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Collective soliton collision annihilation and related collisional statistics
in a figure-8 Tm-doped fiber laser
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We report an unusual collision-induced collective annihilation of solitons at 2 µm in a figure-8 Tm-doped
fiber laser. The solitons are generated in a unique bidirectional soliton rain state, where the interaction of
heterogeneous vector solitons stimulates deep inelastic collisions. The experiment shows that the solitons activate
four collisional scenarios and eventually are annihilated after an average of three to four collisions, adhering to a
geometric distribution. The collision-annihilation state can be maintained even for certain energy perturbations,
unveiling an extreme soliton characteristic in a large anomalous-dispersion regime.
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I. INTRODUCTION

Solitons, as condensed states of fields or matter, exist
widely in physics [1]. Optical solitons in fibers, because
of their prevalence in laser systems and communication
lines, have been intensively studied in theory and application
[2]. Classical temporal solitons, also known as Kerr soli-
tons or simply solitons, exist in only anomalous dispersive
waveguides. A spontaneous balance between dispersion and
self-phase modulation gives rise to a soliton, which can be de-
scribed as a particlelike state in the solutions of the nonlinear
Schrödinger equation (NSE) and the Ginzburg-Landau equa-
tion (GLE) [3]. In the case of a cavity GLE, the soliton carries
sidebands or a field known as the dispersive wave (DW),
similar to a charged particle’s associated field. The solitons
exhibit various interactions with other light waves, including
unique collision mechanisms with each other [3]. The inter-
actions forms numerous multisoliton states of bound, loosely
bound, and unbound bundles, depending on the forces exerted
by the solitons and the DWs between them [4–7]. The DW,
continuous wave, and background noise can drive the soliton
by varying its strength, duration, phase, and group velocity
(frequency) through moderate interactions [8–13]. A similar
phenomenon also occurs in a dissipative cavity, where non-
stationary solitons in lumped cases vary under a disturbance
but are able to stabilize themselves by periodically shedding
and acquiring DWs, thereby renewing resonant sidebands
[8,12,14,15]. Despite the rare occurrence of quenching in a
strongly dissipative cavity [16], solitons demonstrate overall
robustness, enabling them to withstand various impacts, such
as gain, depletion, dispersion management, and even direct
collision.

Soliton collisions reflect an essential nonlinear interaction
that has many analogs in physics, such as sine-Gordon soli-
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tons [17], matter waves in ultracold atoms [18,19], spatial
solitons [20,21], and collisions between different types [22].
The focus here is on the collision dynamics of fundamen-
tal Kerr solitons from mode-locked fiber lasers, which can
be supported simultaneously by coupled NSEs and GLEs.
Due to the potential of soliton communication, extensive re-
search has been devoted to soliton collision dynamics. Early
on, research on stable orthogonally polarized soliton states
revealed that pairwise solitons in birefringent fibers cou-
ple through a complex nonlinear interaction with oscillating
forces [23], resulting in both elastic and inelastic collisions
[24–36]. The postcollision solitons were predicted by theory
to change in phase, frequency [32–35], polarization (shadow)
[29–31], and amplitude (exchanging energy) [27,32,35,37]. It
was also found that solitons in the collision region interact
like some resonant modes [32,36,38], depending on their ini-
tial phases. Since the introduction of Hirota’s bilinearization
method by Radhakrishnan and Lakshmanan [39], related the-
oretical studies on dual- or multisoliton collisions have been
initiated. They include research on the Manakov model [35],
as well as on higher-order [40–43], four-wave mixed [44],
multimode (> 2) [45,46], and mode-mixed [47,48] coupled
NSEs. Apart from volatile positions, chirps, and amplitude-
dependent phase and frequency shifts [49], there is a robust
common characteristic of the shape-changing intensity re-
distributions after an inelastic collision [50] under strong
environmental perturbations of fiber loss and modified cross-
phase modulation. The good switching property demonstrated
possible applications in soliton-based optical logic gates [51].
Approximation [14,23,52] and numerical [53–56] methods
also help us to understand soliton dynamics. So far, related
simulations have predicted collisionless energy exchange with
third-order dispersion [57], soliton fusion [55] and fission
[54,58], inelastic singlet-molecule soliton collision [59], and
conversation of total polarization [60].

Ten years ago, experimental observations of soliton dy-
namics were rarely conducted due to the lack of effective
ultrafast metrology. However, with the maturity of time-
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resolved spectral technology (the time-stretched dispersive
Fourier-transform method [61,62]), transient intersoliton mi-
crodynamics have recently experienced a resurgence in the
work of Herink et al. [63] and Krupa et al. [64]. Kerr soli-
ton molecules demonstrated highly complex excitations, both
periodic and aperiodic, inside a bound soliton pair associ-
ated with a possible topology protection [63], which inspired
further investigations [65–73]. On the one hand, these experi-
ments illustrated robust elastic soliton collisions independent
of relative phase [65], even through drastic coupling with the
energy exchange [66]. On the other hand, they also indicated
deeply dissipative inelastic collisions, such as soliton fusion
[67]. Additionally, some inelastic singlet-molecule and inter-
molecular collisions were observed as well, involving soliton
acceleration, abrupt molecule momentum changes, bond ex-
change by collision, molecule dissociation and recombination
[68–71], explosionlike chaotic interaction [72], and reversible
transition of Hopf-type bifurcations during the collision of
soliton molecules [73].

Even though elastic collisions commonly occur in cavities,
in some rare extreme cases, the inelastic dissipation may
reform or destroy the soliton state. In the normal dispersion
regime, the dissipative solitons, which are the counterpart of
Kerr solitons, demonstrated a variety of collision phenomena,
including elastic unaltered crossing [59,74–76], as well as
inelastic soliton fusion, annihilation, and explosion [77–79].
Collision annihilation and quenching can also occur for cavity
solitons and microcavity soliton series, depending heavily on
their driving fields [80,81]. On the contrary, Kerr solitons from
mode-locked cavities during collision are milder and less vari-
able. Among the predictions of soliton collisions in Manakov
systems [27,32,35,37], the energy transfer between solitons
and frequency shifts was definitely verified in 2007 [82]. Only
recently was the annihilation or fusion of one colliding soliton
reported [67–69,71], seemingly in agreement with predictions
[32,35]. The inelastic collisions mentioned above commonly
occur in the regime of less stable lasing with significant en-
ergy transfer. The robustness or the regular soliton behaviors
may be an outcome of the conservation of multiple charges
(infinite in ideal cases) derived from integrable NSEs, such
as energy and momentum [33,83]. Conservations still hold
approximately even in dissipative cases of the GLE [14].
The conservations actually provide another lasing pattern with
cycling of solitons but require a balance between soliton
annihilation or quenching and regeneration in a stable dis-
sipative regime. In this scenario, the motional solitons are
greatly weakened, making them fragile to disturbances, which
allows for the observation and exploration of massive soliton
inelastic collisions. For effective experimental observation,
pulse collisions should be controllable and persistent in a
cavity configuration, enabling dual- and even multiple-color
soliton excitation, which might be stable [15,69,84], unstable
(asynchronous pulse trains) [79], or metastable (some weakly
mode-locked states) [68]. However, the drawback of these
choices is that they either yield limited colliding outcomes or
provide inadequate colliding samples. Hence, an appropriate
two-color soliton platform facilitates uncovering large-scale
inelastic correlations and the origins of two types of collision-
induced extreme evolutions: energy depleting (annihilation or
collapse) and heightening (fission, explosion [78,79,85,86]),

FIG. 1. Schematic of the experimental setup of a figure-8 TDF
Laser.

where only the former is considered in this paper. In this study,
we utilize a figure-8 Tm-doped fiber (TDF) laser as a test bed
to create a featured two-color (bidirectional) soliton source
based on our previous work [87]. This soliton source can out-
pour solitons with a fixed frequency difference to initiate the
diverse collision events under consideration. We first generate
the bidirectional soliton rains (SRs) in the TDF laser mode
locked by the nonlinear amplification loop mirror (NALM)
technique. Second, we demonstrate a collective annihilation
of drifting solitons that follows a specific statistical pattern.
Furthermore, it shows that the collision-annihilation state can
self-sustain for a certain collision lifetime.

II. EXPERIMENTAL RESULTS

A. Bidirectional soliton rains

Figure 1 is a sketch of the figure-8 setup of a TDF
laser mode locked by the NALM in our experiment. It con-
tains a NALM cavity (left ring) and a unidirectional right
ring connected by a 2 × 2 coupler (50:50). One end of a
3.5-m-long TDF is spliced with the combiner (COM), con-
nected to a laser diode (LD) source. A 25-m-long 2-µm-band
single-mode fiber (SMF1950, SMF1) and another 100-m-long
ordinary single-mode fiber (SMF-28, SMF2) are added to
the left and right rings, respectively, to increase and allo-
cate the nonlinear phase shift and dispersion, which renders
a net dispersion of about 10.1 ps2 for a total cavity length
of 133 m. The 10% extraction from a 2 × 1 output cou-
pler (OC-1) is used for the following monitoring. Two fiber
polarization controllers (FPC-1, FPC-2) and a polarization-
independent isolator (PI-ISO) are inserted into the light path
to adjust the pulse polarization and cavity loss. This makes the
mode-locking condition rely on both the left ring (NALM)
and the right one. Following OC-1, another 2 × 1 coupler
(OC-2) with a splitting ratio of 20:80 is inserted, and its
20% output port is coupled to an oscilloscope (DSOS104A,
Keysight) or a radio-frequency (rf) analyzer (R&S@FSW,
Rrode-Schwarz) transformed by a high-speed InGaAs pho-
todetector (ET-5000, ETO). The remaining 80% of the output
from OC-2 is for power, spectrum, and autocorrelation ac-
quisition, done, respectively, through an optical power meter
(LP-3A, Physcience Opto-electronies Co., Ltd.), a wavelength
meter (771A, Bristol), and an autocorrelator (Pulse Check
SM1600, APE).
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FIG. 2. Bidirectional SR with (a) the pulse train and its con-
densed phase in the inset, (b) a close-up of f and b solitons in different
colors, (c) the autocorrelation trace, (d) the rf signal, and (e) the
spectrum.

From the TDF laser schematized in Fig. 1, we obtain a bidi-
rectional full SR in a weak mode-locking state, as shown in
Fig. 2. The pulse train in Fig. 2(a) is a typical dual-wavelength
soliton series with a pump power of 4.9 W, generated from
an initial mode-locking state at a threshold pump power of
3 W. The isolated solitons in the “vapor” component of the
SR emerge from both sides of a 4.2-ns-long condensed phase
(inset) with different group velocities, forming a two-color
soliton source. Figure 2(b) shows the enlarged details of
the backward- and forward-drifting solitons, abbreviated as
f solitons and b solitons. They occupy the entire cavity and
eventually collide at 210 ns relative to the trailing edge, de-
noted by a dashed line in Fig. 2(b). The fundamental temporal
resolution and rf signal analysis are presented in Figs. 2(c)
and 2(d), respectively. Since the drifting solitons in the SR
are well fed by a high gain to take up the cavity, the drifting
solitons surpasses the condensed phase by its weight in the
detection of the autocorrelation and spectrum. Therefore, an
estimated pulse width of 3.5 ps characterizes primarily the
drifting solitons and, to a lesser extent, those in the condensed
phase, although they essentially have the same width. These
fluctuating solitons, on the other hand, act as “noise” signals,
reducing the intensities of rf peaks and thus the signal-to-noise
ratio. The fluctuation then accounts for the low rf intensity of
43 dB. The two-color feature of the SR can also be confirmed
by the spectrum in Fig. 2(e), where two typical soliton peaks
appear atop a spectral pedestal [87]. The higher soliton peak
with a shorter wavelength corresponds to the f solitons oc-
cupying most of the time window (440 ns), while the lower
soliton peak is from the short b-soliton train with a longer
wavelength.

B. Soliton collisions

The two-color SR provides an opportunity to observe
postcollision behaviors. It is intriguing to see how two soliton

FIG. 3. (a) Collision diagram of one period and four branch sce-
narios: (b) elastic, (c) collision annihilation, (d) one-sided collision
annihilation (fusion), and (e) collision dissociation, zoomed in on (a).

groups develop when they collide head-on. The following
experiment shows that annihilation cases dominate in the
aftermath of collisions, which clearly deviates from expec-
tations. Under the same polarization control and pumping
conditions as before, a trace evolution of the SR presents
various collision cases in Fig. 3. Figure 3(a) shows the pulse
traces over one period across 16 384 round trips, which are
recorded only every 8 round trips due to a limitation of the
sampling rate. It was found that each drifting soliton group is
quasisteady as a soliton supermolecule, with “atoms” being
bound together. The two quasisteady states persist until they
intersect, illustrating the collective annihilation of the solitons
through multiple collisions. Despite the similar speeds
and densities of the two types of solitons, the position of the
collision wiggles with time due to the nonuniform distribution
of solitons and their varying lifetimes. The observed collision
events that occur in Fig. 3(a) can be classified into four cases,
which are listed in Figs. 3(b) to 3(e). The case in Fig. 3(b)
is a typical elastic collision with an unaltered crossing that
can easily be generated in anomalous dispersion fibers.
The complete collision annihilation is depicted in Fig. 3(c),
representing a highly dissipative scenario in which both
solitons annihilate simultaneously, which has never been
observed in the mode-locking cavity. The case in Fig. 3(d)
is a one-sided collision annihilation or fusion, in which
only one soliton is destroyed after it collides with another
soliton or soliton molecule. Figure 3(a) also contains a special
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FIG. 4. Collision-annihilation statistics for (a) b solitons and (b) f solitons, fitted with corresponding geometry distributions.

collision between a single soliton and a soliton molecule
which was already elaborated on in Refs. [67–69,71]. The
collision in Fig. 3(e) belongs to an inelastic collision (collision
dissociation) without annihilation, a dissociation of a soliton
molecule. In this scenario, the singlet maintains its velocity
and just expels the trailing soliton in the molecule into
another traveling mode, which differs from the common bond
exchange and dissociation described in Refs. [69–71]. Over
the known elastic collisions, no steady energy transfer (dis-
cernible change in intensity) between solitons is found. The
drifting solitons may potentially undergo elastic interactions
from previous collision processes but, ultimately, cannot
escape the fate of disintegration. This collision-annihilation
ending emerges as a different path of the energy balance in the
cycling of SRs.

From Fig. 3, we can see that all the drifting solitons collec-
tively annihilate at the front line (collision zone). However,
the number of collisions of an individual soliton is unpre-
dictable, ranging from 1 to more than 10. There is an apparent
randomness that may arise from variations in coherence and
polarization, which supports a statistical analysis. Assuming
the independence of collisions, the concept of soliton life-
time will give rise to a specific statistical distribution, which
can be supported by collision experiments. In the following
derivation, only a few concise results are presented, with
detailed information provided in the Appendix. Taking α as
the probability of soliton annihilation for each collision and
n − 1 as the number of collisions a soliton undergoes before
annihilation in the nth collision, the survival probability of the
soliton follows a geometric distribution,

P(n) = α(1 − α)n−1. (1)

Therefore, the collision lifetime is an expectation of n,

n̄ =
∑

n

nP(n) = 1/α. (2)

To verify the distribution above, we present the statistics of
soliton annihilation in Fig. 4, resolved from the traces in
Fig. 3. The collision events involving soliton molecules are
estimated based on intensity variations while indistinguish-
able fuzzy traces are excluded. The data conform solidly
to the geometry distributions, and the statistics suggest that
colliding solitons have an annihilation probability of nearly
one third (Fig. 4), equivalent to a collision lifetime of about

3. Figure 4 also indicates that there are differences in the
lifetimes or annihilation probabilities of the two drifting sides.
In addition, both sides consume solitons differently due to
dissimilar soliton densities and lifetimes. A stable collision
front line requires that

ρf�υf n̄f + ρb�υbn̄b = 0, (3)

where the subscripts f and b indicate the f and b solitons,
respectively. In Eq. (3), ρ represents the soliton density, and
�υ is the soliton group velocity relative to the condensed
phase υ. The details for deriving Eqs. (2) and (3) can be found
in the Appendix. If condition (3) is not satisfied, the collision
front line will return to the condensed phase, which changes
into a unidirectional (single-color) SR.

The equilibrium condition of Eq. (3) is hard to meet if the
cavity is incapable of high stability. A support range in the
bidirectional SR regime possibly exists, which can be verified
in the experiment. To this end, we slightly vary the pump
power from 4.8 to 5.0 W to break the energy equilibrium.
A minuscule increase in the pump power leads to a notable
change in the SR composition due to the sensitivity of the rain
state subject to the cavity energy. The variation is not only
the shift of the front line but also an important redistribution
of energy: the shrinking of the condensed phase from 7.2 to
4.2 and 3.5 ns with the increase of pump power from 4.8
to 4.9 and 5.0 W, as seen in Fig. 5(a). It can be understood
as continued energy transfer of the condensed phase at the
trailing edge to the b solitons with the enhancement of pump
power, which pushes the front line backward from 75 to 330 ns
accordingly. This is illustrated in Figs. 5(b)–5(d), where the
rectangular regions indicate the front zones. The energy trans-
fer replenishes the b solitons that are insufficient in number
and makes both densities of the bidirectional drifting solitons
larger. It should be noted that the relative velocity �υb of the b
solitons decreases from −2.75 to −3.42 and, finally, to −3.61
km/s and that (�υf ) of the f solitons goes down along 4.45,
3.63, and 3.51 km/s with the rise of pump power, where the
computation of the group velocities depends on Eq. (A5). The
traces in Fig. 3(a) show that the front line is fairly affected by
the variation of the soliton number and lifetimes. Through an
analysis of the collision dynamics, it is found that the fluctua-
tion width of the front line is proportional to the lifetimes and
inversely proportional to the densities of drifting solitons, as
described in Eq. (A3). As the soliton densities are increased
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FIG. 5. (a) SR trains with width-reduced condensed phases and
shifted front lines under three pump powers and related collision
diagrams with pump powers of (b) 4.8, (c) 4.9, and (d) 5.0 W.

on both sides, the width of the front line shrinks accordingly.
It should be noted that the reduced fluctuation of the soliton
densities also contributes to the narrowing of the front line.
These variations governed by Eq. (3) imply that the equilib-
rium of the collision-annihilation state can be automatically
attained. It is not known why the collisions can be preserved
by internal self-adaption in such an extreme dissipative case.
However, further enhancement of the pump power stops the
two-color lasing.

The two-color SR is also observed in a shorter cavity
(51 m) and a longer cavity (251 m) by removing and adding to
the fibers of SMF-28. The above results can almost be repro-
duced in a large range of cavity lengths with some changes in
the density and group velocity of the drifting solitons. This
means that this special SR state can exist in a wide range
of anomalous dispersion and cavity loss. While the collision
lifetimes have almost constant values in our experiment, it
is conceivable to have a different statistical distribution that
would lead to varying lifetimes in another laser system. A
parametrization of the probability distribution may imply a
fundamental law governing the interaction of vector solitons.
The mechanism and induced statistics of collective collision
annihilation are worth focusing on, which may lead to a
collision-selective technique for soliton manipulation.

C. Polarization difference

Restrained by the polarized cavity elements, the wave-
length difference results in polarization divergence be-
tween the two soliton groups. According to early collision
simulations for passive fibers [27,32,88], polarization is a
critical factor in causing energy variation of solitons. With a
pump of 5.0 W, it is preliminarily tested here using a polar-
ization beam splitter (PBS), inserted after OC-2, as shown in
Fig. 6. When tuning the PBS towards an optimal direction,
it is found that in the channel of the horizontal polariza-

FIG. 6. SR trains through (a) the horizontal and (b) the vertical
OCs of the PBS with (c) a close-up of the drifting f and b solitons
divided by a front (dashed) line and (d) the condensed phases with
corresponding spectra.

tion (port 1), the b solitons reach maximum output while
the f solitons are substantially suppressed. Conversely, in the
vertical channel (port 2), the opposite occurs. This can be
seen in Figs. 6(a) and 6(b), where the front line shifts back-
ward compared to Fig. 5. Figure 6(c) provides the details
of the drifting solitons captured from Figs. 6(a) and 6(b). In
Fig. 6(c), the light extinction is accompanied by wavelength
suppression, indicated by the two-color spectral peaks shown
in the inset of Fig. 6(d). The background SR train, drawn
as black curves, is a polarization-unresolved pulse used as a
reference signal. Figure 6(d) indicates the polarization com-
position of the condensed phase. As expected, the f solitons
gather at the front of the pulse, while the b solitons reside
at the back, where the time calibration of the two polarized
condensed phases is determined by the timing of soliton re-
lease. It can also be seen from the two channels that the
intensities and pulse widths of the main pulses are reduced
as well. The reduction in the durations of the two polar-
ized components suggests a transition of polarization from
the leading edge to the trailing part within the condensed
phase. The two soliton groups are found to be heteroge-
neous because they have different elliptical polarizations, with
their principal axes being nearly orthogonal. However, both
soliton groups can deviate from their original polarizations
over time since the suppression by the PBS can gradually
change.

The annihilation, which is also associated with lumped
cavity modulation, cannot be fully elucidated by the polar-
ization mechanism [67,88,89] or a simple energy transfer
[27,32,44,57,66,82] within the framework of coupled NSEs
and GLEs. An effective explanation of the experiments here
has to depend on a nonintegrable non-Hamilton model,
involving necessary dissipative factors and polarization dy-
namics.

It is expected that the results in this paper will shed
light on the nonequilibrium statistical mechanics of other
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soliton ensembles, such as those in Bose-Einstein condensa-
tion, hydrodynamics, and chemical reactions, when they can
be governed by (“1 + 1”)-dimensional coupled NSEs. Practi-
cally, the collective annihilation mechanism should be further
developed based on its potential impact on soliton-based op-
tical data processing. On the one hand, it can be utilized to
promote soliton-manipulating technology. On the other hand,
we quote Grelu’s concluding remarks from Ref. [90]: “Explor-
ing bifurcations and non-stationary dynamics, beyond being
fun fundamental science, also represents a way to develop
better control strategies.” Hence, understanding how to effec-
tively bypass the SR states or convert them into regular bound
soliton patterns or two-color frequency combs is practically
relevant.

III. CONCLUSIONS

In summary, an intriguing collective collision annihilation
was triggered in a two-color vector SR state inside a figure-8
TDF laser, weakly mode locked under high-gain conditions.
Four soliton collision scenarios emerged from the collision
traces. The statistical analysis demonstrated that two-color
solitons exhibit average annihilation lifetimes between 3 and 4
and maintain self-sustaining collisions without degeneration.
The findings in this paper will enhance our understanding
of the complexity of solitons in collective dissipative dy-
namics and are expected to draw attention to the underlying
mechanism.
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APPENDIX: COLLISIONAL STATISTICS

The geometric distribution has a discrete random variable
X of integers [91], i.e.,

P(X = n) = α(1 − α)n−1, X ∈ Z+, (A1)

where α is the probability of success (annihilation) through
independent Bernoulli trials (collisions). In Eq. (A1), it is
assumed that no soliton will be affected by a past collision
due to its robustness, which makes the colliding solitons mem-
oryless. In fact, phase variations across an elastic collision are
inevitable, which, nevertheless, has negligible relevance in the
collisional statistics here. The expected value of X is

E (X ) = n̄ =
∞∑

n=1

nP(n) =
∞∑

n=1

nα(1 − α)n−1

= −α
d

dα

∞∑
n=1

(1 − α)n = α−1. (A2)

This means a soliton will be annihilated after an average num-
ber of collisions n̄ = 1/α, the average collision lifetime. By a
similar trick, the variance of X can be found to be (1 − α)/α2.

When the collision annihilation remains as an equilibrium
state, the same number of solitons as in the production from
the condensed phase will be exhausted at the same time. It
then stabilizes the front line in the middle of the SR. The num-
ber of solitons entering the front line within a time interval �t
is proportional to the soliton density ρ (the soliton number
in a unit length of fiber) and to the relative group velocity
of solitons �υ in reference to the condensed phase. A stable
front line requires that the number of collisions from both
sides should be the same, i.e., ρ|�υ|n̄�t , where the lifetime
n̄ also represents the effective number of collisions provided
by every soliton. This straightforwardly leads to condition (3),
which serves as the premise for subsequent development.

Referring to the general molecular collision model [92],
the size of the front line is predictable according to the known
probability distribution. The average collisional time inter-
val of one f soliton with two consecutive b solitons differs
from that of one b soliton with two following f solitons, but
it can be uniformly written as 1/(ρb/f�υR), where �υR =
|�υf − �υb| is the relative speed of the two types of solitons.
Here, the probability of soliton annihilation is so high that
the densities of bidirectional solitons can be approximated as
constants. The transit time of one f or b soliton across the front
zone is then

τf/b = n̄f/b

ρb/f�υR
. (A3)

The forward and backward mean free paths have the same
magnitude, which can be derived from Eq. (A3) by a direct
product,

lp = τf/b|�υf/b| = ρf/bn̄f/b|�υf/b|
ρfρb�υR

, (A4)

where it can be seen that the last expression remains
unchanged when switching between the f and b cases, con-
sidering Eq. (3). The width of the front line can be estimated
as the mean free path lp or as an average of the transit times
(τf + τb)/2. If the soliton densities are unevenly distributed,
the front line will curve accordingly.

In the above results, the relative velocities �υf/b/R are a
lot smaller than that of the condensed phase υ and can be
estimated from the collision diagrams. Setting the slope of the
soliton traces in one direction as S, the number of round trips
per second, we can find the number of round trips over the
time when a soliton travels from one side of the condensed
phase to the other side and back to the starting point, i.e.,
R = T S, with T being the cavity round-trip time. This means
that when a soliton travels one round trip forward or backward
relative to the condensed phase, the condensed phase will
circle the cavity by the number of R, as implied by the speed
ratio υ : �υf/b. So we have

�υf/b = υR−1
f/b. (A5)

In our work, the collision lifetime is quite small. It is possi-
ble that the lifetime is greatly enhanced when elastic collisions
dominate. In this case, the discrete distribution will naturally
be replaced by a continuous one. This can be accomplished
by establishing an asymptotic correspondence between the
number of collisions and a spatial dimension. Converting
discreteness to continuity can be thought of as reducing an
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effective lifetime α/m in a limiting process of increasing the
number m. Then, the probability mass function P(n) becomes

Pm(n) = α

m

(
1 − α

m

) n
m m−1

, (A6)

where the number m can be regarded as the maximum number
of collisions that a soliton possibly has in the front zone.
For the degenerate case of one-sided collision annihilation,
in which the lifetime of b solitons approaches zero, the dis-
tribution can be simplified. By introducing a distance variable
z, n/m = ηz with a constant coefficient η, Eq. (A6) tends to a
density function of the exponential distribution,

Pm(n) = αηdz
(

1 − α

m

) m
α
αηz−1 m→∞−−−→ β exp(−βz)dz

≡ f (z)dz, β = αη. (A7)

The survival probability of the f-soliton flux at position z is

F (z) ≡ 1 −
∫ z

0
f (ς )dς = exp(−βz), (A8)

where β represents the “absorption coefficient” of the f soli-
tons and the variable z ranges from the trailing edge, z = 0, to
the leading edge, z = z0, of the condensed phase in the relative
frame. The exponential distribution is then in accord with the
common absorption law (Lambert-Beer law) and gas collision
statistics, such as those in collisional excitation, ionization,
and combination reaction. In a general bidirectional collision-
annihilation case, the soliton densities are position dependent
due to annihilation, i.e., ρf/b(z) = ρ0f/bρ̂f/b(z), where the con-
stants ρ0f/b are the initial densities. Therefore, the number of

collisions n corresponds to two integrations

nf → ρ0b

∫ z

0
ρ̂b(ς )dς, nb → ρ0f

∫ z0

z
ρ̂f (ς )dς. (A9)

ρ0f/b are sufficiently large to be comparable to m, allowing
them to be simply expressed as ηf/bm. In this way, Eq. (3) can
be reformulated as �υf/βf = �υb/βb, where the densities of
solitons in Eq. (3) should be the initial densities ρ0f/b. From
Eq. (A6), the probabilities of annihilation for bidirectional
soliton fluxes evolve into

ff (z) = Nfβf exp
[ − βf

∫ z
0 ρ̂b(ς )dς

]
ρ̂b(z),

fb(z) = Nbβb exp
[ − βb

∫ z0

z ρ̂f (ς )dς
]
ρ̂f (z), (A10)

where Nf/b are the coefficients of distribution normalization
and βf/b = αf/bηb/f . Obviously, the function ff (z) transforms
into Eq. (A7) in the case of one-sided forward collision anni-
hilation with ρ̂b(ς ) → 1. It can easily be found that the stable
soliton densities satisfy

ρ̂ ′
f = −ρ̂f ff , ρ̂

′
b = ρ̂b fb, (A11)

where the prime symbol represents the derivative with re-
spect to z. Due to the complexity of the integro-differential
equation, only the numerical solution of Eq. (A11) is attain-
able. The width of the collisional zone is difficult to calculate
in this case but can be roughly estimated as

lp ∼ β−1
f/b (A12)

based on the exponential distribution.
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