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Model of coherent passive mode locking in a two-section ring-cavity laser
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We propose a simple and convenient analytical model for the description of coherent passive mode locking
in a two-section ring-cavity laser based on the generalized area theorem for the coherent pulse propagation in
a resonant medium with inhomogeneous line broadening. This model is applied to theoretically analyze the
possible regimes of the spatiotemporal dynamics of such a laser together with their stability properties. We
examined the laser dynamics, when varying the energy and phase relaxation times in the media, the gain and
absorption rate in the respective laser sections, as well as the ratio of the transition dipole moments of the
absorber and gain media. As the result, the stability of the coherent mode locking as well as the large flexibility
of the arising laser behavior were shown in wide parameter ranges.
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I. INTRODUCTION

Ultrafast lasers represent the most convenient source of
ultrashort pulses up to the few-cycle duration for most ap-
plications in optical data transmission or the control of
high-speed physical and chemical processes [1–3]. The most
widely used method for the ultrashort pulse generation in
lasers is passive mode locking (PML) [4,5]. This method is
based on the use of a passive nonlinear intracavity compo-
nent (saturable absorber) to ensure the in-phase interference
of multiple longitudinal cavity modes, resulting in a regular
output pulse series. Passively mode-locked lasers are routinely
used nowadays for the generation of trains of femtosecond
light pulses. For example, in recent papers [6–11] the possi-
bility of sub-100-fs pulse generation in semiconductor disk
lasers and vertical-external-cavity surface-emitting lasers was
demonstrated. Moreover, self-starting few-picosecond pulse
generation by means of the passive mode locking has also
been recently achieved in the terahertz range in a semiconduc-
tor laser with multilayer-graphene saturable absorbers [12].

At the same time, the passively mode-locked lasers com-
pletely rely on the incoherent interaction of the produced
pulses with the intracavity media. This means that the ob-
tained pulse duration largely exceeds the dephasing time of
the active media T2 so that the phase matching between mul-
tiple resonant centers in the medium induced by the driving
field rapidly vanishes within the pulse duration. As the result,
such passively mode-locked lasers exhibit certain principal
restrictions on their output parameters. First, the duration of
the produced mode-locked pulses is strongly limited from
below by the value of the phase relaxation time T2 in the
active medium [1,3]. Besides that, incoherent pulse-matter
interaction leads to inevitable energy losses in the laser
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absorber section and only partial energy extraction from the
gain section.

The natural way to overcome these principal limitations
implies the use of the coherent light-matter interaction. In
such a case the pulse duration must be well below the de-
phasing time of the active media T2 and the phase matching
between resonant centers in the medium caused by the pulse
field is now preserved over the pulse duration. The respective
approach for the mode locking in lasers is called coherent
mode locking (CML) and has been actively studied over the
past few decades [13–25]. Sometimes this approach is also
called self-induced transparency mode locking, since in its
standard formulation the generated pulse can propagate in
the laser absorber in the self-induced transparency regime,
i.e., fully inverting the absorber medium at the pulse leading
edge and then fully restoring it to the noninverted state at the
trailing edge [13–15].

Since coherently mode-locked lasers are based on the co-
herent interaction of the generated pulses with the laser media,
such lasers are free of any limitations typical for standard
passively mode-locked ones. Specifically, by means of the
coherent mode-locking, pulses much shorter in duration than
the dephasing time T2 are produced [13–25]. Moreover, it was
even shown that the generation of regular single-cycle pulse
series can be realized in certain laser geometries [16,17,21].

Although the CML has been mainly studied theoretically
so far, several experimental works have also been done. In
particular, the CML regime was successfully experimentally
demonstrated with the gaseous active media, though with
only absorber section operating under the coherent-interaction
conditions [24,25]. At the same time, it should be noted
that the coherent pulse-matter interaction as well as the
self-induced transparency phenomena were experimentally
achieved in many resonant media so far, including solid-state
ones [26–31].

In the treatment of standard (“incoherent”) passive mode
locking in laser systems the coherent effects are commonly
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ignored. However, the ongoing transition to more compact
laser sources and shorter pulse durations urges the need to take
coherent effects in mode-locked laser systems into account
[20,21,28,32–34]. For example, experimental evidence of the
significance of coherent effects was found in Ti:sapphire
laser systems generating femtosecond pulses [34], in quantum
cascade lasers [28] and in gas lasers [33]. In this case, con-
ventional passive mode-locking theories based on incoherent
approaches [35–40] are already invalid and novel theoretical
approaches should be developed.

The theoretical studies of the CML lasers were previ-
ously mainly based on the numerical solution of the laser
Maxwell-Bloch equations. There is a number of analytical
tools developed for the analysis of the passively mode-locked
lasers based on either partial-differential equations [41,42] or
delay differential equations [40,43–46]. However, all these
models are specifically derived on the assumption of the inco-
herent pulse-matter interaction and either completely neglect
coherent effects or treat them as small perturbations [47,48]
and thus cannot be applied for modeling of CML lasers.

Another possible way is given by the area theorem, which
provides a convenient analytical description of the coherent
pulse propagation in an inhomogeneously broadened two-
level resonant medium [49–52]. The area theorem is valid
as long as the Rabi frequency stays well below the laser
carrier frequency, i.e., until the so-called carrier-wave Rabi
flopping regime starts to arise [53,54]. Several extensions of
the standard area theorem were later derived, e.g., for the field
evolution in a single-mode ring cavity [55,56], a single-mode
Fabry-Perot cavity [57], dense medium [58], or pulse propa-
gation in a single-mode waveguide [59].

The area theorem in its standard form was earlier used
for the rough analysis of the dynamics of CML lasers in
Refs. [19,20,23]. However, both the standard area theorem
and its later extensions are barely suitable for the description
of the CML laser operation, since they were derived just for
a single pulse pass through a resonant medium. In real CML
lasers, however, the produced pulse circulates inside the cavity
and the medium excitation left after each pulse passage does
not make it to fully relax until the pulse enters the medium
again after a full round trip inside the cavity. Therefore such
medium-mediated self-action of the produced pulse has to be
properly taken into account.

The respective generalization of the standard area theorem
suitable for the pulse area evolution on the pulse propagation
in a ring cavity was recently derived in Ref. [60]. Still this
generalized area theorem has not yet been applied for the
analytical description of the CML laser dynamics. In Ref. [60]
it was only used for a single-section ring-cavity laser with
the gain section only. At the same time the two-section laser
configuration with the gain and absorber section respec-
tively in general provides much greater variety of the arising
spatiotemporal dynamics. It should be also noted that the com-
prehensive analysis of the CML laser dynamics in dependence
on the media and cavity parameters has not been performed so
far.

In this paper, we develop a model for the dynamics of a
coherently mode-locked two-section laser with a ring cavity.
Suggested model stems from the generalized area theorem
derived in Ref. [60] and allows us to analyze the possible

generation regimes in a general two-section CML laser. We
investigate the dependence of the steady values of the pulse
area, induced medium polarization, and population inversion
in both laser sections on the control parameters. Specifically,
we vary the values of the relaxation times in the intracavity
media, the gain and absorption rate in the respective sections,
as well as the ratio of the transition dipole moments in the
absorber and gain media.

The paper is organized as follows. In Sec. II we work
out our mathematical model based on the generalized area
theorem for a ring-cavity configuration of a two-section CML
laser. Besides that, we determine the required ranges of the
system parameters to be examined. In Sec. III we use the
derived model and provide the detailed analysis of the CML
laser dynamics and the arising steady-state solutions vs the
variations of the control parameters. Finally, paper summary
and concluding remarks are given in Sec. IV.

II. MODEL

For the following analysis we will make use of the area
theorem, which deals with the so-called pulse area, defined as
[49–51]:

�(z) = d12

h̄

∫ +∞

−∞
E (z, t )dt, (1)

where d12 is the dipole moment of the medium resonant transi-
tion, E (z, t ) is the slowly varying envelope of the electric field
in the propagating pulse, and h̄ is the reduced Planck constant.

We assume the following inequalities to hold for the du-
ration of the produced pulse τ , the coherence relaxation time
T2 in the resonant medium (equal to the inversed width of the
homogeneously broadened line), and the inversed width of the
inhomogeneously broadened line �:

�−1 � τ � T2. (2)

Under these conditions the spatial evolution of the pulse area
in a resonant medium is provided by the general relation
[51,52]:

d�

dz
= Fprior + Finduced, (3)

where the first term:

Fprior = 2πω12d12

nphh̄c

∫ +∞

−∞
g(�) d�

∫ τ

0
P0(�, z)ei�t dt ′, (4)

describes the contributions of the medium polarization present
prior the pulse arrival, and the second term,

Finduced = 2πω12d3
12

nphh̄2c

∫ +∞

−∞
g(�) d�

∫ τ

0
dt ′

×
∫ t ′

0
E (z, t ′′) N (�, t ′′, z) ei�(t ′−t ′′ )dt ′′, (5)

provides the contribution of the pulse-induced nonlinear
response of the resonant medium. Here the following pa-
rameters are used: P0 = P(�, z, t = 0) is the slowly varying
envelope of the medium polarization at the time point of
the pulse arrival, ω12 is the medium’s resonant frequency,
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N0 is the volume concentration of two-level resonant cen-
ters, N (�, t, z) is the population inversion in the resonant
medium per unit volume, g(�) is the normalized-to-unity
spectral function of inhomogeneously broadened dipole tran-
sitions in the medium, � is the frequency detuning from the
center of the inhomogeneously broadened line, and nph is
the phase refractive index of the host medium at the pulse
carrier frequency ω12. It is assumed in Eqs. (4) and (5) that the
propagating pulse at the spatial point z begins at t = 0 and is
completely gone by the time point t = τ , so that τ represents
the overall pulse duration. Thereby the time-domain integra-
tion in Eqs. (4) and (5) is performed over the whole duration
of the propagating pulse.

It is well known that in a medium with strongly inhomo-
geneous line broadening the volume polarization left after an
excitation pulse decays on the timescale ∼�−1 due to the so-
called free polarization decay [51], i.e., the dephasing between
oscillating dipoles with different resonant frequencies:∫ +∞

−∞
P0(�, z, t0) ei�(t−t0 ) g(�) d� → 0, if t − t0 � �−1.

(6)

Due to presumed relations Eq. (2) this characteristic time of
the volume polarization decay due to dephasing in our case is
even shorter than the pulse duration. As the time separation
in between consecutive pulses should be larger than the pulse
duration, we find that the induced medium polarization fully
vanishes by the arrival of the next considered pulse. Now com-
paring Eqs. (4) and (6) one can see that inequalities Eq. (2)
lead to vanishing of the first term in the right-hand side of the
evolution equation Eq. (3):

Fprior = 0. (7)

The second term in the right-hand side of Eq. (3) under the
conditions Eq. (2) gets reduced as follows [51,52,58]:

Finduced → 2π2ω12g(0)d12

nphh̄c

·[P(0, z, t = τ ) − P(0, z, t = 0)]. (8)

Using the expression for P(0, z, t = τ ) derived in Ref. [60]
and combining Eqs. (3), (7), and (8) we end up with:

d�

dz
= α

[
N (0, z, t = 0) sin �(z)

−2P(0, z, t = 0)

d12
sin2 �(z)

2

]
, (9)

with the coupling factor:

α = 2π2ω12d2
12g(0)

nphh̄c
.

Having obtained the evolution equation for the pulse area
�(z), we now turn to a pulse circulating inside a ring cavity in
the coherent light-matter interaction conditions. Let us denote
the spatial dependence of the pulse area at the nth round trip as
�n(z) and in-resonance components (i.e., with zero frequency
detuning � = 0) of the population inversion and the induced
medium polarization after n full round trips just before the
pulse arrives to the spatial point z at the (n + 1)-th round

trip as Na/g,n(z) and Pa/g,n(z). Here and in the following the
subscript “a” refers to the absorber section and the subscript
“g” refers to the gain section.

We assume that, although the macroscopic medium polar-
ization rapidly vanishes after the pulse passage due to the free
polarization decay, the medium excitation for the resonant
centers at the pulse carrier frequency (i.e., ones with zero
frequency detuning from the pulse central frequency) does
not yet relax until the next pulse arrival after a full round
trip in the cavity. The explicit equations for the evolution of
the induced medium polarization and the population inversion
against both the longitudinal coordinate z and the number of
iteration n (i.e., the number of round trips) were derived in
Ref. [60].

Then putting these equations together with the Eq. (9) for
the dynamics of the pulse area we get the model for the unidi-
rectional pulse circulation inside a ring cavity in the following
form:

d�a/g,n+1(z)

dz
= αa/g

[
Na/g,n(z) sin �a/g,n+1(z)

−2Pa/g,n(z)

d12,a/g
sin2 �a/g,n+1(z)

2

]
,

where 0 � z � Lcav,

Na/g,n+1(z) =
[

Na/g,n(z) cos �a/g,n+1(z)

−Pa/g,n(z)

d12,a/g
sin �a/g,n+1(z)

]
(10)

· e−Trt/T1,a/g + N0,a/g(1 − e−Trt/T1,a/g ),

Pa/g,n+1(z) = [Pa/g,n(z) cos �a/g,n+1(z) + d12,a/g

· Na/g,n(z) sin �a/g,n+1(z)]e−Trt/T2,a/g,

where 0 � z � Labsorber / gain,

with the cavity length Lcav; the length of the absorber section
Labsorber; the length of the gain section Lgain; the cavity round-
trip time Trt; the dephasing time T2,a/g and the lifetime of the
excited level T1,a/g in the absorber and gain, respectively;
the transition dipole moments in the absorber and gain d12,a/g;
the coupling factors αa/g; the pumping level in the gain
medium N0,g > 0; and the equilibrium population inversion
in the absorber (absorption rate) N0,a < 0.

Equations for the evolution of the induced medium polar-
ization and the population inversion in Eq. (10) were derived
in Ref. [60] by the direct integration of the two-level Bloch
equations with zero frequency detuning � = 0 at each spatial
point z over a single full round trip in the ring laser cavity.
For this we made use of the relation Eq. (2) between the
pulse duration and the medium relaxation times. First, over the
pulse duration the relaxation terms were neglected, what gives
the well-known harmonic solution for the medium quantities
[the very first expressions in parenthesis in the right-hand
sides of equations for Na/g,n+1(z) and Pa/g,n+1(z) in Eq. (10)].
Afterwards, as the generated pulse at each spatial point z is
gone, the two-level Bloch equations are simply integrated over
the time interval Trt − τ ≈ Trt assuming no electric field. The
respective solution for this case simply yields the exponential
decay of the medium polarization to its initial zero value with
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Gain

Absorber
M

FIG. 1. The scheme of the considered two-section ring-cavity
laser with the output mirror M; the arrows show the direction of the
unidirectional field propagation.

the decay time T2 and the exponential decay of the population
inversion to its stable value N0,a/g with the decay time T1 [the
exponential factors in the right-hand sides of equations for
Na/g,n+1(z) and Pa/g,n+1(z) in Eq. (10) and the second term in
the right-hand side of the equation for Na/g,n+1(z)].

For a two-section laser Eq. (10) has to be supplemented
with the relations between the output and input values of the
pulse area in both sections. Namely, for a laser arrangement

like the one sketched in Fig. 1, the initial pulse area in the
absorber is

�a,n+1(0) = r md �g,n(Lgain), (11)

and the initial pulse area in the gain is

�g,n+1(0) = �a,n(Labsorber )/md , (12)

where r is the amplitude reflection coefficient of the output
cavity mirror and we have explicitly introduced the new vari-
able md for the ratio of the transition dipole moments in both
media:

md = d12,a

d12,g
. (13)

It should be noted here that in the limit T1, T2 � Trt the
population inversion and the induced medium polarization
fully relax to their equilibrium values Na/g,n(z) = N0,a/g and
Pa/g,n(z) = 0 during the round-trip time. The equation for the
pulse area in Eq. (10) in this simplest case reduces to the
classic one [50–52]:

d�n+1(z)

dz
= αa/gN0,a/g sin �n+1(z), 0 � z � Lcav. (14)

Fortunately, the only differential equation for the pulse
area �n+1(z) in the model Eq. (10) does permit the general
analytical solution as:

tan

[
�a/g,n+1(z)

2

]
= tan

[
�a/g,n+1(0)

2

]
· eαa/g

∫ z
0 Na/g,n(z′ )dz′ ·

{
1 + αa/g

d12,a/g
tan

[
�a/g,n+1(0)

2

]

·
∫ z

0
Pa/g,n(z′) eαa/g

∫ z′
0 Na/g,n(z′′ )dz′′

dz′
}−1

, 0 � z � Labsorber / gain. (15)

Using the obtained laser model [Eqs. (10) and (15)], one
can readily obtain the solutions �n+1(z), Pa/g,n+1(z), and
Na/g,n+1(z) corresponding to the (n + 1)-th round trip, pro-
vided that the functions for the nth round trip �n(z), Pa/g,n(z),
and Na/g,n(z) are already known. We fix the initial values of the
functions to be

�0(z) = 0, 0 � z � Lcav,

Pa,0(z) = 0, 0 � z � Labsorber,

Na,0(z) = N0,a, 0 � z � Labsorber,

Pg,0(z) = 0, 0 � z � Lgain,

Ng,0(z) = N0,g, 0 � z � Lgain.

(16)

Thus we end up with the initial-value problem for the sys-
tem of equations composed of the direct equations for the
pulse area �n+1(z) Eq. (15) and four direct equations for
the medium quantities Pa/g,n+1(z) and Na/g,n+1(z) in Eq. (10),
which can be easily solved.

The derived model could be, however, simplified even
further, if assuming the induced medium polarizations and
the population inversions to negligibly vary across the whole
length of the respective laser sections. This means that one
ignores the spatial dependencies of the medium quantities
and approximates them as roughly constant in space, i.e.,

Pa/g,n(z) ≈ const and Na/g,n(z) ≈ const. In this case we can
simply calculate the integrals over the spatial variable z in
Eq. (15), which yields:

tan

[
�a/g,n+1(z)

2

]
= tan

[
�a/g,n+1(0)

2

]
eαa/gzNa/g,n

·
{

1 + Pa/g,n

d12,a/gNa/g,n
tan

[
�a/g,n+1(0)

2

]

· (eαa/gzNa/g,n − 1)

}−1

,

0 � z � Labsorber / gain, (17)

with the same relations at the boundaries of each laser section:

�a,n+1(0) = r md �g,n(Lgain),

�g,n+1(0) = �a,n(Labsorber )/md .

When fixing z = Labsorber or z = Lgain in the respective sec-
tions, the obtained Eq. (17) together with the equations for
the medium evolution in Eq. (10) (here one can take the pulse
area, for instance, equal to the arithmetic mean of its values at
the boundaries of each section) form a simple mapping for the
values of the pulse area and the medium quantities expressed
through their values at the previous round trip. Therefore
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one can equally use both the general model Eq. (10), espe-
cially for calculating the spatially extended functions, and
the reduced mapping Eq. (17), which is particularly suit-
able for analyzing the parameter dependencies of the stable
solutions.

Let us now specify the parameter ranges, where one should
solve the system Eq. (10). First, for small-enough gain in the
laser no lasing is to appear. To be more specific, one can easily
see that the growth rate for the small values of the pulse area
in the gain section is given as eαgLgN0,g , while the respective
decay rate in the absorber section is eαaLaN0,a < 1. The lasing
can start, as long as the net amplification of a small field
perturbation exceeds the losses on the reflection at the output
mirror M. Therefore we end up with the following expression
for the lasing threshold:

r eαgLgN0,g+αaLaN0,a = 1. (18)

Hence, only for those values of the parameters r, αgLgN0,g,
and αaLaN0,a, which give the left-hand side of Eq. (18) greater
than 1, should the CML generation be investigated.

Next, it is important to determine the values of the coher-
ence relaxation rate in the medium T2, where the CML regime
can exist. As multiple studies of the passive mode locking
have demonstrated, for the following ratio between the values
T2 and Trt:

T2 � Trt,

the laser naturally tends to operate in the standard (incoherent)
passive mode-locking regime so that the duration τp of the
produced mode-locked pulse obeys the inequalities:

T2 � τp � Trt.

In the opposite case of a very short round-trip time:

Trt � T2

(this case corresponds, for instance, to semiconductor vertical-
cavity surface-emitting lasers) the pulsed dynamical regime
with τp < Trt cannot set in, since the medium relaxation is
negligibly small over the round-trip time and thus cannot
promote the onset of the mode locking. Instead, the laser in
this case is to operate in the single-longitudinal mode regime
with the characteristic time T̃ :

Trt � T2 � T̃ .

Thus we are mainly interested in the following parameter
range for the phase relaxation time T2:

T2 ∼ Trt. (19)

In this case it is reasonable to expect the onset of the coherent
mode-locking regime with the pulse duration τp:

τp � T2 ∼ Trt,

so that the pulse indeed coherently interacts with the intracav-
ity medium.

III. DYNAMICS OF A TWO-SECTION
RING-CAVITY LASER

Having derived the model Eq. (10) for coherent mode
locking, we proceed with applying this model to analyze the

FIG. 2. The steady-state solution for the pulse area �∗ at the end
of the gain section �g(Lgain ) vs the parameters Trt/T1 and αgLgN0,g;
other parameters are r = 0.95, md = 1, Trt/T2 = 1, and αaLaN0,a =
−0.8αgLgN0,g.

possible dynamical regimes in such lasers. In our treatment we
consider a two-section ring cavity with the unidirectional field
propagation, as schematically illustrated in Fig. 1. All mirrors
are assumed fully reflecting, except for the output mirror
M possessing the amplitude reflection coefficient r = r(ω12)
at the pulse carrier frequency ω12. The unidirectional field
propagation in the cavity can be ensured, e.g., by placing a
respective optical switch into the cavity.

First we examine the case of identical media both in
the gain and absorber sections, what implies md = 1, T1,g =
T1,a = T1, and T2,g = T2,a = T2. The control parameters to be
varied in this case include the dimensionless values αaLaN0,a,
αgLgN0,g, Trt/T1, Trt/T2, and r. We solve the first equa-
tion in the system Eq. (10) using the fourth-order Runge-Kutta
method.

Figure 2 shows the steady values of the pulse area �∗
at the output of the gain section, as the parameters Trt/T1

and αgLgN0,g are varied. The absorption rate in the absorber
section is fixed here according to the relation αaLaN0,a =
−0.8αgLgN0,g to meet the lasing criteria Eq. (18).

In the whole considered range of the pulse parameters
the laser rapidly approaches a stable steady regime with the
constant values of both the pulse area at the end of both laser
sections and the constant values of the medium quantities
at each round trip in the cavity. A respective example is
shown in Fig. 3, where the evolution of the pulse area and the
medium quantities is plotted as the functions of the number
of round trips in the cavity. Initially both media were taken
in the equilibrium state with no induced polarization, fully
ground-state population in the absorber N0,a = −N0, and fully
inverted population in the gain N0,g = N0. The initial value of
the pulse area at the entrance of the absorber section at the first
round trip was taken �0 = 0.001π . One can see that the sys-
tem afterwards evolves towards the steady state and actually
reaches it after ≈50 round trips in the cavity. Similar behavior

033519-5



ANTON PAKHOMOV AND ROSTISLAV ARKHIPOV PHYSICAL REVIEW A 109, 033519 (2024)

FIG. 3. The evolution of the pulse area at the end of the absorber
�a and at the end of the gain �g vs the number of round trips
in the cavity n together with the respective values of the medium
polarization Pa, Pg and the population inversion Na, Ng; the parame-
ters are r = 0.95, md = 1, Trt/T1 = 1, Trt/T2 = 1, αgLgN0,g = 1, and
αaLaN0,a = −0.8. The initial values of the pulse area �0 = 0.001π .

of the temporal evolution of the medium quantities and the
pulse area, as the one depicted in Fig. 3, is also obtained for
any other values of the control parameters in Fig. 2.

As the gain level and the ratios Trt/T1, Trt/T2 increase, the
stable value of the pulse area tends towards π : �∗ → π . This
finding is in agreement with the result of the paper Ref. [23],
where the same was obtained in the limit Trt � T1, T2. How-
ever, in the range Trt/T2 ∼ 1, the pulse area stays well below
π due to the slow medium relaxation, as can be seen in Fig. 2.
It should be noted that the value of �∗ = π corresponds to the
stable value of the pulse area in the gain section only. At the
same time the stable value of the pulse area in the absorber
would be either 0 or 2π . Thus the shaping actions of both
media in this case oppose each other, but due to the larger
gain rate caused by the condition Eq. (18) in the resulting
steady-state laser operation the stable pulse area value still
approaches the one for the gain medium �∗ → π .

In Fig. 4 we depict a similar diagram for the steady values
of the pulse area �∗ at the output of the gain section but now
with the parameters Trt/T1 and Trt/T2 varied. One can see that
the ratio Trt/T2 turns out to also have pronounced effect on the
stable value �∗.

Next, we move on to the case of different media in both
laser sections. At the same time it is assumed that the resonant
frequencies in the gain and absorber media coincide or at least
are close enough to each other. Then we can still use the
generalized area theorem Eq. (10) but with different medium
parameters in both sections.

We start here with the case where the ratio of the transition
dipole moments in the absorber and gain media equals 2:
md = 2. For simplicity, we first suppose equal values of the
relaxation variables T1,g = T1,a = T1, T2,g = T2,a = T2. The
laser layout with the transition dipole moments in the absorber
being twice larger than in the gain is the most preferable
one and was mainly considered in most earlier studies of the
coherent mode-locking phenomena [13–22]. The reason for it

FIG. 4. The steady-state solution for the pulse area �∗ at the end
of the gain section vs the parameters Trt/T1 and Trt/T2; other parame-
ters are r = 0.95, md = 1, αgLgN0,g = 1, and αaLaN0,a = −0.8.

is that for such specific value of the ratio md = d12,a/d12,g = 2
the stable π pulse in the gain medium at the same time
represents the stable 2π pulse in the absorber medium. As
the result, the separate action of each of laser media drives
the pulse area to the same steady value. In contrast, for other
values of the ratio md = d12,a/d12,g 
= 2 the stable values of
the pulse area in each medium separately would be different,
so that the system tends to the steady regime, when the actions
of both media balance each other.

Figure 5 demonstrates the dependence of the steady values
of the pulse area �∗

a at the output of the absorber section vs
the parameters Trt/T1 and αgLgN0,g, similarly to the diagram
in Fig. 2 for the ratio md = 1. The relation between the gain

FIG. 5. The steady-state solution for the pulse area �∗
a at the

end of the absorber section vs the parameters Trt/T1 and αgLgN0,g;
other parameters are r = 0.95, md = 2, Trt/T2 = 1, and αaLaN0,a =
−0.8αgLgN0,g.
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FIG. 6. The steady-state solution for the population inversion
N∗

a in the absorber section vs the parameters Trt/T1 and αgLgN0,g;
other parameters are r = 0.95, md = 2, Trt/T2 = 1, and αaLaN0,a =
−0.8αgLgN0,g.

and absorption rates in both laser sections is again taken as
αaLaN0,a = −0.8 αgLgN0,g in order to meet the lasing condi-
tion [Eq. (18)].

As it could be intuitively expected from the above, the
stable value of the pulse area at the output of the absorber
section �∗

a is to go to 2π , with the corresponding value at the
output of the gain section �∗

g tending to π . As can be seen
from the diagram in Fig. 5, the system indeed approaches this
values as long as the gain rate sufficiently exceeds the lasing
threshold Eq. (18) and the population inversion recovery is
not too slow, namely at least Trt/T1 ≈ 1. When the gain level
is close to the lasing threshold and the population inversion
recovery is relatively slow, namely the ratio Trt/T1 is well
below 1, the steady values of the pulse area constitute just
a fraction of the values �∗

g = π, �∗
a = 2π .

In Fig. 6 the steady-state values of the population inversion
in the absorber section are plotted for the parameters from
Fig. 5. In accordance with Fig. 5, for the pumping rate well
above the lasing threshold and for the fast recovery of the
population inversion the stable value of the absorber popula-
tion tends to its initial value N0,a, since, as discussed above,
the pulse propagation in the absorber section in this case
approaches the 2π -pulse dynamics. In the case of very slow
inversion recovery, i.e., Trt � T1, as can be seen in Fig. 6, the
stable value of the population inversion goes to zero regardless
of the pumping rate. The respective steady value of the pulse
area in this limit in Fig. 5 goes well below π . Thus, with
so slow absorption recovery the laser system only manages
to support the temporal variations of the population inversion
nearby the zero value.

At the same time the dependence of the steady-state values
of the population inversion in the gain section on the same
control parameters exhibits significant differences. The anal-
ogous diagram for the gain medium is plotted in Fig. 7. One
can see that in Fig. 7 the steady value of the gain level shows
almost no dependence on the pumping level αgLgN0,g and is

FIG. 7. The steady-state solution for the population inversion
N∗

g in the gain section vs the parameters Trt/T1 and αgLgN0,g;
other parameters are r = 0.95, md = 2, Trt/T2 = 1, and αaLaN0,a =
−0.8αgLgN0,g.

primarily determined solely by the inversion recovery time
T1. The faster this population inversion recovers, the closer
the stable gain value comes to the initial pumping level N0,g.

Let us now consider another value of the ratio of the
transition dipole moments in the absorber and gain media,
namely md = 3. As before, we take for the sake of simplicity
the equal values of the relaxation times T1,g = T1,a = T1 and
T2,g = T2,a = T2. The choice md = 3 is not an accidental but
is inspired by the specifics of the coherent pulse propagation
in accordance with the classical area theorem Eq. (14). As
was first noticed in Ref. [51] for the classical area theorem
Eq. (14), in order to achieve the pulse compression on its
coherent propagation in the absorbing medium, the initial
pulse area has to fall into the range (2π ; 3π ). For smaller
initial pulse area the pulse duration in the absorber would
grow. At the same time the pulse compression in the gain
naturally occurs for the initial pulse area in the range (0; π ),
as the initial pulse evolves towards π pulse while growing in
amplitude and simultaneously getting compressed in duration.
In the context of the coherent mode locking in lasers, it means
that one could expect to achieve the shortest output mode-
locked pulses when choosing the intracavity media to obey
the ratio of the dipole moments md = 3. Indeed, from the
above it could be expected that at least within the classical
area theorem Eq. (14) the pulse area in the gain would grow
to π , while in the absorber it would decline in the range
(2π ; 3π ). In both sections, therefore, the propagating pulse
would experience temporal compression.

The respective dependence of the steady values of the pulse
area �∗

a at the output of the absorber section on the parameters
Trt/T1 and αgLgN0,g is depicted in Fig. 8. Again, we fixed the
gain and absorption rates in both laser sections as αaLaN0,a =
−0.8 αgLgN0,g. One can see that if the inversion recovery is not
too slow, then the pulse area indeed attains the steady values in
the range (2π ; 3π ). The analogous diagram for the pulse area
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FIG. 8. The steady-state solution for the pulse area �∗
a at the

end of the absorber section vs the parameters Trt/T1 and αgLgN0,g;
other parameters are r = 0.95, md = 3, Trt/T2 = 1, and αaLaN0,a =
−0.8αgLgN0,g.

�∗
g at the output of the gain section is provided in Fig. 9. Here

the pulse area tends to the stable value equal to π . The overall
view of Fig. 9 appears qualitatively similar to the diagram for
�∗

g in Fig. 2 for the ratio md = 1. At the same time one can see
that, as the pumping rate N0,g exceeds the lasing threshold, the
steady values of the �∗

g in Fig. 9 approach π much faster, as
compared to Fig. 2. The reason for that is the contribution of
the absorber, namely, while for md = 1 the pulse area in the
absorber goes to 0, for md = 3 the stable value of the pulse
area in the absorber alone would be 2π , what yields 2π/3
after rescaling to the gain medium parameters according to
Eq. (12) (as the transition dipole moments differ by the factor

FIG. 9. The steady-state solution for the pulse area �∗
g at the

end of the gain section vs the parameters Trt/T1 and αgLgN0,g;
other parameters are r = 0.95, md = 3, Trt/T2 = 1, and αaLaN0,a =
−0.8αgLgN0,g.

FIG. 10. The spatially varying solutions for the pulse area
�a(z),�g(z) and the medium polarization Pa(z), Pg(z) and the pop-
ulation inversion Na(z), Ng(z) in both laser sections in the steady
operation regime; the parameters are r = 0.95, md = 1, Trt/T1 = 0.1,
Trt/T2 = 1, αgLgN0,g = 1, and αaLaN0,a = −0.8.

of md = 3). As the result, the steady values of �∗
g get close to

π for much smaller pumping levels.
Let us now take a closer look at the spatial extension of

the pulse area and the medium quantities. We proceed there-
fore with the analysis of the spatially extended solutions of
Eq. (10). Figure 10 shows examples of the obtained spatially
extended solutions for the parameters md = 1, Trt/T1 = 0.1.
The functions for the absorber section are displayed vs the
rescaled coordinate z/La and the functions for the gain sec-
tion are plotted vs the rescaled coordinate z/Lg. The laser
system in this case turns out to rapidly evolve towards the
steady distributions from Fig. 10. As can be seen in Fig. 10,
the pulse area in the steady regime monotonously grows in the
gain medium towards π and monotonously decreases in the
absorber medium, similarly to the dynamics predicted within
the classical area theorem [51]. Still the achieved values of the
pulse area even in the gain in Fig. 10 is just a small fraction of
π due to the slow inversion relaxation.

Figure 11 illustrates the spatially extended solutions for
md = 1 and much faster relaxation of the inverted population
Trt/T1 = 1, i.e., the parameters of Fig. 3. As Fig. 3 shows the
laser system in this case rapidly reaches the steady regime.
The performed solution with the spatial distribution has led
to the same result. The resulting steady spatial solutions in
Fig. 10 perfectly match those from Fig. 3. Because of the
increased recovery rate of the gain as compared to Fig. 10,
the steady values of the pulse area appear to be much closer
to π . In general, our numerical studies have shown that fur-
ther increasing the value Trt/T1 leads to the pulse area values
approaching π , in full agreement to the diagram in Fig. 2.

In Fig. 12 the similar steady spatially extended solutions
are demonstrated for the same parameters as in Fig. 10, ex-
cept for the ratio md increased to md = 2. For this ratio the
stable area values in both media should in fact coincide, as
�g = π simultaneously means �a = 2π . However, due to the
slow gain recovery during the round-trip time Trt/T1 = 0.1
the pulse area in the gain section does not get over even the
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FIG. 11. The spatially varying solutions for the pulse area
�a(z),�g(z) and the medium polarization Pa(z), Pg(z) and the pop-
ulation inversion Na(z), Ng(z) in both laser sections in the steady
operation regime; the parameters are r = 0.95, md = 1, Trt/T1 = 1,
Trt/T2 = 1, αgLgN0,g = 1, and αaLaN0,a = −0.8.

value π/2. Hence, the respective pulse area in the absorber
is below π and decreases on propagation similar to what is
predicted by the classical area theorem [51].

If the gain recovery during the round-trip time gets in-
creased to the value Trt/T1 = 1, then the situation changes.
Now the gain level in the steady operation regime turns out
to be sufficient to assure the pulse area to reach π in the
gain section. The respective simulation results are plotted in
Fig. 13. At the same time, as this pulse enters the absorber
section, its pulse area calculated through the transition dipole
moment of the absorber with Eq. (1) almost equals the stable
value 2π . This leads in fact to very fast convergence of all
spatially varying functions to the steady ones in Fig. 13.

Finally, Fig. 14 shows the spatially varying solutions in
the steady regime with the ratio of the dipole moments

FIG. 12. The spatially varying solutions for the pulse area
�a(z),�g(z) and the medium polarization Pa(z), Pg(z) and the pop-
ulation inversion Na(z), Ng(z) in both laser sections in the steady
operation regime; the parameters are r = 0.95, md = 2, Trt/T1 = 0.1,
Trt/T2 = 1, αgLgN0,g = 1, and αaLaN0,a = −0.8.

FIG. 13. The spatially varying solutions for the pulse area
�a(z),�g(z) and the medium polarization Pa(z), Pg(z) and the pop-
ulation inversion Na(z), Ng(z) in both laser sections in the steady
operation regime; the parameters are r = 0.95, md = 2, Trt/T1 = 1,
Trt/T2 = 1, αgLgN0,g = 1, and αaLaN0,a = −0.8.

md = 3 and the slow gain recovery Trt/T1 = 0.1. Here the
slow-enough gain recovery again results in the steady pulse
area in the gain medium well below π . Specifically, the largest
pulse area at the end of the gain section is below 2π/3r,
so when this pulse enters afterwards the absorber section, its
pulse area calculated through the transition dipole moment of
the absorber with Eq. (1) appears below 2π . As a result, we get
the monotonously growing pulse area in the absorber towards
2π , as can be seen in Fig. 14. Since the steady pulse area
grows in both laser sections, the convergence to this steady
operation happens significantly faster than it would be with
enhanced gain recovery.

With increasing the gain recovery rate to Trt/T1 = 1, the
steady value of the pulse area in the gain becomes close to π ,
as shown in Fig. 15. As the result in the absorber section the

FIG. 14. The spatially varying solutions for the pulse area
�a(z),�g(z) and the medium polarization Pa(z), Pg(z) and the pop-
ulation inversion Na(z), Ng(z) in both laser sections in the steady
operation regime; the parameters are r = 0.95, md = 3, Trt/T1 = 0.1,
Trt/T2 = 1, αgLgN0,g = 1, and αaLaN0,a = −0.8.
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FIG. 15. The spatially varying solutions for the pulse area
�a(z),�g(z) and the medium polarization Pa(z), Pg(z) and the pop-
ulation inversion Na(z), Ng(z) in both laser sections in the steady
operation regime; the parameters are r = 0.95, md = 3, Trt/T1 = 1,
Trt/T2 = 1, αgLgN0,g = 1, and αaLaN0,a = −0.8.

pulse area decreases in the range (2π ; 3π ) towards the stable
value 2π .

Last, we consider the case of unequal and strongly differing
relaxation times T1 in the gain and absorber media. To be
specific, we take the case of a slow absorber having the ab-
sorption recovery rate T1,a several orders of magnitude larger
that the gain recovery rate T1,g. As the result, in this case the
absorption rate makes it to recover to a much lower value than
in the case of the fast absorber. Hence, the contribution of the
absorber section to the shaping of the produced mode-locked
pulse is reduced, while the role of the gain section becomes
the major.

As our numerical simulations demonstrate, the resulting
dynamics when taking such a slow absorber does not un-
dergo any qualitative differences. Still the exact values of the
achieved pulse area in the steady lasing regime are altered
and get closer to their stable values in the gain section. This
effect is especially pronounced when the stable pulse areas in
both sections differ, like for m = 1 above. The correspond-
ing diagram is plotted in Fig. 16 for the pulse area at the
end of the gain section for m = 1 and a slow absorber with
T1,a = 100 T1,g. From the comparison of Figs. 2 and 16 one
can indeed see that with a slow absorber the pulse area in
the gain medium much faster reaches the π value due to the
major role of the gain section in the mode-locking dynamics in
this case. Similar reasoning holds also, e.g., for the m values
nearby m = 3. Inversely, if m = 2, so that the stable values
of the pulse area in both sections coincide, a slow absorber
leads to the slower convergence to that stable value, since
instead of the joint action of both laser sections just the gain
section mainly contributes now.

In summary, the proposed approach possesses some natural
limitations. Specifically, it solely deals with the pulse area
Eq. (1) to describe the dynamics of the electric field inside the
laser cavity. At the same time the electric field strength E (z, t )
appears to be completely inaccessible within the framework
of the developed model. As the result, one cannot explicitly

FIG. 16. The steady-state solution for the pulse area �∗ at
the end of the gain section �g(Lgain ) vs the parameters Trt/T1

and αgLgN0,g in the case of a slow absorber: T1,a = 100 T1,g;
other parameters are r = 0.95, md = 1, Trt/T2 = 1, and αaLaN0,a =
−0.8αgLgN0,g.

determine the shape of the generated mode-locked pulses.
Similarly, such pulse parameters, as the pulse duration or the
pulse amplitude, stay in fact unknown, as being veiled by the
value of the pulse area Eq. (1). In order to get these quantities
though one would need to run the numerical solution of the
full system of Maxwell-Bloch equations for the electric field
and the intracavity media.

However, the derived model for coherent mode locking
allows to easily study the general properties of the lasing dy-
namics. In particular, it is able to predict the possible regimes
of the laser operation and readily perform their stability
analysis. Besides, the parameter dependencies can be easily
investigated. This is of special importance as even the above
considered two-section laser possesses quite a large number of
control parameters, related to the media properties, pumping,
and the cavity. Therefore studies of the laser dynamics vs
the variation of certain parameters turn out in high demand.
Solving the full system of Maxwell-Bloch equations for each
parameter set would require huge computational resources,
especially when many laser parameters are to be scanned. In
contrast, the suggested above model can handle this task in an
elegant and utterly simple way.

IV. CONCLUSION

We have come up with a convenient and easy-to-use ana-
lytical model for the dynamics of the coherent passive mode
locking in two-section lasers with a ring cavity. We would like
to note that to the best of our knowledge there have been no
analytical tools developed so far for the analysis of the truly
coherent pulse propagation in laser cavity setups.

The proposed model relies on the generalized area theorem
for the coherent pulse propagation through an arbitrarily pre-
excited resonant medium. The obtained model consists of the
direct algebraic equations for the induced polarization and the
population inversion of both gain and absorber laser media
at each spatial point and at each round trip inside the cavity.
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These expressions are coupled to an equation for the spatially
varying pulse area of the generated pulse �(z).

Remarkably, the evolution equation for the pulse area can
either be a first-order differential one, or it can be integrated
and put to the integral form. In the latter case we end up with
no differential equations at all. As we have demonstrated, it
is possible to go even further with simplifying the model, if
making an assumption of negligibly varying medium quanti-
ties over the entire length of the respective laser sections. As
we have shown by solving the model in its general form, such
approximation is reasonably justified in almost the whole con-
sidered range of laser parameters. On such an assumption, the
spatial integrals of the medium quantities get largely reduced,
so that we eventually arrive to a set of explicit equations for
the pulse area and medium parameters at the next round trip
expressed directly through their values at the previous round
trip.

We have applied our model to examine in details the spa-
tiotemporal dynamics of a two-section laser in the regime of
the coherent mode locking. We have specifically investigated
the dependence of the arising stable pulse generation on the
parameters of the active media and the laser cavity.

For a ring-cavity two-section laser it was demonstrated
that the steady stable regime is always reached in the whole

considered range of the varying parameters, including the
medium relaxation times T1 and T2, the pumping rate in the
gain section N0,g and the ratio of the transition dipole moments
in both media md . The last parameter, i.e., the ratio md defined
by Eq. (13), was found to be of key importance here, as it
determines the range of the achievable values of the pulse area
�(z) in the arising steady generation.

It is particularly remarkable that the laser system operat-
ing in such a coherent mode-locking regime always rapidly
evolves towards its stable steady-state lasing. We have not
actually been able to find any instabilities in the derived model
as well as any periodic or other oscillating solutions. These
findings therefore could be indicative of the superior relia-
bility of coherently mode-locked lasers. Hence, in our view
the paper findings can promote the pursuit of the creation
of ultracompact laser sources of ultrashort pulses where the
coherent effects are to play the key role in the lasing onset.
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