statistical properties of
the thermal bath and coherent field. By combining first- and
second-order correlations, we can simultaneously obtain the
information of both nth + ncoh and nth/ncoh, which are ideally
suitable for nth ≈ ncoh. More importantly, the second-order
correlation of the phonon interference can show huge advan-
tages, where its value oscillates wildly for the nonclassical
states g(2) � 1 or �1, and the method is expected to greatly
promote the application in the field of quantum precision
sensing.

III. EXPERIMENTAL RESULT

To obtain the phonon interferometry, a nanobeam OMC
cavity [38] is used here, as shown in Fig. 1(d). Finite-element
method numerical simulations of the optical Ey field and
mechanical displacement field are shown in Fig. 1(e). The
device uses one-dimensional (1D) periodically arranged Si
nominal unit cells to create high-Q colocalized optical and
mechanical resonances [38,39]. Independent measurements
are initially performed in a dilution refrigerator (≈10 mK)
to characterize the optical and mechanical modes and the
optomechanical coupling rate [40]. A tunable laser is coupled
into the silicon waveguide via a lensed optical fiber, as shown
in Fig. 2(a). Then, the signal is reflected from the on-chip
waveguide via a high-reflectivity photonic crystal end-mirror
and measured through the detector (not shown here) using the
circulator. For the device under test in this work, an optical
resonance ωc at a wavelength of 1533.87 nm has a decay rate
of κc/2π = 886 MHz, corresponding to optical quality factor
Qo ≈ 220 000, as shown in Fig. 2(b). Figure 2(c) shows the
thermal mechanical spectrum of the breathing mode exhibits
a Lorentzian profile.

For the experiment, the AOM is used to generate drive
pulses with the desired duration and timing [41]. An ad-
ditional prefilter following the laser is used to remove the
phase noise of our driving field at mechanical frequency [42].
The probe pulses are the blue sideband of the drive pulses,
which are generated by the EOM. The output pulse pairs pass
through the cascaded filters to remove the driving field and
then launched into a HBT-type setup which comprised of a
50 : 50 fiber splitter and two SNSPDs [43]. Therefore, with
a lot of repeated pulse sequences, statistics on the single-
photon count rates and intensity correlation of signal photons

FIG. 2. (a) Schematic of the experimental setup. AOM, acousto-
optic modulator; EOM, electro-optic modulator; SNSPD, supercon-
ducting nanowire single-photon detector. (b) Transmission spectrum
for the optical resonance around 1533 nm. (c) Optically transduced
thermal mechanical spectrum of the breathing mode with ωm/2π =
5.26 GHz and γm/2π = 5 kHz. (d) Sideband thermometry to extract
the thermal occupation of the mechanical resonator. nth is estimated
as 0.071 ± 0.008.

in second pulse are performed, indicating the results of the
phonons. First, the cavity-enhanced Stokes (blue sideband)
and anti-Stokes (red sideband) scattering rates are measured
to obtain the actual thermal occupation of the mechanical
mode when the cavity is excited by a sequence of alternat-
ing blue- or red-detuned optical pulses (≈ωc ± ωm) with a
duration of 40 ns [39]. Figure 2(d) shows a histogram of the
respective single-photon count rates with a peak power of
0.67 µW for ≈50 hours. The frequency of the drive pulses
is locked to a wave meter. We extract a thermal occupation
of nth = 0.071 ± 0.008, which is also used for the calibration
of the phonon population in the system. Figure 3(a) shows
the single-photon count rates measured during pulse 2 as
a function of detuning � and the separation time T . Here,
the first pulse pair (T1 = 4 µs) excites the initial coherent
phonon occupations ncoh1 = 15.7 at � = 0, t = T1 + 5 µs and

FIG. 3. (a), (b) Experimental and theoretical normalized single-
photon count rates (a) and g(2)(0) (b) measured during pulse 2 as a
function of � and T with T1 = 4 µs and T2 = 0.4 µs. (c) Interference
oscillations versus the separation time at � = −45 kHz, as shown the
dot lines in panels (a) and (b). (d) The typical correlations between
coinciding detection events on the SNSPDs for photons emerging
with different pulse sequences. � and T are −11 kHz and 23 µs,
respectively.

033523-3



YU WANG et al. PHYSICAL REVIEW A 109, 033523 (2024)

thermal noise nth = 12.89 due to residual heat through laser
absorption (see Appendix B 2 for calibration). The duration
of the second pulse pair is chosen as T2 = 0.4 µs to reduce the
heating. The peak power in the waveguide of drive pulses (1
and 2) is 2.1 µW, and the repetition rate of the pulse pairs is
5 kHz. The photon count rates are normalized to the value of
(Imax + Imin)/2, where Imax (Imin) is the maximum (minimum)
count rate of the interference fringe. The distinct spectral
oscillations observed in Fig. 3(a) demonstrate the fringe for
the OMC cavity. Figure 3(b) plots the phonon correlation
g(2)(0) at the same pulse sequence in Fig. 3(a) through the
HBT-type setup. For a mechanical resonator transition from a
purely thermal state into a displaced thermal state, the phonon
intensity correlation at τ = 0 will change from bunching
[g(2)(0) = 2] to Poissonian statistics [g(2)(0) = 1]. Because
of the phonon interference, the coherent phonon occupancy
ncoh (and ncoh/nth) will oscillate with the detuning � and
separation time T , demonstrating the phonon interferometry
based on phonon intensity correlations. Since the destruc-
tive (constructive) interference on the single-photon count
rates is attributed to the smaller (larger) coherent component,
the corresponding g(2)(0) is closer to bunching (Poissonian
statistics). Therefore, the fringes on g(2)(0) are generally the
opposite of that on single-photon count rates, for example, as
shown in Fig. 3(c), which are the horizontal cuts indicated in
Figs. 3(a) and 3(b) (black and red dashed lines). In addition,
the decay of this interference can extract the decoherence
lifetime τ2 = 19.9 µs by theoretically fitting with an exponen-
tially decaying sine-liked function which is approximated to
Eq. (3) (see Appendixes).

Using the HBT-type setup, we detect the second-order
correlation g(2)(�N ) of the scattered photons from pulse 2,
which refers to the coincidences between detection events
originating from the same (�N = 0) or different (�N �= 0)
pulse sequences, as shown in Fig. 3(d). The �N here is
the relative sequence number difference of clicks from the
two SNSPDs in a large number of independent identically
distributed experiments. For the same (�N = 0) pulse se-
quences, the scattered signal photons show the same statistical
properties as phonons, which comprise of thermal [g(2)(0) =
2] and coherent [g(2)(0) = 1] ones. Based on Eq. (4), the value
of g(2)(0) is determined by the ratio ncoh/nth. This oscillatory
signature in Fig. 3(b) will become nonobvious if ncoh � nth,
thus the characterization is limited when ignoring the thermal
occupation in previous work [16].

The decoherence of a massive object, such as phonons, is
influenced by the interaction with a thermal bath. Figure 4(a)
shows the normalized count rates with various coherent
phonon occupations ncoh. The thermal noise is fixed as nth =
12.89 and ncoh is controlled by changing the modulation
power of the EOM. The oscillation of the interferometer on
count rate is decreased with decreasing the coherent phonons
and still obvious when ncoh = 0.39. In addition, g(2)(0) with
various ncoh is shown in Fig. 4(b). Note that the oscillation is
stronger with less coherent phonons, which is different from
the previous results. Therefore, we extract the interference vis-
ibility from the interference spectra versus ncoh/nth, as shown
in Figs. 4(c) and 4(d). Note that the interference visibility
Vcount from the single-photon count rates gradually increases
with the ratio ncoh/nth increasing, then almost reaches the

FIG. 4. (a), (b) Normalized single-photon count rates and g(2)(0)
as a function of detuning � for various ncoh with nth = 12.89 and
nd = 22. (c), (d) Interference visibility of the interference fringes
as a function of ncoh/nth for count rates and g(2)(0). The solid lines
in panels (a)–(d) indicate theoretically expected values. The dashed
lines in panel (c) show the theoretical results with the fixed de-
cay rate. The green line in panel (d) shows the calculated ratio of
|d log10(Vg(2) (0) )|/d log10(Vcount ).

maximum and saturates, which is in line with physical
intuition and previous results for ncoh � nth [16]. In other
words, a saturation trend appears when coherent phonon oc-
cupation reaches a level at which the influence of thermal
occupation becomes negligible. When the drive peak power
is reduced from 2.1 to 0.67 µW and the pulse repetition rate is
reduced to 50 Hz to get the lower thermal occupation (nth =
2.98), the interference visibility is around 0.1 when the coher-
ent phonon occupation is as low as 0.12, as shown the blue line
in Fig. 4(c). Both curves have similar characteristics, where
saturation point and maximum value are determined by γm

and nd for a given pulse timing and a determined device (see
Appendixes). It is worth noting that the solid lines in Fig. 4(c)
represent the theoretically expected values using the param-
eters γm ≈ 8 kHz and 100 Hz when nth = 12.89 and 2.98,
respectively, while the dashed line shows the deviation results
using γm ≈ 8 kHz for nth = 2.98. This decreased γm with
small nth can be intuitively interpreted by two-level system
interactions [30] and the thermal decoherence processes [20].

A stronger drive can enhance the optomechanical in-
teraction and improve the probability of photon-phonon
conversion, resulting in a larger interference visibility. On
the contrary, it can be seen the interference visibility from
g(2)(0) decreases quickly when ncoh/nth � 1, indicating the
statistical property of the mechanical resonator tends to be
a stable Poisson distribution. Meanwhile, for ncoh/nth � 1,
Vg(2) (0) also decreases because the statistical property of the
mechanical resonator tends to be a pure thermal distribu-
tion. Therefore, there is a maximum value of interference
visibility, in this case, located near ncoh/nth ≈ 0.4. This cor-
relation phonon interference allows us to extract the thermal
phonon population, especially in the case of large numbers
of coherent phonons, due to the distinguishable interference
visibility of g(2)(0) in this region (ncoh/nth � 1), where Vcount
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is almost saturated. As shown green line in Fig. 4(d), the ratio
|d log10(Vg(2) (0) )|/d log10(Vcount ) can be as high as 200. This
correlation phonon interference allows us to assess the effect
of thermal phonons or other possible nonclassical states by the
interference visibility.

In summary, we have implemented a phonon interferome-
ter at the single-phonon level in an optomechanical resonator
and characterized the interference fringes through first- and
second-order correlation in the presence of the thermal bath,
which influences the visibility of interference fringes. The
saturation trend of interference visibility of phonon popula-
tion provides a way to set an optimal work point of ncoh/nth

with more obvious interference fringes, and the unnatural
interference visibility changes of g(2)(0) can be used to cal-
ibrate the thermal phonons. As our scheme involves both
coherent and thermal phonons, and the evolution of this kind
of mixed state, it is appropriate to study the thermal dy-
namical decoherence processes of phonons. Our results not
only establish the groundwork for applying phonon interfer-
ometry technology to quantum optomechanical systems, but
also enable applications such as phonon occupation sensing,
exploration of dynamical interactions between mechanical os-
cillators, and the thermal dynamical decoherence processes of
phonons.

ACKNOWLEDGMENTS

The authors thank M. Zhang for helpful discussions. This
work was supported by the National Key Research and De-
velopment Program of China (Grant No. 2020YFB2205801),
Innovation program for Quantum Science and Technol-
ogy (2021ZD0303203), National Natural Science Founda-
tion of China (Grants No. 12293052, No. 11654003, No.
11934012, No. 12104442, No. 92050109, No. 92250302, No.
U21A20433, and No. 92265108), the Natural Science Foun-
dation of Anhui Province (Grants No. 2108085MA17 and No.
2308085J12), the CAS Project for Young Scientists in Basic
Research (YSBR-069), and the Fundamental Research Funds
for the Central Universities. This work was partially carried
out at the USTC Center for Micro and Nanoscale Research
and Fabrication.

APPENDIX A: THEORY

1. Model

As discussed in the main text, we consider a general op-
tomechanical system in the resolved-sideband limit. Under the
strong driving pump εd with the red detuning, the optome-
chanical system can be linearized as the coherent interaction
G(c†m + cm†) with the coupling strength G = go

√
nd, where

go indicates the single-photon optomechanical coupling rate
and

nd = κex|εd|2
�2 + κ2

c /4

is the average photon number in the intracavity field from the
pump laser [20]. Here we study the dynamical evolution of
the optomechanical system, and a probe field weaker than the
driving pump is used to stimulate the system [36]. In the ro-
tating frame Ho = ωpc†c + (ωp − ωd )m†m, the corresponding

Hamiltonian can be written as

H = (ωc − ωp)c†c + (ωm + ωd − ωp)m†m

+ G(c†m + cm†) + i
√

κex(c†cin − cc∗
in )

+ icnoise
√

κo(c†cnoise − cc∗
noise )

+ imth
√

γm(m†mth − mm∗
th ), (A1)

where c (c†) and m (m†) are annihilation (creation) operators
for the optical and mechanical resonator modes with the fre-
quencies ωc and ωm, respectively, and ωd (ωp) is the frequency
of the pump (probe) laser. In addition to considering the
probe signal cin with the coupling rate κex, we also need to
consider the optical noise cnoise with the intrinsic rate κo and
the mechanical thermal bath mth with the intrinsic dissipative
coupling rate γm, and we notice that the mechanical thermal
noise depends on the ambient temperature. Therefore, the
dynamical evolution of the optomechanical system can be
described by the following equations:

dc

dt
= −

[κc

2
+ i(ωc − ωp)

]
c − iGm + √

κexcin + √
κocnoise,

(A2)

dm

dt
= −

[γm

2
+ i(ωm + ωd − ωp)

]
m − iGc + √

γmmth,

(A3)

where we have assumed the red detuning ωc = ωm + ωd and
defined � = ωc − ωp = ωm + ωd − ωp, and κc = κex + κo is
the total dissipative rate. In our experiment, we want to in-
vestigate the phonon process, which is a dynamical evolution
driven by pulsed lasers. Therefore, the optomechanical system
is not in a steady state. To study the dynamical evolution of
the system in this case, we seek the analytical solutions of the
equations. By defining the evolution rates, A = κc

2 + i�, B =
γm

2 + i�, and the input signals, Ain = √
κexcin + √

κocnoise,
Bin = √

γmmth, the dynamical equations can be written as

dc

dt
= −Ac − iGm + Ain, (A4)

dm

dt
= −Bm − iGc + Bin. (A5)

We know that this set of equations has the general solutions:

c = A1 exp (x1t ) + A2 exp (x2t ) + A0, (A6)

m = B1 exp (x1t ) + B2 exp (x2t ) + B0, (A7)

where the exponential coefficients of the general solution are

x1 = −(A + B) +
√

(A − B)2 − 4G2

2
,

x2 = −(A + B) −
√

(A − B)2 − 4G2

2
. (A8)

x1 represents a relatively slow decay rate with the parameter
4G2 < (A − B) in our experiment. However, x2 is the quick
decay rate, and the corresponding term can be neglected if
|x2|t � 1. When the system is in the steady state, we have the
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solutions

A0 = − iGBin − BAin

(AB + G2)
, B0 = − iGAin − ABin

(AB + G2)
, (A9)

which depend on the input signals Ain (Bin) and have nothing
with the initial state. For the dynamical process, the evolution
also depends on the initial values c(0) and m(0), and the
corresponding parameters, the amplitudes of terms that evolve
rapidly (slowly) with time, A1 and B1 (A2 and B2), are

A1 = c′(0)x1 − x1x2[c(0) − A0]

x2
1 − x1x2

,

A2 = c′(0)x2 − x1x2[c(0) − A0]

x2
2 − x1x2

, (A10)

B1 = m′(0)x1 − x1x2[m(0) − B0]

x2
1 − x1x2

,

B2 = m′(0)x2 − x1x2[m(0) − B0]

x2
2 − x1x2

, (A11)

where c′(0) and m′(0) are initial values for taking the first
derivative of time, which can be written as

c′(0) = −Ac(0) − iGm(0) + Ain, (A12)

m′(0) = −Bm(0) − iGc(0) + Bin, (A13)

which are determined by the initial states and the input signals.
Therefore, we can obtain the analytical results, and the

dynamical process can be clearly described. These results
are suitable for any input signal, including the coherent
state, the thermal noise, or the nonclassical state. In addition,
the dynamical evolution is established for any initial state, so
the evolution of the segments can also be accurately described.
Besides the evolution of the field intensity, we can also cal-
culate the statistical property of the field to distinguish the
coherent, thermal, and other states if we know the statistical
properties of the input signals and initial states. In conclusion,
the amplitude, phase, and statistical properties of the intracav-
ity or extracavity field can be obtained by analytical solutions.

The noise correlators associated with the input fluctuations
are given by [20]

〈c†
noisecnoise〉 = 0, 〈cnoisec†

noise〉 = 1, (A14)

〈m†
thmth〉 = nm, 〈mthm†

th〉 = nm + 1. (A15)

Therefore, in this model, we can ignore the noise of the optical
mode, since 〈c†

noisecnoise〉 = 0 and the theoretical derivation in
this model does not involve the item 〈cnoisec†

noise〉. However,
the noise of the mechanical mode cannot be neglected while

nm = 1

eh̄ωm/kBT − 1
�= 0,

which represents the equivalent phonon occupation of
mechanical mode corresponding to the ambient thermal
bath [20]. From the above expressions, Eq. (A7) can be re-
organized into

m = √
ncoh

cin

|cin| + √
nth

mth

|mth| , (A16)

which means that the mechanical motion of the optome-
chanical system is comprised of the coherent component
transformed from the probe field cin by the OMIT process
and the thermal component nth. Note that, in our experiment,
the probe field is a coherent state, which can be written as
cin = εp.

2. Dynamical evolution

In the phonon interference setup, the system timing shown
in Fig. 5(a) is divided into four sections with different
pulse durations, driving conditions, and the following initial
conditions:

(1) First, without drive and probe fields (cin,0 = 0, G0 =
0), the mechanical mode undergoes a long free evolution pe-
riod with a duration of t1 to initialize nth and let ncoh generated
in the last experiment completely decays. In this section, it
satisfies the initial conditions, c0(0) = c0

′(0) = 0, m0(0) =
2
γm

Bin, m0
′(0) = (1 − B 2

γm
)Bin, which lead to a solution

of

m0(t ) =
[(

2

γm
− 1

B

)
exp (−Bt ) + 1

B

]
Bin, (A17)

meaning a thermal noise power spectrum of thermal Brownian
motion ( γmnm

�2+γ 2
m/4 ) after enough evolution time (Bt1 � 1) [20].

(2) Next, the system is driven by a pair of pulses con-
sisting of a red detuning pump and a near-resonant probe, as
shown in pulse 1 of Fig. 5(a). In this pulse pair, it satisfies
the initial conditions, c1(0) = 0, c1

′(0) = Ain,1 − iGm0(t1),
m1(0) = m0(t0), m1

′(0) = Bin − Bm0(t1). Here, with cin,1 �=
0, G1 = go

√
nd,1 �= 0, the dynamical evolution of 〈m†

1m1〉
and 〈c†

1c1〉 are shown in light pink shadow area of
Figs. 5(b) and 5(c), respectively. It is noted that, in the sim-
ulation of Figs. 5(b) and 5(c), we select � = 0. It can be seen
that in Fig. 5(b), ncoh represented by the blue line gradually
generates through the OMIT process. Meanwhile, nth depicted
by the red line decreases due to optomechanical backaction
cooling [44]. Accordingly, in Fig. 5(c), the number of coherent
photons in the optical cavity (blue line) gradually decreases
due to its conversion to ncoh while the number of thermal pho-
tons in the optical cavity (red line) also decreases owe to the
reduced nth.

(3) Then, the system enters a period of free evolution
(cin,f = 0, Gf = 0) with a duration of T , after which ncoh

generated in pulse 1 produces a phase ϕ1. Additionally, ncoh1

exponentially decays with a damping rate γm while nth slightly
increases due to the lack of optomechanical backaction cool-
ing, as shown in the light blue shadow area of Fig. 5(b).
However, as shown in the light blue shadow area of Fig. 5(c),
〈c†

f cf〉 decays with a too large damping rate κc � γm so that
we can do an approximation of 〈c†

f cf〉 ≈ 0 in this period.
(4) In the second pulse pairs, as shown in pulse 2 of

Fig. 5(a), the system satisfies the initial conditions, c2(0) =
0, c2

′(0) = Ain2 − iGmf (T ), m2(0) = mf (T ), m2
′(0) = Bin −

Bmf (T ), and driving conditions, cin,2 ≈ cin,1, G2 = go
√

nd,2.
These conditions result in a solution of

m = √
nth

mth

|mth| + √
ncoh1eiϕ1

cin,1

|cin,1| + √
ncoh2eiϕ2

cin,2

|cin,2| .
(A18)
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FIG. 5. (a) The sketch of one train of pulse pairs applied to optomechanical phonon interferometry. �t represents the period of one
experiment. T1, T , and T2, respectively indicate the duration of pulse 1, free evolution, and pulse 2. Before pulse 1, the system undergoes a
long free evolution period to initialize the phonons. The pulses with different colors represent the probe field (yellow) and drive field (red),
respectively. Panels (b) and (c) show the dynamical evolution of 〈m†m(� = 0)〉 and 〈c†c(� = 0)〉, respectively. The simulation parameter
are T1 = 4 µs, T = 5 µs, T2 = 0.2 µs, κc/2π = 880 MHz, κex/κc = 0.27, γm/2π = 8 kHz, nd,1 = nd,3 = 22, go/2π = 800 kHz, 〈c†

in,1cin,1〉 =
〈c†

in,2cin,2〉 = 18 µs−1, and nth = 12.89. Panels (d) and (e) show typical spectra of ncoh1(�)/〈c†
in,1cin,1〉 and ncoh2(�)/〈c†

in,2cin,2〉 at pulse 2. (f)
The minimum values of scale factors of −χ2(�) and χout (�) at pulse 2 (t = T2) change via the coupling efficiency κex/κc. The black dashed
line (κex/κc = 0.5) shows that (χout )min ≈ 1 while the orange dashed line (κex/κc = 0.27) shows the coupling situation of OMCs device used
in the experiment. The inset shows the spectra of scale factors of χ2(�) and χout (�) at κex/κc = 0.27.

Equation (A18) indicates that, in this case, besides the thermal
component (nth), the mechanical motion comprises a coherent
component that includes the terms created by pulse 1 (ncoh1)
and pulse 2 (ncoh2). The coherent component created by dif-
ferent pulses has different phases (ϕ1 �= ϕ2) due to distinct
processes of evolution. Specifically, ncoh1 and ncoh2 present a
Lorentz-like distribution for different ωp,

ncoh1(t ) ≈ κexG2e−(γm+ 4G2

(κc−γm ) )t−γmT

∣∣( κc
2 + i�

)(
γm

2 + i�
)+ G2

∣∣2
× ∣∣1 + e−( γm

2 + 2G2

(κc−γm ) )T1−i�T1
∣∣2〈c†

in,1cin,1〉, (A19)

ncoh2(t ) ≈ κexG2
∣∣1 + e−( γm

2 + 2G2

(κc−γm ) )t−i�t
∣∣2∣∣( κc

2 + i�
)(

γm

2 + i�
)+ G2

∣∣2 〈c†
in,2cin,2〉, (A20)

as shown in Figs. 5(d) and 5(e), respectively. In this approx-
imation, |x2,j|Tj � 1, j = 1, 2, f, so the terms with too quick
decay rate (x2,j) are neglected. The phases of coherent opera-
tors have

ϕ1(t ) ≈ −π

2
+ arg

(
1 + e−( γm

2 + 2G2

(κc−γm ) )T1−i�T1
)

+ �(T + t ), (A21)

ϕ2(t ) ≈ −π

2
+ arg

(
1 + e−( γm

2 + 2G2

(κc−γm ) )t−i�t)
. (A22)

For short enough t , ϕ2(t ) ≈ −π/2, and (ϕ1 − ϕ2) is approxi-
mately �T + ϕo, where

ϕo(�, T1) ≈ arg
(
1 + e−( γm

2 + 2G2

(κc−γm ) )T1−i�T1
)

can be approximated as a constant for a relatively long T1.
Therefore, the phase difference (ϕ1 − ϕ2) changes via differ-
ent � and T . Meanwhile, the strength of amplitude of thermal
operators can be written as

nth(t ) ≈ nm

∣∣ κc
2 (1 − Bνf (T ))e−( γm

2 + 2G2

κa−γb
)t−i�t + A

∣∣2∣∣( κc
2 + i�

)(
γm

2 + i�
)+ G2

∣∣2 , (A23)

where νf (T ) ≈ [−1/B + ν1(T1)] exp(−BT ) + 1/B,

ν1(T1) ≈
κc
2 [1 − Bν0(t0)]e−( γm

2 + 2G2

κc−γm
)T1−i�T1 + A(

κc
2 + i�

)(
γm

2 + i�
)+ G2

,

and ν0(t1) [shown in Eq. (A17)] are respectively the final
strength of amplitudes of thermal operators (mth) for corre-
sponding dynamical evolution sections (2), (1), (0).

Additionally, in this pulse, the analytical solution of the
optical field in the cavity (c2) can be expressed as

c2(t ) = −i
√

Psnth
mth

|mth| − i
√

Psncoh1eiϕ1
cin,1

|cin,1|
− (i

√
Psncoh2eiϕ2 − iCpeiϕ2,o )

cin,2

|cin,2| , (A24)

which represents that the part of intracavity optical fields
originated from the optomechanical scattering of phonons
by a scattering probability Ps ≈ |2G/(κc − γm )|2. Here, the
strength of

Cp ≈

∣∣∣∣∣∣∣

√
κex〈c†

in,2cin,2〉
κc/2 + i�

∣∣∣∣∣∣∣
,
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and ϕ2,o ≈ ϕ2 ≈ −π/2. The term −iCpeiϕ2,o represents the
residual probe field which does not participate in the op-
tomechanical interaction. After defining a scale factor −χ2 ≈
Cp/

√
Psncoh2 − 1 � 1, which is described by the purple line in

Fig. 5(f), the c2 can be simplified as

c2(t ) = −i
√

Psnth
mth

|mth| − i
√

Psncoh1eiϕ1
cin,1

|cin,1|
− i

√
Psncoh2χ2eiϕ2

cin,2

|cin,2| . (A25)

Therefore, during pulse 2, the dynamical evolution of 〈m†
2m2〉

and 〈c†
2c2〉 can be derived:

〈m†
2m2〉 = nth + ncoh1 + ncoh2 + 2

√
ncoh1ncoh2 cos (ϕ1 − ϕ2),

(A26)

〈c†
2c2〉 ≈ Ps

[
nth + ncoh1 + |χ2|2ncoh2

+ 2Re
(
χ2

√
ncoh1ncoh2ei(ϕ1−ϕ2 ))], (A27)

which are respectively shown in the dark pink shadow area of
Figs. 5(b) and 5(c). Note that, in the simulation of Figs. 5(b)
and 5(c), we simply consider the thermal component nth of
mechanical motion using an integral mean thermal phonon
occupation, i.e.,

∫
ωp

nthdωp. Our detection system cannot dis-
tinguish nth with different frequencies, in other words, nth of
all frequency, need to be considered when we calibrate the
phonon population at any ωp. For the sake of simplicity, we
still depict this integral mean thermal phonon occupation as
nth in the following description.

3. Phonon interference on photon count rate

As mentioned earlier, the phase difference of (ϕ1 − ϕ2) ≈
�T + ϕo varies periodically from 0 to 2π as � or T changes,
which leads to an interference fringe of the (coherent) phonon
population via � or T , i.e., the phonon interference. To mea-
sure these interference fringes of 〈m†

2m2〉, the output optical
signal field (cout) is considered. According to the input-output
theory, cout = cin − √

κexc, the output signal field in pulse 2
can be generally written as

cout = i
√

κexPsnth
mth

|mth| + i
√

κexPsncoh1eiϕ1
cin,1

|cin,1|

+ (1 − i
√

κexCpeiϕ2,o + i
√

κexPsncoh2eiϕ2 )
cin,2

|cin,2| .
(A28)

It is worth noting that when the OMCs device is near critical
coupling, i

√
κexCpeiϕ2,o ≈ 1,

cout ≈ i
√

κexPsm2, (A29)

which indicates that cout has the same characteristics as m2.
When an OMC device is over- or undercoupled, we define

χout ≈ 1 − Cp√
Psncoh2

+ 1√
κexPsncoh2

,

which is described by the orange line in Fig. 5(f), then

cout ≈ i
√

κexPsnth
mth

|mth| + i
√

κexPsncoh1eiϕ1
cin,1

|cin,1|
− i

√
κexPsncoh2χoute

iϕ2
cin,2

|cin,2| , (A30)

and the number of output signal photons can be derived,

〈c†
outcout〉 ≈ κexPs

[
nth + ncoh1 + |χout|2ncoh2

+ 2Re
(
χout

√
ncoh1ncoh2ei(ϕ1−ϕ2 ))], (A31)

where the visibility of the interference of 〈c†
outcout〉 is amplified

by a factor

χout ≈ 1 − Cp√
Psncoh2

+ 1√
κexPsncoh2

from the visibility of the interference of 〈m†
2m2〉. Meanwhile,

when the OMC device is undercoupled (overcoupled), the
interference fringes of 〈c†

outcout〉 is consistent (contrary) with
the interference of 〈m†

2m2〉, as shown in the pink (green) line
of Fig. 6.

The simulation of a 2D phonon interference fringes
of 〈c†

outcout〉 via � and T with nth(t = T1 + 5µs) =
12.89, ncoh/nth(t = T1 + 5 µs,� = 0) = 3.26 (〈c†

in,1cin,1〉 =
〈c†

in,2cin,2〉 = 93 µs−1), κc/2π = 880 MHz, κex/κc = 0.27,
γm/2π = 8 kHz, nd,1 = nd,2 = 22, go/2π = 800 kHz, T1 =
4 µs, T2 = 0.4 µs are calculated and shown in Fig. 3(a) of
the main text. The distinct spectral oscillations observed in
Fig. 3(a) demonstrate the phonon fringes. The increase in
time T leads to a decreased period of the phonon fringe,
which is expected by the previous theoretical derivation, i.e.,
(ϕ1 − ϕ2) ≈ �T + ϕo.

We can derive the interference visibility on normalized
photon count rates, as it satisfies the conditions: κc � γm,�,

Vcount = (Imax − Imin)/(Imax + Imin)

= ncoh,�=0,t=T1+T /nth(ζ�1 − ζ�2 )

2 + ncoh,�=0,t=T1+T /nth(ζ�1 + ζ�2 )
, (A32)

where ncoh,�=0,t=T1+T /nth can be experimental calibration (as
described in Sec. II), η = κex/κc, C = 4G2/κcγm, and

ζ�(γm,C, t, T, T1, 〈c†
in,1cin,1〉, 〈c†

in,2cin,2〉)

= ncoh1 + |χout|2ncoh2 + 2Re(χout
√

ncoh1ncoh2ei(ϕ1−ϕ2 ) )

ncoh,�=0,t=T1+T

≈ (1 + C)2

e−γm (1+C)T1−γmCT (1 + e− γm
2 (1+C)T1 )2

⎧⎨
⎩

e−γm (1+C)t−γmT
∣∣1 + e− γm

2 (1+C)T1−i�T1
∣∣2∣∣1 + C + i 2�

γm

∣∣2
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CORRELATION MEASUREMENT OF FEW-PHONON … PHYSICAL REVIEW A 109, 033523 (2024)

+

⎡
⎢⎣1 −

∣∣1 + C + i 2�
γm

∣∣
C
∣∣1 + e− γm

2 (1+C)t−i�t
∣∣
⎛
⎜⎝1 − 1

2η

√
〈c†

in,2cin,2〉

⎞
⎟⎠
⎤
⎥⎦

2 ∣∣1 + e− γm
2 (1+C)t−i�t

∣∣2∣∣∣1 + C + i 2�
γm

∣∣∣2
〈c†

in,2cin,2〉
〈c†

in,1cin,1〉

+ 2

⎡
⎢⎣1 −

∣∣1 + C + i 2�
γm

∣∣
C|1 + e− γm

2 (1+C)t−i�t |

⎛
⎜⎝1 − 1

2η

√〈
c†

in,2cin,2
〉
⎞
⎟⎠
⎤
⎥⎦
∣∣1 + e− γm

2 (1+C)T1−i�T1
∣∣∣∣∣1 + C + i 2�

γm

∣∣∣2

×∣∣1 + e− γm
2 (1+C)t−i�t

∣∣e− γm (1+C)t+γm T
2

√√√√ 〈c†
in,2cin,2〉

〈c†
in,1cin,1〉

cos (�T + ϕo)

⎫⎪⎬
⎪⎭. (A33)

As shown in Eq. (A29), for given γm, C, t , T , T1, 〈c†
in,1cin,1〉,

〈c†
in,2cin,2〉, ζ� is just a function of �, and we denote ζ�1 (ζ�2 )

as the maximum (minimum) value for all of �. Therefore,
we can extract the interference visibility Vcount by Eq. (A28).
Furthermore, in our experiment, we have also studied the
interference visibility with the same approach for another
γm, C. In fact, for a determined device, κc and go are

constants, thus we can denote that C = 4g2
ond

κcγm
= C(γm, nd ).

In total, in this paper, we can describe the interference
visibility on normalized photon count rates as Eq. (A28)
in which Vcount = Vcount (ncoh,�=0,t=T1+T /nth, γm,C) = Vcount

(ncoh,�=0,t=T1+T /nth, γm, nd ) for a given t , T , T1, 〈c†
in,1cin,1〉,

〈c†
in,2cin,2〉.

4. Phonon interference on the second-order correlation function

Different from classical optomechanical phonon
interferometry [16], where ncoh is so large that nth is generally

negligible, in this single-phonon-level optomechanical
phonon interferometry, ncoh and nth are closer. Therefore, for
different � or T , the interference fringes of ncoh can result
in considerable interference fringes in the ratio of nth/ncoh.
However, due to the different quantum statistical properties
of ncoh and nth, the interference fringes in the ratio value
of nth/ncoh lead to density correlation interference fringes.
The density correlation of phonons can be indicated by the
second-order correlation functions

g(2)(τ ) = 〈m†(0)m†(τ )m(τ )m(0)〉
〈m†(0)m(0)〉 .

While the phonons generated from different (τ �= 0) pulse se-
quences are uncorrelated, g(2)(τ ) = 1. Therefore, only g(2)(0)
is considered. There are the four order relationships:

〈c†
incinc†

incin〉 = 〈c†
incin〉2 + 〈c†

incin〉, (A34)

〈m†
thmthm†

thmth〉 = 2n2
m + nm. (A35)

FIG. 6. Phonon interference fringes with simulation parameter: κex/κc = 0.27, 0.50, 0.80 (respectively shown by the pink, black, and
green line), and κc/2π = 880 MHz, γm/2π = 8 kHz, nd,1 = nd,2 = 22, go/2π = 800 kHz, T1 = 4 µs, T = 5 µs, T2 = 0.8 µs, nth = 12.89,
〈c†

in,1cin,1〉 = 〈c†
in,2cin,2〉 = 8 µs−1. The upper panel is the RI fringes in the population for (a) phonons, (b) output signal photons, and

(c) intracavity photons. The bottom panel is the corresponding RI fringes on second-order correlation functions g(2)(0).
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Therefore, substituting Eq. (A18), g(2)(0) can be calculated:

g(2)(0) = 1 + n2
th + 2(ncoh1 + ncoh2)nth

〈m†
2m2〉2

+ 4
√

ncoh1ncoh2 cos (ϕ1 − ϕ2)nth

〈m†
2m2〉2

, (A36)

which can be simplified to

g(2)(0) = 1 + n2
th + 2ncohnth

(nth + ncoh )2 = 2 − 1(
1 + nth

ncoh

)2 , (A37)

where ncoh = ncoh1 + ncoh2 + 2
√

ncoh1 ncoh2 cos (ϕ1 − ϕ2).
Equation (A37) shows that the interference fringes of the
second-order correlation functions g(2)(0) are negatively cor-
related with the interference fringes of ncoh (or 〈m†

3m3〉), which
can be observed respectively in the bottom panel and upper
panel of Fig. 6. Using Eq. (A30), this interference fringes in
the density correlation of the phonons can be mapped to the
counterpart of output signal photons. The corresponding sim-
ulation of 2D phonon interference fringes of g(2)(0) of output
signal photons is calculated and shown in Fig. 3(b) of the main
text, which has a contrary interference fringe with Fig. 3(a).
Note that this derivation of g(2)(0), which contains both the
coherent and thermal components, is in good agreement with
the corresponding results in Ref. [45].

Similarly, we can derive the interference visibility on
g(2)(0) when it satisfies the conditions κc � γm,�:

Vg(2) (0) = [g(2)(0)]max − [g(2)(0)]min

[g(2)(0)]max + [g(2)(0)]min

=

⎡
⎢⎣ 1(

1 + nthζ
−1
�1

ncoh,�=0,t=T1+T

)2
− 1(

1 + nthζ
−1
�2

ncoh,�=0,t=T1+T

)2

⎤
⎥⎦

×

⎧⎪⎨
⎪⎩4 − 1(

1 + nthζ
−1
�1

ncoh,�=0,t=T1+T

)2

− 1(
1 + nthζ

−1
�2

ncoh,�=0,t=T1+T

)2

⎫⎪⎬
⎪⎭

−1

. (A38)

Through Eq. (A34), we similarly have

Vg(2) (0) = Vg(2) (0)

(
ncoh,�=0,t=T1+T

nth
, γm, nd

)

for a given t , T , T1, 〈c†
in,1cin,1〉, and 〈c†

in,2cin,2〉.
In conclusion, we can simultaneously obtain the infor-

mation of both nth + ncoh and nth/ncoh by the intensity and
correlation measurements. Especially for the quantum states,
where g(2) � 1 or �1, the second-order correlation value of
the Ramsey interference will oscillate wildly from the mini-
mum to maximum, which will bring huge advantages in the
field of quantum precision sensing.

APPENDIX B: EXPERIMENTAL RESULTS

1. Fabrication

The devices were patterned by e-beam lithography (EBL)
with ARP6200 09 resist on a silicon-on-insulator (SOI) wafer
from SOITEC (resistivity 10–20 � cm, device layer thick-
ness 220 nm, buried-oxide layer thickness 2 µm). Following
the development of the pattern, the film was etched with a
C4F8/SF6-based gas in an inductively coupled plasma (ICP)
etcher. The Si device layer was then masked using AZ4620
photoresist to define a mesa region of the chip to which a
tapered lensed fiber can access. Outside of the protected mesa
region, the buried oxide was removed with a plasma etch
and a trench is formed in the underlying silicon substrate
using a deep silicon etching process. The devices were then
released in vapor hydrofluoric using HF-Etching-SPTS-uEtch
and cleaned in a piranha solution (3 : 1 H2SO4 : H2O2) before
a final hydrogen termination in diluted HF (1% aqueous HF
solution).

2. Calibration of mean thermal photon occupations
and coherent phonon occupations

To experimentally determine the mean thermal phonon
occupation nth(t = T1 + T ) and coherent phonon occupa-
tions ncoh(� = 0, t = T1 + T ) for the optomechanical phonon
interferometry, we performed a series of calibration measure-
ments with different driving regimes. First, we sent trains of
alternating blue- or red-detuned optical pulses (≈ωc ± ωm)
with a duration of 40 ns to the OMC device, as shown in the

FIG. 7. Calibration of the mean thermal phonon occupations
and coherent phonon occupations. (a) Sketch of one train of pulse
pairs applied to calibrate (I) nth,0 that thermalizes at cryogenic
temperatures, (II) nth (t = T1 + T ) after implementing an additional
red-detuning driving pulse, (III) ncoh(� = 0, t = T1 + T ). (b) The
ratio ncoh(� = 0, t = T1 + T )/nth (t = T1 + T ) via the weak rf input
power of the EOM with nth (T1 + T ) = 12.89, where T1 = 4 µs and
T = 5 µs. Panels (c) and (d) respectively show the corresponding
g(2)(τ ) of the points A and B in panel (b). The red lines indicate
the theory value of g(2)(0) from Eq. (A6) using the calibrated ratio
ncoh/nth from panel (b).
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upper panel I of Fig. 7(a). From the asymmetry in count rates
of these two processes, we can calculate the nth,0 that ther-
malizes at cryogenic temperatures [46]. The results are shown
in Fig. 2(d), corresponding to a mean thermal occupation of
nth,0 = 0.071 ± 0.008. Note that the tunable laser is a Toptica
CTL 1550, and the filter used here is a Micron Optics, FFT-
TF2. In the bottom panel II of Fig. 7(a), after implementing
an additional red-detuning (ωc − ωm) driving pulse (with a
duration of T1) to mimic the same heating conditions as in
the experiment, we further calibrate nth(t = T1 + T ) using
phonon counting technology [42]. Specifically, in one train,
a second red-detuning optical pulse with a duration of 40 ns,
which is T behind the additional driving pulse, is next sent
to the device. In this case, the count rate of the anti-Stokes
process in the second pulse is proportional to nth(t = T1 + T )
with a scaling factor of �antiStokes. While the peak power and
duration of the second pulse in the bottom panel II of Fig. 7(a)
are the same as those in the upper panel I of Fig. 7(a), the
scaling factor �antiStokes is also the same [42]. Therefore, by
using �antiStokes derived from nth,0, nth(T1 + T ) = 12.89 is cal-
ibrated, where T1 = 4 µs and T = 5 µs.

Finally, the calibration of ncoh(� = 0, t = T1 + T ) for
the optomechanical phonon interferometry is conducted.
As shown in the right panel III of Fig. 7(a), for the
preparation of coherent phonons, an additional probe pulse

(� = 0) with the same duration of T1 is sent to the device.
The probe pulses are blue-detuned with drive pulses modu-
lated by the EOM. Through OMIT technology, the tunable
ncoh(� = 0, t = T1 + T ) can be nearly linearly controlled by
changing the weak rf input power of the EOM. To calibrate
the total phonon occupation (including nth and ncoh), similarly,
in one train, a second red-detuning optical pulse (40 ns, T
behind the first pulse) is sent to the device. ncoh(� = 0, t =
T1 + T ) is calculated by subtracting nth from the total phonon
occupation, where the heating effect of a very weak probe
is neglected. As a result, the count rate of the anti-Stokes
process at the second pulse is proportional to the weak rf
input power of the EOM, as shown in Fig. 7(b). To further
determine ncoh(� = 0, t = T1 + T ), the second-order correla-
tion function g(2)(τ ) of the scattered photons from the second
red-detuning optical pulse is experimentally performed to de-
termine the ratio ncoh(� = 0, t = T1 + T )/nth(t = T1 + T ).
The corresponding g(2)(τ ) of points A and B in Fig. 7(b)
are shown in Figs. 7(c) and 7(d), respectively. The red lines
indicate the theory value of g(2)(0) from Eq. (A6) using the
ratios ncoh/nth calibrated as described above. The theory value
of g(2)(0) and experimental g(2)(0) are entirely consistent.
Note that the measurement of g(2) needs a sufficient number
of events, otherwise, it will lead to fluctuations similar to
Fig. 7(d).
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