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Supercontinuum neural network and analog computing evaluation
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We use octave-spanning, phase-shaped supercontinuum generation as an analog computing element in a neural
network. We can perform standard machine learning tasks such as autoencoding by embedding the physical
device within a virtual neural network which converts input data to optical parameters, and measured spectra
to output data. To understand the computing potential of the supercontinuum, we fully measure a small subset
of input parameter space. We test universal function approximation by forming a basis set of delta functions
from linear combinations of the physically measured functions. This approach provides a more general way to
estimate the computational power of a physical operation than performing a specific task.
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I. INTRODUCTION

Electronic computing power has limits such as heat and
memory access, but there is always demand for more. Ana-
log or physical computing is being researched as a way to
diversify beyond semiconductors to calculate with more ef-
ficiency or speed by making use of physical processes that
are compatible with certain computation types [1]. The high
bandwidth and efficiency of optics makes it a good candidate
for augmenting electronic computing. Optics long ago re-
placed electronics for long-distance data transfer with its large
bandwidth and efficient propagation. Adding more processing
before handoff to electronic systems is a natural next step
[2]. An optical computer data bus could boost memory and
processor sharing in massively parallel computing [3]. Energy
efficiency [4], parallelization, and multiplexing make optics
a good candidate to take over application-specific comput-
ing tasks such as neural networks (see Refs. [5–8] for some
reviews). The inexact nature of most neural network tasks
makes them particularly compatible with the approximate na-
ture of analog computing [9].

Optical computing usually uses weak nonlinearity such as
squaring the field by photodetection, or low-order harmonic
generation [1,10], since weaker nonlinearities are easier to
understand and engineer. Stronger nonlinearity contributes
to improved machine learning [11], and recently stronger
nonlinearity has been used, such as picosecond pulses in
multimode fibers [12], programmable resonators on chip [13],
soliton propagation [14], and soliton fission [15]. In the soli-
ton fission case, they output spectra with shifted peaks in
wavelength, purposely restricting themselves to tenth-order
solitons to avoid instability. The spectrum covers almost an
octave, but this is a gradual shifting over a 100-m-long non-
linear fiber [15].

Here, we go to the strongest optical nonlinearity not involv-
ing material damage, supercontinuum generation in highly
nonlinear fiber. The spectrum looks like a mess spread across
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an octave, but the spectra can be quite reproducible, and can
be controlled by shaping the input pulse [16]. It is these richly
detailed spectra that provide a wide variety of spectral output
as a function of the laser pulse input.

Neural network computing works by offering an enormous
variety of behaviors (that is, how the outputs respond to in-
puts) in a large parameter space, from which the user tries
to find settings that will perform the desired task. Adding
neurons multiplies the parameter space size and computing
power (as well as difficulty searching the space). For a given
optical system, higher optical nonlinearity is like adding neu-
rons, providing many more behaviors for the user to choose
from. For example, a supercontinuum system at low power
can act like a soliton fission computer [15], but by making
thousands of higher pump power settings available, we vastly
increase the number of behaviors to work with.

In a hypothetically ideal optical computer, you would want
a tool to couple beams with variable strength, or change a
beam’s wavelength at will, allowing you to calculate, process,
and route signals. With the flexibility of highly nonlinear
supercontinuum shaping, all these tasks could be performed
in a single pass. An optical processor might be a large set of
devices written onto a chip, such as neuromorphic interfer-
ometers [17]. A supercontinuum waveguide is a continuous
processor where light interferes and nonlinearly changes
itself, effectively performing many operations over the waveg-
uide length. The behavior is controlled by the condition of the
input light, meaning phase shaping can be applied at various
stages before the supercontinuum.

We introduce three main ideas with supercontinuum
computing:

(1) Highly nonlinear supercontinuum generation can reli-
ably perform calculations. Here, we integrate the supercontin-
uum into a neural network using image autoencoding as an
example. Trainable layers in a computer translate input data
into pulse shaper settings, and another set of layers translates
the resulting supercontinuum spectra into output data.

(2) Analog computers can be evaluated by comprehen-
sively measuring small, manageable subsets of their input
parameter space, and generating a complete delta function
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FIG. 1. System outline. Pulses from a femtosecond fiber oscil-
lator are stretched and recompressed in oppositely oriented chirped
fiber Bragg gratings. Heaters on one grating control group delay
dispersion. Pulses are amplified to about 1 nJ in a fiber amplifier
with computer-controlled pumping for supercontinuum generation
in 41 cm of small-core nonlinear fiber. This length is much longer
than needed for octave-spanning broadening when the pulse is
well compressed. A computer controls the heaters, amplifier pump
current, and records the supercontinuum spectrum measured by a
spectrometer.

basis set to estimate the resolution to which universal function
approximation is possible. This provides a recipe for deter-
mining the useful resolution of an analog system, and for
ensuring universal approximation within the subset. Though
limited by its brute force nature, this check operates at a
complexity comparable to common demonstrations like clas-
sifying the modified NIST (MNIST) handwritten digit set,
which can be solved quickly on a computer by very small
artificial neural networks.

(3) A training method for incorporating analog devices
into neural networks. After emulating the physical device,
standard virtual training generates imperfect translation lay-
ers. The input translator and physical device convert the
training data into measured spectra, and the output translator
is then retrained on a computer with this physical data. Our
method is good for slow, small parameter space systems,
since once the emulation and training spectra datasets are ac-
quired, the training and parameter optimization is fully virtual,
instead of repeating open-ended live training sessions that
discard data.

Comparisons of our hybrid supercontinuum neural net-
work to computer-only calculations show that the supercon-
tinuum improves the result. From this and our comprehensive
parameter subspace measurements, we know that digital in-
puts shape the supercontinuum spectrum in complex but
predictable and useful ways. This kind of spectral control
would be an ideal element in an optical computer or data bus.

II. EXPERIMENTAL SYSTEM

The device, sketched in Fig. 1, is an erbium, polarization-
maintaining, femtosecond fiber laser. The pulse shaper is a
pair of identical chirped fiber Bragg gratings in opposite di-
rections [16]. The pulse wavelengths reflect at different points
along the 5-cm grating length, imparting a large chirp. The
opposite directions means the chirp nominally cancels, but
applying heat to the grating will change the wavelength re-
flected in that area. One grating is mounted on an array of
32 heaters, providing computer control of the group delay

dispersion. The controller has 12-bit resolution, and the six
heaters at the edges do not change the pulse much. We allow
20 s for settling after changing a heater.

The phase shaped pulse is amplified in erbium gain fiber
with computer-controlled pump current, then sent through
41 cm of low-dispersion, small-core fiber for supercontinuum
generation. Given the range of control from phase and inten-
sity, the computer can generate spectra ranging from narrow
to highly structured octave spanning. The spectrometer is an
extended InGaAs scanning grating spectrometer which takes
on the order of a second to return a spectrum with 6001
wavelengths.

From the computer’s perspective, the physical system is a
black box that accepts 33 inputs and returns 6001 outputs.
Within an artificial neural network with conventional multi-
layer feedforward perceptrons, the physical system looks like
a set of hidden layers with fixed weights. Integration into a
neural network then only requires matching the number of
parameters, so 33 neurons in the layer preceding the optics,
and any number of neurons that accept 6001 inputs in the
layer following the optics. We will call these translators, that
translate the input data to actuator settings, and translate a
spectrum into the desired output values.

We take a general approach which relies on machine learn-
ing to find the best way to use the physical device. Other
approaches use fixed relations, such as directly mapping input
values and trainable parameters to actuator settings [1], using
physical outputs directly [18], or with simple calculations
such as binning [15] for creating digital outputs.

The fixed approach is easier to understand, but is effec-
tively the user manually creating some or all of the input
and output translators, limiting the system to a small subset
of the whole parameter space. An example of a bad choice
would be assigning an input to a heater with little light at that
wavelength, making that input effectively disappear. Switch-
ing tasks would also require the user to choose new mappings.
Trainable translators automatically choose the mapping, ide-
ally making good use of the full parameter space.

III. COMPUTING AS FUNCTIONS

Computing is evaluating a function. Even the generation
of an image from a text prompt is taking an input and return-
ing output values. A neural network approximates functions,
where training tunes the network until it outputs satisfactory
results. In analog computing, a physical device is a fixed func-
tion of its parameters. The power at each wavelength λ in the
supercontinuum spectrum is a function of the actuator values
�x: Pλ(�x). Our grating spectrometer returns powers at 6001
wavelengths, so the physical device is a parallel calculator of
6001 Pλ functions.

Figure 2 is a cartoon of the supercontinuum behaving
as functions. We imagine varying only heater #15 with the
rest off, and measuring spectra (columns) across its range
of values. Going across a row at a particular wavelength
gives the spectral intensity as a function of the heater value,
such as P1800nm(x15). This function is unlikely to match the
target function, but there are many more available, such as
P1600nm(x15). In a conventional neural network, a neuron takes
linear combinations of the layer below it, so weighted sums
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FIG. 2. Cartoon of creating functions from data. The color map
is several spectra (columns) for a range of values of heater #15 only,
reducing the vector of actuator settings �x to one element, x15. Spectra
for x15 = 0 and 0.72 are illustrated vertically next to their columns.
Each row is a function Pλ(x15). Linear combination can make a new
function f from the available Pλ such as P1600nm and P1800nm weighted
to 1.2 and -0.9 (with the others weighted to zero). Evaluating f (0.5)
would be be measuring a spectrum with heater #15 set to 0.5, and
summing 1.2× the intensity at 1600 nm with −0.9× the intensity at
1800 nm. If Pλ has enough variety of shapes, f can approximate any
function by choice of weights.

can be taken, such as the illustrated combination: f (x15) =
1.2P1600nm(x15) − 0.9P1800nm(x15), providing an even greater
range of available functions.

Writing this out for all heaters and including the customary
offset, f is a linear combination of the available functions Pλ

weighted by Aλ, and a bias b: f (�x) = b + ∑
λ AλPλ(�x). If the

Pλ’s are varied enough to be a complete set, then f can be
any arbitrary function, and the hybrid of a physical device and
a virtual neuron is, like an artificial neural network [19], a
universal approximator.

To show completeness, we want to generate all functions of
a known complete set using linear combinations of Pλ. Well-
known functions such as the Fourier series form a complete
basis (given enough functions for the resolution). We choose
a basis that is easy to understand, the set of multidimensional
Dirac δ functions that return 1 for a particular input value,
and 0 otherwise. Expansion coefficients of a function in the
δ basis are simply the function value at each δ peak position.
This is just like describing a grayscale image based on the
brightness (coefficient) of each pixel (delta function peaked at
that location).

A. One-dimensional basis

Our system controls one pump diode and 32 heaters at 12
bit resolution. If we limit ourselves to 20 actuators with 1000
levels each, there would still be 1060 possible input values and
corresponding delta functions in a complete set. We cannot
measure so many spectra, so we select subsets of the full input

FIG. 3. Schematic of one-dimensional (1D) delta function ar-
rangement. The input space is the range of one pulse-shaping heater.
A single neuron reads the spectrum for a given heater setting, taking
the weighted sum of the spectral elements to produce a single output
value. For an example target function of δ(x − 0.2), the neuron
parameters b and Aλ are trained to give an output of zero unless
x = 0.2, in which case it should return 1. For the two-dimensional
(2D) and three-dimensional (3D) sets, there are two or three input
heater values, but the rest of the schematic is the same, with the
output neuron converting a spectrum to a single value.

parameter space that are small enough to comprehensively
measure. We start by stepping one heater at fairly high res-
olution from 0 to 0.6 (0: no heat, 1: full heat, which is about
+20K for one heater) for 482 total points. Taking all these
spectra yields all values of Pλ within this small subspace. We
later permute two, then three heaters.

We perform fits to find the 482 sets of Aλ and b that approx-
imate each of the 482 δ functions. The fits were performed by
standard neural network training. As in Fig. 3, the actuator
setting was the input; corresponding spectra were retrieved
from the comprehensive measurement dataset; and a single
output neuron with no activation function was trained.

The training data was first constructed with one data point
for each possible input and all the corresponding outputs being
0 except for a 1 at the peak of the target δ function (e.g.
[input, output]: [0,0], [0.1,0], [0.2,1],...). Given the nature of
the delta function, the contribution of the peak to the error of
the fit is small compared to the large number of points with
outputs of zero. The fit then reduces the error by scaling down
everything, accepting a lower peak of, say, 0.8 instead of 1
in exchange for a smaller baseline noise around output 0. To
compensate for this, we added more copies of the data point
with output 1 to the training data, effectively increasing its
weight in the fit because it exposes the training routine to more
instances of the peak.

FIG. 4. Single δ function generated from supercontinuum spectra
by a virtual neuron. The peak width gives an estimate of the input
resolution, and the vertical point distribution around zero output
gives an estimate of the system noise.
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FIG. 5. δ functions from supercontinuum spectra for all 482
input values. Since a δ function can be formed at all points, the
supercontinuum can approximate any function to a resolution of
about 120 points in this parameter range.

Figure 4 shows a fit to a δ function. When we acquire data,
we actually save two spectra per setting. One set is used to
train the neuron. The second set is processed by the trained
neuron. If the system acts like a clean δ function with the
second set as inputs, then we know that the fit was successful
and does not rely on noise from the first set.

The neuron generates a clear peak with a full-width at
half-maximum (FWHM) of 0.005. Dividing the input range
by the peak width gives an input axis with 120 resolvable
points. A very rough approximation takes each δ function to
be worth one layer of two neurons with activation (enough to
emulate a δ function), or about 240 neurons in this case. In the
best case for 20 actuators with 120 points, 12020 = 4 × 1021

resolved points would be the upper limit. Away from the peak,
the output values around zero have a distribution FWHM of
0.07 (thickness of horizontal line), which is a measure of the
output noise.

All 482 δ functions are stacked along the peak location
axis in Fig. 5. The generated δ functions are of similar quality
to the sample in Fig. 4. This means that we can approximate
any function up to a resolution of about 120 points (∼7 bits)
over 0–0.6 of the full heating range. We test this by fitting
to an arbitrarily chosen function, a chirped sinusoid, shown
in Fig. 6. It follows fast changes, suggesting all 482 points
may be useful. This is a direct fit to the sinusoid, not a linear
combination of the fitted delta functions, which would be
noisier.

FIG. 6. Chirped sinusoid (thick line) approximated with a linear
combination of measured supercontinuum spectra as a function of
one heater element (points and thin line). The generated function
closely follows the target.

FIG. 7. Single δ function with inputs of two heater values. There
is a clear peak and reasonable noise floor. The tested resolution is
low to reduce acquisition time.

B. Two-dimensional basis

Next we permute two heaters. To save time, we greatly
reduced the scan resolution to 37 points per heater, though
this is still 372 = 1369 possible input values. A fit to a single
2D δ function is shown in Fig. 7. There is a clear peak,
although it is fairly wide. The background noise is comparable
to the 1D case. Fits were performed for all δ functions to
confirm clear peaks for all points. If we consider every other
point to be resolvable, we have 182 = 324, more than the 120
possible values we found for a single heater, but far below
1202 = 14 400.

C. Three-dimensional basis

We also performed a limited 3D scan of 13 points within
0–0.06 of full range for 133 = 2197 possible input values
and spectra, making for a lengthy acquisition. Figure 8 shows
one of the lower-quality emulated δ functions, which would
ideally be one voxel (a 3D pixel) with value 1 in 3D space.
The shapes for these fits are not very consistent, but in general
the main voxel has value 1, and there are a number of adjacent
voxels with significant values. Given the asymmetric shapes,
if we loosely consider the width to be 0.02, then there might

FIG. 8. A single δ function for three heaters, with voxels only
plotted for output values over 0.5. This is one of the lower-quality
instances, and the peak is larger and less consistent than the 1D and
2D cases, but it still forms a localized object that can act as a low-
resolution δ function. Projections on the walls are visual aids.
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FIG. 9. Autoencoder schematic. The 784 grayscale pixels of a
fashion MNIST image are read by three input translator neurons,
each of which calculates an actuator setting for the physical de-
vice. These three values are the encoded version of the image. The
physical system returns a supercontinuum spectrum of 982 elements.
These are read by the 784 output translator neurons, each of which
outputs a pixel in the decoded image. The input and output translator
neurons are trained to ideally replicate the input image at the output.

be 30 resolved points within 0–0.6, and 303 = 27 000 points
for the three heaters.

With so many parameters, it is not clear whether the
decreasing emulation quality is due to limitations of the su-
percontinuum or just poor fitting. Fitting to a δ function with
2197 points takes even longer than the 20-s wait time for the
heaters to settle. Rather than continuing to add dimensions,
this evaluation method could be extended by sampling more
varieties of input subspaces, such as random vectors within the
full input space to provide greater confidence in the usefulness
of the full input space.

These tests provide a baseline for evaluating our super-
continuum, and analog computers in general. The 1D test
indicates hundreds of resolvable input points, which provides
a clear upper limit to available input points. The two- and
three-heater tests are progressively less clear, and do not
show multiplicative increase in points when adding input
dimensions. This may be an issue with fit quality, but sim-
ilar problems will occur when using it in a neural network
calculation. It is clear, though, that our hybrid supercontinuum
network is useful for general purpose approximation within
noise limits with at least hundreds of input points.

IV. APPLICATION TO AUTOENCODING

We now demonstrate the standard machine learning task
of autoencoding images, where an image is encoded into a
small set of values (the latent space), then decoded back to an
approximation of the original image as in Fig. 9. One virtual
layer of neurons encodes images into actuator settings. The
resulting supercontinuum spectra are translated by another
layer of virtual neurons into the decoded image. Decoding is a
good match for the dimensionality of the system, where a few
actuators generate many spectral powers.

Training analog neural networks is slow since the gradients
are not easily known [1]. We describe here a method that uses
some emulation, and needs limited acquisitions to train the
virtual input and output layers. The major steps are:

(1) Acquire spectra at random actuator settings;
(2) Train a supercontinuum emulator;

FIG. 10. Examples of a well-emulated (top) and poorly emulated
spectrum (bottom) when testing the neural network made to emulate
the supercontinuum. Details of specific peaks may be incorrect, but
the overall shape is predicted well.

(3) Train both translators together virtually using the
emulator;

(4) Acquire training spectra using input translator and
training data; and

(5) Retrain output translator using training spectra.
First, we acquired 22 660 spectra for random settings of

three actuators (two heaters, one pump diode) for training a
neural network to emulate the supercontinuum (three inputs,
982 outputs). The emulation only outputs a spectrum, it is
not an optical propagation calculation [20]. The spectrometer
used here was a broadband Fourier transform spectrometer,
and the spectra were averaged and reduced in resolution in
software. The emulation works fairly well in overall shape,
but not details, as seen in Fig. 10.

Next, the emulator’s parameters are frozen, and it replaces
the supercontinuum in the autoencoder for a fully virtual
neural network. The input and output translation layers are
trained with backpropagation in the computer. At this point,
replacing the emulation with the actual supercontinuum would
autoencode, but likely not well.

Using the standard fashion MNIST image set [21], we use
the trained input translator to convert the first 12 881 training
images into actuator settings, and measure the corresponding
training spectra. With the training spectra as the inputs to
the output translator, and the training images as the target,
we can train the output translator with backpropagation in
the computer. This retraining step ideally corrects for errors
introduced by the emulator. Sandwiching the supercontinuum
between the original input translator and the retrained output
translator completes the hybrid network.

Some autoencoding test samples are shown in Fig. 11,
with comparison between the hybrid supercontinuum network
(analog); the hybrid network with the supercontinuum re-
moved [Comp. (1), computer only with one hidden layer];
and adding two hidden layers in place of the supercontinuum
[Comp. (3), computer only with three hidden layers].

Our goal is not to perform a flawless autoencoding, but
to confirm whether the supercontinuum can aid in a neural
network calculation. For example, in the common test case
of MNIST handwriting decoding [22] (which we have also
attempted [23]), the small translation layers already have
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FIG. 11. Originals (top) and images decoded from three values.
The second row is the hybrid physical network. The bottom row
is the same neuron configuration as the hybrid network, with the
supercontinuum removed (one hidden layer). The third row has two
layers in place of the supercontinuum (three hidden layers), which
produces output closer to the hybrid result.

enough computing power to mostly solve the problem on their
own. Here, we compress images down to a latent space of only
three values, where autoencoding with the smallest possible
translation layers [Comp. (1)] yields poor image quality that
leaves room for the supercontinuum to improve performance.

Comparing the analog and Comp. (1) rows shows that the
supercontinuum clearly improves the images, with sharper
edges and narrower features, such as the shoe straps and the
bag handle. Trying a few virtual layers in place of the super-
continuum finds that adding two hidden layers with 32 and 64
neurons makes the computer-only output visibly similar to the
hybrid output. This is confirmed numerically in Fig. 12 with
the distribution of autoencoding errors for the three cases,
with an error of 1 corresponding to the full dynamic range
of the image. The analog and Comp. (3) cases both show less
error than Comp. (1).

These calculations provide a direct comparison for esti-
mating the virtual neuron equivalence of the supercontinuum
computation. The 96 neuron count is much smaller than our
crude upper-limit estimate. There are many differences from
the delta function experiment, including the specific task, hav-
ing more layers, and a different spectrometer.

FIG. 12. Histogram of errors (normalized to the dynamic range)
for the three autoencoders, quantifying the visual quality visible in
Fig. 11, where the supercontinuum improves performance roughly at
the level of two virtual neural network layers.

Having autoencoded images with supercontinuum, we can
at least say that supercontinuum faithfully transmits informa-
tion encoded in the inputs. This is important, as it means that
our system reliably translates digital data into the spectral
domain through a highly nonlinear interaction. High nonlin-
earity is often avoided in optical computing for perceived
environmentally instability, but this was not an issue here. The
system had pump diodes with conventional current and tem-
perature stabilization, and a fiber Bragg grating pulse shaper
on a plate in a box, both temperature stabilized with standard
proportional-integral-derivative (PID) controllers [16]. This
measurement included data taken over a month apart.

Given the approximate and averaging nature of neural net-
works, minor drifts of the physical system or an incoherent
supercontinuum causing spectral blurring can be quite tolera-
ble. Taking Fig. 10 as an example, if there are moving spikes
within a stable envelope, contributions of the narrow features
should average away with sufficient training, as it does with
noise in general.

The training method was designed for our case of slow
actuation. We wait 20 s when changing the heaters, but then
we can acquire at the spectrometer rate of about 1 s when
changing only the pump current for that particular heat
setting. Speed could be increased to kHz rates by using
mechanical force from electrothermal microactuators [24] or
piezoelectrics. Supercontinuum is sensitive to almost any type
of actuation, so GHz-speed electro-optic modulators could be
used in, say, an interferometric design. Fast readout such as
detector arrays or temporal reading of a highly chirped pulse
would be needed to match.

Our method has the benefit of using only two large datasets,
with the training occurring offline rather than open-ended live
training. This allows for tweaking of training parameters using
the same data, and without discarding data. The need for
successful emulation may limit the number of parameters. The
emulation only creates the input translator though, so as long
as the translator does not severely restrict the input parameter
space, it is likely better than manual mapping.

V. CONCLUSIONS

We used an octave spanning supercontinuum as an optical
computer with a training method for hybrid analog systems.
Our measurements show that supercontinuum can emulate
functions, meaning that it can transmit and process data at the
level of at least a small neural network, so supercontinuum’s
processing and wavelength conversion abilities can contribute
to optical information systems, particularly if pulse energies
and waveguide size can be reduced [25].

Optical computing often focuses on energy efficiency [26],
but at this very early demonstration stage where the type of
implementation is far from clear, we do not attempt an esti-
mate (Sec. G of the supplement to Ref. [15] has some numbers
for a similar system). Supercontinuum may not necessarily
be the main inference engine; it may use its processing ca-
pabilities to route and modify light between more efficient
devices on a chip. Energy is used to make a pulse, shape
it, and measure it, but the pulse may already exist, may be
preshaped, and would be passed along to the next device
rather than be measured. The supercontinuum might then only
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contribute waveguide losses, and the actual energy use would
be a system-wide property.

Device density is one area where optical computing is
constrained by the micron-length scale of the wavelength [26].
The supercontinuum may improve density by performing the
equivalent of wavelength multiplexing and multiple interfer-
ences in a single waveguide, while device complexity such as
addressing would move to the pulse preparation stage. The
pulse preparation may occur further upstream, for example, at

the transmitter in a routing system. In that case, the receiv-
ing supercontinuum would not need any separate information
from the transmitter; the instructions and data would both be
part of the light packet, which itself controls the supercontin-
uum process.

Having proven calculation abilities, the unique wave-
length conversion and continuous computation properties
of supercontinuum greatly expands the optical computing
toolbox.
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