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Padé approximants of the Born series of electromagnetic scattering by a diffraction grating
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We present the realization of a vectorial perturbation method based on the Born series applied to strong
electromagnetic scattering problems. We present the general theoretical formalism and show a semianalytical
implementation for scattering by diffraction gratings. We are particularly interested in the strong scattering
regime, where the Born series is known to wildly (namely, exponentially) diverge. By applying Padé approx-
imation to the vectorial Born series, we are able to obtain accurate results from divergent Born series. The
method we present has the inherent benefit of being close to the actual physical mechanism behind the formation
of a scattered signal, as the solution is built step by step from a sequence of multiple-scattering events. This helps
in the understanding of signal formation, which is a key element in inverse scattering problems that are relevant
to optical metrology, among others.
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I. INTRODUCTION

The analysis of periodic structures is important in a va-
riety of fields: metrology in the semiconductor industry,
photovoltaic applications, spectroscopy, and more [1–3]. The
diffractive properties of periodic structures, such as diffrac-
tion efficiencies, can be analyzed using tools that solve the
forward electromagnetic scattering problem. There are many
tools, ranging from general numerical methods, such as the
finite-element method (FEM) or the finite-difference time-
domain method, to specific numerical methods for periodic
media such as the transfer- and scattering-matrix method [4,5]
and rigorous coupled-wave analysis (RCWA) [6]. Most of
these methods have been extensively studied and they have
been extended to handle many different cases. On top of that,
numerical issues have effectively been addressed throughout
the years, such as the convergence of Fourier series in RCWA
[7,8]. In general, however, these methods lack giving the user
insight into how the underlying physical mechanisms gener-
ate the scattered signal. In a sense, they often are black-box
solvers that yield the solution at once without giving an indi-
cation of what part of the structure would have contributed to
what part of the signal.

A different way to approach scattering problems is by using
perturbation methods. Perturbation methods such as the Born
series give more insight in the scattering process because in
building the approximation the relevance of different scatter-
ing orders is automatically obtained. Moreover, perturbation
theory has the advantage that it turns a complicated problem,
which requires solving a large system of coupled equations,
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into a sequence of much simpler problems which are straight-
forward to solve. In other words, one starts with the known
solution to an approximate unperturbed problem and adds
corrections to it to increasingly approach the solution of the
actual problem. Each correction describes a certain type of
interaction between the perturbation and the solution of the
unperturbed problem, which for electromagnetic scattering is
a type of scattering event.

The process of higher-order scattering, i.e., scattering be-
yond the first Born approximation, can be interpreted as
equivalent to near-field illumination, where the near field is
the scattered field due to the incident field or due to the scat-
tered field of one order less. Such near-field illumination can
have high spatial frequencies and if these spatial frequencies
also have high amplitude this can lead to the scattered far field
being sensitive to subwavelength features in the sample, i.e.,
to superresolution.

Regarding the computation of the Born series, the series
rarely converges in cases of practical interest, which severely
limits its application. Overcoming the (often wild) divergence
has thus been a subject of research. For instance, Osnabrugge
et al. developed a modified Born series with guaranteed
convergence [9], which has further been applied to inverse
problems and extended to the vector and the anisotropic case
[10–12]. Although convergence is guaranteed, it inherently
needs a large computational domain extending beyond the
scattering objects, which in practice can lead to high computer
memory usage. Other approaches to deal with the divergence
have been explored as well [13,14]. For instance, the change
of variables made in Ref. [13] effectively reshuffles the terms
of the Born series to make it convergent. However, there is no
clear procedure for choosing the parameter used in the change
of variables.

In previous work of ours, we chose to retain the original
Born series, but used Padé approximation to extract the solu-
tion from the series [15,16]. Even in cases of divergence, the
approximants were able to represent the solution accurately.
We considered scalar scattering only, and thereby tested the
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method on two analytical problems for which the scalar de-
scription is rigorous. The method has been applied by other
authors as well, for instance, to the problem of scattering by
an inhomogeneous dielectric slab, where it was used to find
transmission and reflection coefficients instead of the electric
field on a grid [17,18]. These investigations of the Born-Padé
method have also been limited to scalar scattering problems.

It is important to note that, although the Padé approximant
has to be computed for all points of a sufficiently fine mesh
inside the scattering objects, these computations are simple
and can be done easily in parallel and that there is no large
system of linear equations to be solved, as is the case in all
other rigorous methods for solving scattering problems.

In this work we present the fully vectorial formulation of
the Born series applied to the vectorial Lippmann-Schwinger
equation. More specifically, we consider the scattering from
one-dimensional (1D) periodic structures for which we extend
the Born-Padé method from a scalar to a vectorial formulation.
By exploiting the periodicity of the problem, we derive a
specific implementation of the vectorial recurrence relation
for the terms in the Born series. Different formulations of the
vector Born series have been presented before [19].

A forward model that incorporates multiple-scattering ef-
fects can be of interest for inverse problems. Experiments
such as by Simonetti [20] have shown that subwavelength
structures can be observed by accounting for multiply scat-
tered waves. If multiple scattering is ignored, i.e., when
using the single-scattering or first Born approximation, the
resolution becomes diffraction limited. For example, the
single-scattering approximation is used in ptychography
where it is also called the multiplicative approximation.
Examples where multiple scattering is used to achieve sub-
wavelength resolution can be found in Refs. [21–25]. A major
reason for sticking to the first Born approximation is speed,
because in an inverse problem often the forward problem has
to be solved many times.

We formulate the vector Born series and show how to
apply Padé approximation to the vector series in Sec. II.
We develop a semianalytical implementation for 1D periodic
structures in Sec. III. The method handles many cases: s or
p polarization, classical or conical incidence, and dielectrics
or metals. We present simulation results for two gratings in
the strong-scattering regime in Sec. IV. We summarize and
discuss our conclusions in Sec. V.

II. VECTOR BORN-PADÉ METHOD

We are interested in scattering by an object which has
isotropic relative permittivity εr (r) and which can be spatially
inhomogeneous. The object is spatially bounded, though it
can also be infinitely periodic in one or more dimensions.
The scatterer is surrounded by a homogeneous background,
which we choose to be vacuum or air (εr = 1); k0 is the wave
number in the homogeneous background. Furthermore, no
free charge sources are present. We consider time-harmonic
electromagnetic fields with time dependence e−iωt (which we
will not explicitly write in all formulas from now on), where
ω > 0 is the angular frequency. We allow εr to be complex
with a positive imaginary part. Also, we assume negligible
magnetization at optical frequencies so that μr = 1.

In the scalar forward problem, (a component of) the electric
field U satisfies the Helmholtz equation(∇2 + k2

0

)
U (r) = −k2

0�εr (r)U (r), (1)

where �εr (r) = εr (r) − 1 is the relative permittivity contrast
with respect to the homogeneous background (so outside the
scatterer it vanishes). The scalar description is rigorous in
certain problems only, e.g., scattering by an infinitely long
cylinder [26]. For others, its use is often motivated by Born
and Wolf’s argumentation [27]. It starts by considering

∇2E(r) + k2
0εr (r)E(r) + ∇[E(r) · ∇ ln εr (r)] = 0, (2)

which can be derived from Faraday’s and Gauss’s laws. If the
permittivity varies slowly enough, the last term on the left
is negligible. However, as soon as the permittivity makes a
jump at an interface between two materials, this reasoning
cannot hold, as the gradient of the permittivity will generate a
δ function. Only when the electric field is perpendicular to
the normal of the interface is the term zero. Thus, as long
as there is a jump in the permittivity and the possibility of
oblique incidence, the vectorial formulation is required. For
scattering by a diffraction grating, this term is zero for a
TE-polarized incident plane wave in a classical mount, for
which the electric field is polarized along the grating grooves.
In a conical mount, this term is not generally zero and thus a
rigorous description is necessarily vectorial.

We can derive an equation similar in structure to Eq. (1) for
the vector case, containing the electric field E and the vector
potential A as unknowns. If we were to apply perturbation
theory in the scalar case, we would expand the field U (r) as a
power series. For the vector case, we will expand both E and
A as a power series.

A. Vector Born series

First, we define the vector potential for the H field instead
of the B field, which is possible because we neglect magneti-
zation:

∇ × A(r) = H(r). (3)

For a homogeneous medium, it can be shown that each of
the Cartesian components of A(r) satisfies the homogeneous
Helmholtz equation [28,29]. In the inhomogeneous case of an
object placed in vacuum or air, we can derive that(∇2 + k2

0

)
A(r) = iωε0�εr (r)E(r). (4)

The reader can refer to Appendix A for details of the deriva-
tion of Eq. (4). We observe that the components in Eq. (4)
are decoupled from each other while the right-hand side acts
as a source. Just as the scalar Helmholtz equation (1) has an
integral solution, namely, the Lippmann-Schwinger equation,
Eq. (4) also has an integral solution. This solution is in terms
of a convolution of the scalar free-space Green’s function
G0(r; r′) with the induced current density

A(r) = A(i)(r) − iωε0

∫
G0(r; r′)�εr (r′)E(r′)d3r′, (5)
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where A(i) is the vector potential of the incident field [a ho-
mogeneous solution of Eq. (4)] and G0(r; r′) is

G0(r; r′) = eik0|r−r′ |

4π |r − r′| . (6)

The second term on the right-hand side of Eq. (5) is the vector
potential A(s) of the field scattered by the object. Thus, the
vector potential of the total field A(r) is the sum of that of the
incident and the scattered field. We see that A(s) depends on A
itself through E under the integral.

When using perturbation theory to solve Eq. (5), one uses
the incident field as an initial solution and adds corrections
to it to increasingly approach the exact solution. The series
that is formed by the initial solution plus the corrections is
the Born series. Mathematically, the series can be obtained by
introducing a dummy (unitless) parameter σ . First, we insert σ
in Eq. (4) by multiplying the source on the right-hand side by
σ . The perturbation in our problem is this right-hand side term
whose strength can be tuned by varying σ . If we set σ = 0, we
get the unperturbed problem of the homogeneous background,
while σ = 1 gives the problem that we are eventually inter-
ested in. Second, we simultaneously expand E(r) and A(r) as
power series in σ :

E(r) =
∞∑

�=0

E�(r)σ �, A(r) =
∞∑

�=0

A�(r)σ �. (7)

This is different from the scalar case, where we would only
expand in series one field U (r). We substitute these represen-
tations of E(r) and A(r) in Eq. (5). Collecting equal powers of
σ , we obtain a set of equations for the terms in each series. The
zeroth-order terms are E(i)(r) and A(i)(r), which are related
through the relation

E(i)(r) = iωμ0A(i)(r) − 1

iωε0
∇[∇ · A(i)(r)]. (8)

For the higher-order terms (� � 0) we find the two-step recur-
rence relation

A�+1(r) = −iωε0

∫
r′

G0(r; r′)�εr (r′)E�(r′)d3r′, (9)

E�+1(r) = iωμ0A�+1(r) − 1

iωε0
∇[∇ · A�+1(r)]. (10)

We can thus compute the (� + 1)st order by first calculating
A�+1 from E� and then calculating E�+1 from A�+1. We start
the recurrence with E(i), which we recall is the electric field of
the incident plane wave. Finding A(i) is not necessary, because
all higher-order terms can be computed starting from E(i).
We see that A�+1 can be calculated componentwise from E�

with Eq. (9) because no mixing between different Cartesian
components occurs. When calculating E from A with Eq. (10),
components mix due to the double derivative.

The use of both E and A in the Born series has the advan-
tage, as in the scalar case, that the integration is a convolution
with the scalar Green’s function, which has a 1/r singularity.
Our derivation thus does not need the dyadic Green’s function,
which has a 1/r3 singularity (although that singularity could
be integrated analytically [30]). On the other hand, the dou-
ble derivative still can cause trouble by creating singularities
when computing the derivatives.

We note that the recurrence relation in Eqs. (9) and (10)
can be combined into a single calculation step, such that E�+1

can directly be calculated from E�,

E�+1(r) =
(

iωμ0I − 1

iωε0
∇∇

)
A�+1(r) (11a)

= (
k2

0I + ∇∇) ∫
r′

G0(r; r′)�εr (r′)E�(r′)d3r′,

(11b)

where I is the unit dyad. Still, we prefer to explicitly show
the step through the vector potential A�+1 because it better
clarifies at which phase of the scattering process the mixing
of the components of the electric field (namely, depolarization
effects) actually takes place, given a certain input polarization
of E(i).

Some notes on the properties and the validity of the pre-
sented Born series follow. Objects can be either bounded or
infinitely periodic along one or several Cartesian coordinates.
Perfect electric conductors cannot be handled, as it would not
be possible to perform the integration in Eq. (9) for infinite
permittivity, except when the perfect conductor can be taken
into account in the Green’s tensor. Furthermore, the derived
formalism satisfies the Lorenz gauge, which makes it auto-
matically Lorentz invariant [31].

B. Padé approximation

When applied to actual cases of interest, the Born series
often diverges. In that case, one can still obtain a valid solution
by resorting to Padé approximants, as presented in Ref. [15].
In short, instead of simply adding up the terms of the series
one by one, one computes Padé approximants of the Born
series. The definition of a Padé approximant of order M/N is

PM
N (r, σ ) =

∑M
m=0 Am(r)σ m

1 + ∑N
n=1 Bn(r)σ n

, (12)

where the Padé coefficients Am and Bn are in total M + N + 1
unknowns. The idea is to match two representations of the
solution, the Born series and the Padé approximant, inside
the sufficiently small disk in the complex plane of σ where
both the Born series and the Padé approximants converge.
This yields a system of equations for computing the Am and
Bn coefficients from the first M + N + 1 terms of the Born
series. In other words, we compute the Am and Bn coefficients
of PN

M such that it is identical to the first M + N + 1 terms of
the Born series. For more background information on Padé
approximation, see Ref. [32]. For details on how we compute
the Am and Bn coefficients, refer to our previous paper [15].
We only consider symmetrical Padé approximants, those with
a numerator and denominator of the same order [32], i.e., we
choose M = N . In the end we have to set σ = 1 in the approx-
imants to obtain the approximate solution to our problem.

In the present problem, the terms of the Born series are
vectors. Still, the series is a componentwise summation, so
we calculate Padé approximants for every component of E in-
dividually. The computational load thus increases by a factor
of 3 compared to the scalar case. If some component of the
incident E field is zero, it is possible that all the other terms
of this component in the Born series are also zero. We then
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skip the Padé approximation of that component to reduce the
computational load. Moreover, it is important to note that,
although the Padé approximants have to be computed for
sufficiently many points inside the scattering objects, each of
these computations is simple and no large system of linear
equations has to be solved.

For the convergence of Padé approximants there is no gen-
eral rigorous theory, like there is for Taylor series. So-called
Stieltjes series are the exception, for which it is guaran-
teed that the sequences of approximants PN

N and PN
N+1 have

a limit for N → ∞. Moreover, they decrease and increase
monotonically, thus giving upper and lower bounds to the ap-
proximation, respectively [32]. If the limits are equal, the limit
is a unique Stieltjes function. The coefficients of a Stieltjes
series must be real, but since the Born series is generally com-
plex valued, one should look at the real and imaginary parts
of the Born terms separately to determine whether the series is
of the Stieltjes type. In general, the Born series is not a Stielt-
jes series, since it is possible to show a counterexample for
scattering by a 1D slab, which has an analytical solution and
where the real part of the Born terms is not a Stieltjes series.

III. APPLICATION TO A 1D PERIODIC GRATING

The vector Born series can be further developed for the
important case of 1D periodic structures. We will derive a
specific implementation of the recurrence relation in Eqs. (9)
and (10) by exploiting the periodicity of the problem, by
which the permittivity and the electric field can be represented
as a Fourier series. Because of the periodicity in x and the in-
variance of the problem in y, the 3D integral in Eq. (9) reduces
to a sum of 1D integrals, as we will show. Multiple steps in
the computation are done analytically, such as the derivatives
in Eq. (10), which prevents potential numerical problems.

A. Scope of the 1D periodic problem

Consider a structure which, with respect to a Cartesian co-
ordinate system (x, y, z), is infinitely periodic along x with pe-
riod p and invariant along y. Along z, the structure is bounded;
it is contained within zmin < z < zmax. The structure can have
an arbitrary, finite-value complex relative permittivity profile
εr (x, z) within the unit cell, so besides homogeneous stratified
and grating layers also gradient index layers are allowed. In
any case, the structure should be surrounded by the same
lossless background medium above and below. If the back-
ground medium were different above and below the grating,
one could accommodate the Green’s function for it, but that
is outside the scope of this paper. Figure 1 schematically
shows an example of a grating consisting of multiple layers
and the defined coordinate system. The z coordinate increases
downward (as we consider the incident field to be propagating
downward), and because the x coordinate increases to the
right, the y coordinate increases out of the paper.

A plane wave of wavelength λ in vacuum is scattered by
the grating. It has spatial frequency q0 = 1/λ and real wave

FIG. 1. Unit cell of an example of a diffraction grating with the
definition of the coordinate system (x, y, z). The +y direction points
out of the paper. Although this example is piecewise homogeneous,
gradient-index media are also allowed

vector q(i) = (q(i)
x , q(i)

y , q(i)
z ), where

qz =

⎧⎪⎨
⎪⎩

√
q2

0 − q2
⊥, q⊥ � q0

i
√

q2
⊥ − q2

0, q⊥ > q0,

(13)

with q⊥ =
√

q2
x + q2

y . The plane wave has a polarization
given by the polarization unit vector ê(i)(q(i)

x , q(i)
y ). For an s-

polarized plane wave we define the electric field perpendicular
to the plane of incidence, i.e., perpendicular to the (x, z) plane.
The electric field of a p-polarized plane wave lies in the plane
of incidence. Their polarization unit vectors are, respectively,

ês(qx, qy) =
(

qy

q⊥
,
−qx

q⊥
, 0

)
for q⊥ �= 0, (14)

êp(qx, qy) = λ

(−qxqz

q⊥
,
−qyqz

q⊥
, q⊥

)
for q⊥ �= 0. (15)

For normal incidence (q⊥ = 0), we define the two as ês =
(0,−1, 0) and êp = (−1, 0, 0). For reference, for a clas-
sical mount (qy = 0) we have ês = (0,−1, 0) and êp =
λ(−qz, 0, qx ). All in all, the electric field of an s- or a p-
polarized plane wave with amplitude W (i) is written as

E(i)(r) = W (i)ei2πq(i)·r ê(i)
(
q(i)

x , q(i)
y

)
. (16)

B. Periodicity and diffraction orders

Next we look at how the periodicity of the problem in
x determines the form of the solution. The Floquet-Bloch
theorem states that the solution is pseudoperiodic in x, i.e.,
it is periodic up to a phase factor eiαx, where α = 2πq(i)

x is de-
termined by the incident wave vector [28]. The Floquet-Bloch
theorem holds more generally for an incident field that is
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pseudoperiodic, i.e., periodic except for a phase factor. Fur-
thermore, the periodic permittivity contrast can be represented
by a Fourier series with Fourier coefficients �ε(m)

r (z):

�εr (x, z) =
∞∑

m=−∞
�ε(m)

r (z)ei2πxm/p. (17)

It is easy to see that also every term in the Born series is
pseudoperiodic in x, i.e.,

E�(r) =
∞∑

m=−∞
E(m)

� (z)ei2π (q(i)
x +m/p)xei2πq(i)

y y, (18)

also satisfying the Floquet-Bloch theorem. This reduces our
problem of computing the Born series to finding Fourier coef-
ficients E(m)

�+1(z) given E(m)
� (z) for every � � 1.

Higher-order Born terms (higher than the two lowest
terms) can be considered to be generated by an illuminating
field given by the highest preceding Born term. The latter
contains high spatial frequencies in the near field because
of the presence of the scattering object. If these high spatial
frequencies have high amplitude as in the case of a (near)
resonance, then this local illumination can cause that high-
spatial-frequency information about the scatterer to influence
the scattered far field, i.e., it can cause superresolution.

C. Born recurrence relation

We will now derive an expression for computing the
Fourier coefficients E(m)

�+1(z) given E(m)
� (z). Starting from the

general recurrence relation (9) and (10), we observe that the
integral in Eq. (9) is a convolution of the Green’s function
with the product �εrE�. In our method, we will evaluate
the integral in discrete Fourier space, so we need to find the
Fourier coefficients of �εrE� first. We can either compute
the Fourier coefficients of �εr and E� separately and get the
Fourier coefficients of the product by convolution in Fourier
space or multiply the two in real space and then directly get
the Fourier coefficients of the product. The former option
would require the appropriate convolution rule as we deal
with discontinuous functions [8]. We therefore choose the
latter option and directly expand �εrE� at the beginning of
each Born iteration. Since for every z, x 	→ �εr (x, z)E�(r) is

pseudoperiodic, there exist coefficients c(m)
� (z) such that

�εr (x, z)E�(r) =
∞∑

m=−∞
c(m)
� (z)ei2π (q(i)

x +m/p)xei2πq(i)
y y. (19)

The coefficients are computed numerically at the beginning
of every Born iteration given the output E�(r) of the previous
iteration step. For the incident plane wave we have c(0)

0 (z) =
W (i)e(i) and c(m)

0 (z) = 0 for |m| > 0.
To evaluate the integral over the Fourier components, we

use the Weyl expansion to expand the Green’s function in
plane waves [33]:

G0(r; r′) = 1

4π

∫∫
i

qz
ei2π[qx (x−x′ )+qy (y−y′ )+qz |z−z′ |]dqxdqy.

(20)

This will reduce the 3D integration in Eq. (9) to a 1D integral
over z, a Fourier sum in x, and no summation in y. The rest of
the derivation of the Born recurrence relation is done in Ap-
pendix B; we will only state the final result here. Before we do
that, we define some wave-vector quantities for every diffrac-
tion order m: qxm = q(i)

x + m/p, qy = q(i)
y , q⊥m = qxmx̂ + qyŷ,

and

qzm =

⎧⎪⎨
⎪⎩

√
q2

0 − q2
xm − q2

y , q2
xm + q2

y � q2
0

i
√

q2
xm + q2

y − q2
0, q2

xm + q2
y � q2

0.

(21)

Furthermore, part of the derivation is the integration over z,
which can be split in two parts, corresponding to whether z′ <

z or z′ > z in Eq. (20):

C(m)
�,<(z) =

{∫ z
zmin

c(m)
� (z′)ei2πqzm (z−z′ )dz′ if zmin < z

0 if zmin > z,
(22)

C(m)
�,>(z) =

{∫ zmax

z c(m)
� (z′)ei2πqzm (z′−z)dz′ if zmax > z

0 if zmax < z.
(23)

These two integrals depend on z by the exponential factor
e±i2πqzmz (which can be pulled out of the integral), but z also
appears in either of the integration limits. Notice that for every
m the pair of integrals in Eqs. (22) and (23) is equivalent to a
Born iteration in a 1D (aperiodic) scattering problem [15]. The
final result for the Fourier coefficients of E�+1 is

E(m)
�+1(z) = iπ

q2
0

qzm

[
C(m)

�,<(z) + C(m)
�,>(z)

] − iπq⊥m

(
1

qzm
q⊥m · [

C(m)
�,<(z) + C(m)

�,>(z)
] + ẑ · [

C(m)
�,<(z) − C(m)

�,>(z)
])

− iπ ẑ
(

q⊥m · [
C(m)

�,<(z) − C(m)
�,>(z)

] + qzmẑ · [
C(m)

�,<(z) + C(m)
�,>(z)

] + 1

iπ
ẑ · c(m)(z)

)
. (24)

Equation (24) shows that we can immediately calculate the
next Born order of E without calculating A first. We see
here that the dependence of the terms on z by e±i2πqzmz

corresponds to up- or downward traveling waves and their
amplitudes depend on the z position within the structure.
For z < zmin, C(m)

�,<(z) = 0 and hence there are only waves

with e−i2πqzmz, while for z > zmax we have C(m)
�,>(z) = 0 and

then all waves depend on z by ei2πqzmz. This makes sense
as scattered waves only travel away from the structure.
Furthermore, we see that we can derive the double deriva-
tive in Eq. (10) analytically, removing the need to do it
numerically.
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IV. RESULTS

The formalism we developed in Sec. III is general: It is
valid for any incident plane wave and any number of layers.
We show results for two cases of s polarization: one where
scattering is in the moderate-scattering regime and one for
strong scattering. For p polarization, slow convergence of
Fourier series occurs, which requires special methods to accel-
erate; however, that is beyond the scope of the present work.
We compare the results of each case with the FEM solution in
COMSOL MULTIPHYSICS.

A. Details of the numerical implementation

As the problem is invariant in y up to a phase factor, we
solve the problem in the (x, z) plane for y = 0. We discretize
one period of the grating on a 2D Cartesian grid, which is
chosen uniform in both x and z. In the z direction, the grid ex-
tends 250 nm above and below the structure, although strictly
we only need to integrate over the structure itself to compute
the Born series. The computation of the Born series starts at
the zeroth-order field: a plane wave with amplitude W (i) = 1.
Thus, the iterative procedure starts with E(i)(x, z) of the plane
wave and the relative permittivity contrast �εr (x, z) of the
grating as the input.

1. Born iterations and the Gibbs phenomenon

At every iteration step, we compute the truncated Fourier
representation of the product �εrE�. We use the maximum
number of Fourier components as determined by the grid
spacing per the Nyquist theorem: NFourier < p/2�x. Then
Eq. (24) is evaluated to obtain the Fourier coefficients of the
next Born order. Before the start of the next iteration, we have
to sum the Fourier series to return to real space. To counteract
the Gibbs phenomenon at this point, we sum the Fourier series
using the Fejér kernel [34]. Essentially, we take the average
of the sequence of partial Fourier sums, which is a Cesàro
sum. Denoting the partial Fourier sum up to order m = ±M
by E(M )

�+1, the Cesàro sum is

1

Mmax + 1

Mmax∑
M=0

E(M )
�+1(z). (25)

In the limit of Mmax → ∞, it converges uniformly to
E�+1(x, z). We use Eq. (25) as input to the next iteration.

2. Quantifying the divergence of the Born series

When the scattering is weak, the Born series converges. In
the strong-scattering regime, the terms of the Born series grow
faster the stronger the scattering is. We can get an indication
of the rate of convergence or divergence and therefore the
scattering strength by looking at the maximum of the modulus
of every Born term E�,y:

A� = max
r∈�

|E�,y(r)|. (26)

If we suppose that A� grows exponentially, i.e., A� = ��
BornA0,

with �Born the growth rate, then we can estimate �Born from
the Born series up to the N th Born term by

�Born =
(

AN

A0

)1/N

. (27)

We have weak and strong scattering (convergence and di-
vergence) for �Born � 1 and �Born � 1, respectively. Around
�Born = 1 this parameter is not sufficient to discriminate be-
tween a converging and a diverging Born series.

3. Padé approximation

After computing enough Born terms, we calculate the Padé
approximants of the Born series for each point on the 2D grid.
To find the approximant PN

N , one needs 2N + 1 terms of the
Born series computed by performing 2N iterations. Finding
the coefficients of the Padé approximant of order N/N then
consists of solving a linear system of 2N + 1 equations. Note
that the Padé coefficients have to be calculated separately for
each Padé approximant of a different order.

B. Assessing the Padé approximants

1. Optimal Padé approximant

Beforehand, it is not known which order Padé approximant
is necessary to get a desired accuracy. So we could benefit
from knowing at what rate the approximants are converging
towards a result and at what point the improvement starts to
level off. To get an indication of how quickly the approximants
are converging as N increases, we can look at the relative
difference of an approximant of order N compared to the
preceding approximant of order N − 1:

∫∫
�

∣∣PN
N (x, z) − PN−1

N−1 (x, z)
∣∣2

dx dz∫∫
�

∣∣PN−1
N−1 (x, z)

∣∣2
dx dz

. (28)

There is one major limiting factor for computing Padé ap-
proximants: machine precision. The higher the order of the
Padé approximant, the larger the system of equations needed
to compute the Padé coefficients. The condition number of
this system increases, requiring higher precision. Beyond a
certain Padé order N , the improvement of the approximation
levels off, given that we use double-precision complex floating
point numbers. This is the maximum available precision in
scientific computing software packages like NUMPY. If instead
we use single precision, the approximation levels off at a
lower Padé order N and consequently a less accurate result
can be obtained.

2. Comparing the results with COMSOL

For the finite-element solution in COMSOL, we simulate one
period of the grating. We use periodic boundary conditions
in the x direction and perfectly matching layers in the z di-
rection. The COMSOL mesh has a maximum element size of
20 nm outside the scatterer and 10 nm inside. To make the
comparison, we linearly interpolate the result from the FEM
mesh to the rectangular grid used in our method. We quantify
the quality of each approximant of Ey relative to the COM-
SOL result ECOMSOL by determining the relative error over the
scatterer, defined as

∫∫
�

∣∣PN
N (x, z) − ECOMSOL(x, z)

∣∣2
dx dz∫∫

�

∣∣ECOMSOL(x, z)
∣∣2

dx dz
. (29)
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FIG. 2. Absolute value of the relative permittivity contrast
|�εr (x, z)| for one period of the simulated grating in Example 1.
Both layers are SiO2 with relative permittivity εr,SiO2 = 2.179. The
pitch is 600 nm.

C. Example 1: Moderate scattering

First we consider a grating of SiO2, which has a low
relative permittivity εr,SiO2 = 2.18 at λ = 633 nm [35]. The
grating has a pitch of 600 nm and consists of a rectangular
grating layer on top of a planar layer. The grating layer has
a thickness of 200 nm and a linewidth of 300 nm, while the
planar layer is 150 nm thick. See Fig. 2 for |�εr (x, z)| for this
example.

The incident field is an s-polarized plane wave in a classical
mount, so only Ey is nonzero and Ex and Ez are zero in both
the incident and the scattered field. The plane wave comes in
obliquely with q(i)

x = 0.5q0, so q(i)
z = 0.87q0. Its polarization

unit vector is ê(i)
s (0.5, 0) = (0,−1, 0). Furthermore, we use a

grid spacing of �x = �z = 10 nm. According to the Nyquist
theorem, we can use up to 60 Fourier components.

(a) (b) (c)

FIG. 3. Modulus of Ey for the Born terms (a) � = 1, (b) � = 2,
and (c) � = 3 for Example 1. The terms are normalized so that the
same color bar can be used, with the normalization factor displayed
in the bottom-left corner of every plot. The grating outline is shown
by a white dashed line.

(a) (b) (c)

FIG. 4. Comparison of the Padé approximation of the Born series
and the FEM result of COMSOL for Example 1: (a) modulus |P13

13 (x, z)|
of the best approximant, (b) modulus |ECOMSOL(x, z)|, and (c) differ-
ence between the moduli |P13

13 (x, z)| − |ECOMSOL(x, z)|.

The first step is to compute the Born series. The modulus
of Ey of the � = 1, 2, 3 terms of the Born series are shown in
Fig. 3 using a normalization factor displayed in the bottom-
left corner. This factor indicates that the series diverges. A
better indication is given by Eq. (27), which yields �Born =
1.55. While this shows the divergence, it however does not
satisfy either �Born � 1 or �Born � 1, so we cannot say with
certainty that it is a case of weak or strong scattering.

From the Born series, we computed Padé approximants up
to order 30/30, which requires 61 Born terms. Figure 6 shows
how the error (29) of PN

N relative to the COMSOL solution
decreases with increasing N , leveling off after P5

5 . However, if
we choose our optimal approximant by looking at how the dif-
ference between subsequent approximants develops according
to Eq. (28) (without knowledge of the COMSOL solution), we
find that the convergence of the Padé approximants only levels
off after P13

13 (see Fig. 6). We show this optimal approximant
in Figs. 4 and 5, as well as the COMSOL solution and the
difference between the two, in terms of amplitude and phase.
Padé approximation achieves an error of about 2% in terms of
the modulus of the solution as seen in Fig. 4.

(a) (b) (c)

FIG. 5. Comparison of Padé approximation of the Born
series and the FEM result of COMSOL for Example 1: (a) phase
arg[P13

13 (x, z)] of the best approximant, (b) phase arg[ECOMSOL(x, z)],
and (c) difference between the phases arg[P13

13 (x, z)] −
arg[ECOMSOL(x, z)].
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vs

vs

vs

FIG. 6. Convergence of the Padé approximants for Example 1
shown in two ways: the relative error of PN

N compared to the COMSOL

simulation [see Eq. (29)] and to PN−1
N−1 [see Eq. (28)]. The latter is also

shown for single-precision computation, denoted by c64.

The error (29) of the approximants relative to the COMSOL

solution levels off earlier as a function of N than the error (28)
relative to the preceding approximant. This could be caused
by multiple factors, such as the difference in the discretization
of the grating in our simulation and in COMSOL. Decreasing
�x and �z in our simulation decreases this difference such
that the relative error levels off later. Furthermore, as seen in
Fig. 6, the error (28) levels off at a lower N when using single-
precision floating numbers instead of double precision. This
illustrates that the precision used determines the maximum
achievable accuracy with Padé approximation.

D. Example 2: Strong scattering

Now we consider a case that exhibits stronger scattering:
a grating with high-permittivity materials. The grating has
period p = 450 nm and has four layers. The top layer is a
rectangular grating layer of silicon (80 nm thick and 180 nm
wide). Underneath it are planar layers of SiN (60 nm), gold
(40 nm), and SiO2 (80 nm).

The incident field is an s-polarized plane wave with
λ = 633 nm. Again, the plane wave is in a classical mount
with wave vector q(i) = (0.50, 0, 0.87)q0 and polarization
unit vector ê(i)

s (0.5, 0) = (0,−1, 0). At λ = 633 nm, the
grating materials have the following relative permittivities:
εr,Si = 15.1 + i0.149, εr,SiN = 4.04, εr,Au = −11.8 + i1.22,
and εr,SiO2 = 2.18 [35–38]. See Fig. 7 for |�εr (x, z)| for the
considered grating. Furthermore, we use a grid spacing of
�x = �z = 4 nm in our simulation. Correspondingly, we use
113 Fourier components in x, i.e., from m = −56 to m = 56.

Again, we first compute the Born series; the modulus of
Ey for the first Born orders � = 1, 2, 3 is shown in Fig. 8.
The plots show the normalized modulus of every term, with
the normalization factor displayed in the bottom-left corner of
each plot. It can be seen that the series diverges. The parameter
defined by Eq. (27) now is �Born = 6.74, which means this
case is far into the strong-scattering regime.

While the Born series wildly diverges, Padé approximation
can retrieve the complex electric field from the series. The
optimal approximant is P13

13 , shown in Figs. 9 and 10 in a

FIG. 7. Absolute value of the relative permittivity contrast
|�εr (x, z)| for one period of the simulated grating in Example 2. The
layers are (from top to bottom) silicon, SiN, gold, and SiO2. The
pitch is 450 nm.

comparison with the COMSOL simulation. To compute P13
13 , 27

Born orders are needed, of which the highest Born order has
amplitudes which are 1021 times larger than the incident field.

The approximants are more accurate further away from
the grating than inside or near it. Some artifacts are also
visible, e.g., noiselike artifacts which are signs of the limits
of machine precision when solving for the Padé coefficients.
We observe them in higher-order approximants only.

The error relative to the COMSOL solution is shown in
Fig. 11 for Padé approximants of Ey up to P30

30 , showing that
the approximation does not improve further after P8

8 . Looking
at the relative difference between PN

N and PN−1
N−1 according

(a) (b) (c)

FIG. 8. Modulus of Ey for the Born terms (a) � = 1, (b) � = 2,
and (c) � = 3 for Example 2. The terms are normalized so that the
same color bar can be used, with the normalization factor displayed
in the bottom-left corner of every plot. The grating outlines are shown
by white dashed lines.
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(a) (b) (c)

FIG. 9. Comparison of Padé approximation of the Born series
and the FEM result of COMSOL for Example 2: (a) modulus |P13

13 (x, z)|
of the best approximant, (b) modulus |ECOMSOL(x, z)|, and (c) differ-
ence between the moduli |P13

13 (x, z)| − |ECOMSOL(x, z)|.

to Eq. (28), the approximants level off after P9
9 , as seen in

Fig. 11. The minimum of Eq. (28) is reached at N = 13,
so P13

13 is the optimal approximant. For higher-order approx-
imants, this relative difference starts increasing slightly again.
In Fig. 11 we also show the error (28) when using single-
precision floating numbers, denoted by c64. Again, the error
levels off at a lower order N , now not even nearing the lowest
error when compared to COMSOL.

V. CONCLUSION

We have developed a vectorial perturbation method based
on the Born series to solve the forward problem of electro-
magnetic scattering by a diffraction grating. We presented a
general formalism, as well as an implementation of the Born
recurrence relation for the grating problem. To handle cases in
the strong-scattering regime, where the Born series diverges,
we computed Padé approximants of the Born series. This is

(a) (b) (c)

FIG. 10. Comparison of the Padé approximation of the
Born series and the FEM result of COMSOL for Example 2:
(a) phase arg[P13

13 (x, z)] of the best approximant, (b) phase
arg[ECOMSOL(x, z)], and (c) difference between the phases
arg[P13

13 (x, z)] − arg[ECOMSOL(x, z)].

vs

vs

vs

FIG. 11. Convergence of the Padé approximants for Example 2
shown in two ways: the relative error of PN

N compared to the COMSOL

simulation [see Eq. (29)] and to PN−1
N−1 [see Eq. (28)]. The latter is also

shown for single-precision computation, denoted by c64.

done for each electric-field component separately, for every
point on the coordinate grid.

The method requires solving relatively small systems of
equations for the Padé coefficients, which moreover can be
done in parallel at each step of the iteration. There is no need
to solve a large system of linear equations as is the case in
other rigorous methods; hence the requirements on computer
memory are low.

We demonstrated the method in two examples of scattering
of an s-polarized plane wave by a grating: one exhibiting
moderately strong scattering by a dielectric and one exhibiting
strong scattering by a grating with dielectric and metallic
layers. The method is general: It allows for a classical and
conical mount, s and p polarization, and any configuration
of grating and planar layers with finite relative permittivity.
For p-polarized scattering, attention must be paid to the slow
convergence of the Fourier harmonics, a known issue in other
methods as well. We leave consideration of p polarization
for future work. Machine precision limits the method such
that higher-order Padé approximants do not further converge
towards the exact solution beyond a certain Padé order, when
noiselike artifacts begin to appear in the approximants.

The method can be extended to 2D periodic structures,
which would involve a second Fourier summation, in y. This
does not affect the Born series formalism presented Sec. II,
but it requires modifications in Sec. III, taking into account
the second summation. Furthermore, although the problem is
only solved for a single incident plane wave, a solution could
also be obtained for other incident fields. This would require
decomposing it in Bloch waves, repeating the calculation for
every Bloch wave, and coherently summing the results.

The presented Born-Padé method can provide insight into
how the underlying physics forms the solution because the
Born series builds the solution step by step, in terms of single-
and multiple-scattering effects. Also when computing Padé
approximants, one exactly knows which Born orders are used
in the calculation, thus tracing which scattering effects are
contributing. A perturbation method like the one presented
here could be of interest for the design of periodic struc-
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tures, as it contributes to the understanding of how the parts
of a structure affect the generated signal. Furthermore, the
Born-Padé method provides insight into the importance of
multiple-scattering events. If multiple scattering is strong, this
indicates that the scattered far field may be sensitive to sub-
wavelength details. For these reasons, the presented method
is very interesting for use in inverse problems as well, with
potential applications in, for example, (optical) metrology.
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APPENDIX A: DERIVATION OF THE HELMHOLTZ
EQUATION FOR THE VECTOR POTENTIAL

Here we derive the inhomogeneous Helmholtz equation for
the vector potential. In Eq. (3) we defined the vector potential
which expresses H in terms of A. First we will also express E
in terms of potentials. We start with Faraday’s law

∇ × E(r) = iωμ0H(r) (A1)

and substitute the definition of the vector potential, Eq. (3),
into it, which gives

∇ × [E(r) − iωμ0A(r)] = 0. (A2)

From this it follows that there is a scalar gradient φ such that

E(r) − iωμ0A(r) = −∇φ(r). (A3)

Thus, we have both H and E in terms of A and φ:

H(r) = ∇ × A(r), (A4)

E(r) = iωμ0A(r) − ∇φ(r). (A5)

We substitute these two in the Ampère-Maxwell law

∇ × H(r) = −iωε0εr (r)E(r) (A6)

to get an equation that only contains the potentials

∇ × ∇ × A(r) = k2
0εr (r)A(r) + iωε0εr (r)∇φ(r), (A7)

where k2
0 = ε0μ0ω

2. We use the identity ∇ × ∇ × A = ∇ ∇ ·
A − ∇2A to rewrite Eq. (A7) as

∇2A(r) + k2
0εr (r)A(r) = ∇∇ · A(r) − iωε0εr (r)∇φ(r).

(A8)
Next we choose the Lorenz gauge

∇ · A(r) − iωε0φ(r) = 0 (A9)

or, expressing φ in terms of A,

φ(r) = ∇ · A(r)

iωε0
. (A10)

This allows us to express E in terms of A only, by combining
it with Eq. (A5):

E(r) = − 1

iωε0

(
k2

0 + ∇∇ · )
A(r). (A11)

Moreover, we use Eq. (A10) to eliminate φ from Eq. (A8),(∇2 + k2
0

)
A(r) = −�εr (r)

(
k2

0 + ∇∇ · )
A(r), (A12)

where �εr (r) = εr (r) − 1. Note that this is an equation for A
only. Finally, note that we can use Eq. (A11) to replace the
right-hand side by the electric field(∇2 + k2

0

)
A(r) = iωε0�εr (r)E(r), (A13)

which gives us the inhomogeneous Helmholtz equation for A
with E in the source term. This relates A and E component-
wise, i.e., the components do not mix.

APPENDIX B: DERIVATION OF THE BORN ITERATION

1. Computation of the vector potential

First we calculate A�+1(r) from E�(r) using Eq. (9). We insert Eq. (20), the Weyl expansion, and Eq. (19), the Fourier
expansion of �εr (r)E�(r),

A�+1(r) = −iωε0

∫
r′

G0(r; r′)�εr (r′)E�(r′)d3r′

= −iωε0

∫
r′

∫ ∞

−∞

∫ ∞

−∞

i

4πqz
ei2π[qx (x−x′ )+qy (y−y′ )+qz |z−z′ |]dqxdqy

∞∑
m=−∞

c(m)
� (z′)ei2π (q(i)

x +m/p)x′
ei2πq(i)

y y′
d3r′, (B1)

where qz = +
√

q2
0 − q2

x − q2
y . This is a 5D integral with a summation. We interchange the order of integration and summation

and first evaluate the integrals over x′ and y′:∫ ∞

−∞
ei2π

(
q(i)

x +m/p−qx

)
x′

dx′ = δ
(
qx − q(i)

x − m/p
)
, (B2)∫ ∞

−∞
ei2π

(
q(i)

y −qy

)
y′

dy′ = δ
(
qy − q(i)

y

)
. (B3)

Therefore,

A�+1(r) = −iωε0

∫ zmax

zmin

∞∑
m=−∞

c(m)
� (z′)

∫ ∞

−∞

∫ ∞

−∞

i

4πqz
ei2π (qxx+qyy)δ

(
qx − q(i)

x − m/p
)
δ
(
qy − q(i)

y

)
dqxdqyei2πqz |z−z′ |dz′. (B4)
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By computing the integrals over qx and qy we obtain

A�+1(r) = −iωε0

∞∑
m=−∞

i

4πqzm
ei2π (q(i)

x +m/p)xei2πq(i)
y y

∫ zmax

zmin

c(m)
� (z′)ei2πqzm|z−z′ |dz′, (B5)

where qzm has been defined in Eq. (21). The integral over z can be split in two parts: one where z′ < z and one where z′ > z, i.e.,

C(m)
�,<(z) =

{∫ z
zmin

c(m)
� (z′)ei2πqzm (z−z′ )dz′ if zmin < z

0 if zmin > z,
(B6)

C(m)
�,>(z) =

{∫ zmax

z c(m)
� (z′)ei2πqzm (z′−z)dz′ if zmax > z

0 if zmax < z.
(B7)

Hence,

A�+1(r) = −iωε0

∞∑
m=−∞

i

4πqzm
ei2πq⊥m·r⊥

[
C(m)

�,<(z) + C(m)
�,>(z)

]
, (B8)

where q⊥m = (q(i)
x + m/p)x̂ + q(i)

y ŷ is the transverse component of the wave vector of the mth order and r⊥ = xx̂ + yŷ.

2. Computation of the electric field

The next step is to compute E�+1(r) from A�+1(r) using Eq. (10):

E�+1(r) = iωμ0A�+1(r) − 1

iωε0
∇∇ · A�+1(r). (B9)

The first term is

∞∑
m=−∞

ik2
0

4πqzm
ei2πq⊥m·r⊥

[
C(m)

�,<(z) + C(m)
�,>(z)

]
. (B10)

For the second term we first compute the divergence of A�+1(r). Writing ∇ = ∇⊥ + ẑ∂/∂z, the transversal part yields

∞∑
m=−∞

ik2
0

4πqzm
ei2πq⊥m·r⊥ i2πq⊥m · [

C(m)
�,<(z) + C(m)

�,>(z)
]
. (B11)

For ∂/∂z we use integration by parts to obtain

∂

∂z
C(m)

�,<(z) = ∂

∂z

(
ei2πqzmz

∫ z

zmin

c(m)
� (z′)e−i2πqzmz′

dz′
)

= i2πqzmei2πqzmz
∫ z

zmin

c(m)
� (z′)e−i2πqzmz′

dz′ + ei2πqzmz ∂

∂z

∫ z

zmin

c(m)
� (z′)e−i2πqzmz′

dz′

= i2πqzmC(m)
�,<(z) + c(m)

� (z). (B12)

In a similar way, we get

∂

∂z
C(m)

�,>(z) = −i2πqzmC(m)
�,>(z) − c(m)

� (z). (B13)

Hence,

∇ · A�+1(r) = −iωε0

∞∑
m=−∞

i

4πqzm
ei2πq⊥m·r⊥

{
i2πq⊥m · [

C(m)
�,<(z) + C(m)

�,>(z)
] + i2πqzmẑ · [

C(m)
�,<(z) − C(m)

�,>(z)
]}

. (B14)
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We see that the terms with c(m)
� (z) are canceled. The next step is to take the gradient. The transversal part now gives a factor

i2πq⊥m. The z component contains

∂

∂z

{
i2πq⊥m · [

C(m)
�,<(z) + C(m)

�,>(z)
] + i2πqzmẑ · [

C(m)
�,<(z) − C(m)

�,>(z)
]}

= i2πq⊥m · i2πqzm
[
C(m)

�,<(z) − C(m)
�,>(z)

] + i2πqzmẑ · {
2c(m)

� (z) + i2πqzm
[
C(m)

�,<(z) + C(m)
�,>(z)

]}
, (B15)

where we used Eqs. (B12) and (B13). Again, c(m)
� (z) are canceled in the first part. Hence,

1

iωε0
∇∇ · A�+1(r) =

∞∑
m=−∞

−i

4πqzm
ei2πq⊥m·r⊥ (i2π )2
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])]
. (B16)

Putting it all together and rewriting the expression, we obtain

E�+1(r) =
∞∑

m=−∞
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