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High-harmonic generation (HHG) has become a multipurpose source of coherent XUV radiation used in
various applications. One of the notable aspects of HHG is its wide spectrum consisting of many harmonic
orders. This might represent a bottleneck in HHG utility for applications requiring a single wavelength. We
propose a method to generate radiation consisting of a single high-order harmonic frequency employing a Bessel-
Gauss driving beam and a periodically modulated gaseous medium. We validate it by analytical calculations and
numerical simulations. Our method provides a way to generate monochromatic harmonic radiation directly from
the source without the need for additional monochromatizing optics. Thus it represents a substantial enhancement
of the flux and simplification of the setup for numerous applications requiring monochromatic short-wavelength
radiation.
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I. INTRODUCTION

High-order harmonic generation (HHG) is a versatile table-
top source of coherent XUV radiation commonly using rare
gases as a generation medium. Nonlinear interaction of the
driver laser with the medium results in emission of radiation
with a specific spectrum corresponding to multiples of a driver
laser frequency which can range from vacuum ultraviolet
(VUV) up to the x-ray part of the spectrum. The properties of
this source provide wide utility in several research fields, no-
tably in attosecond physics [1]; coherent diffractive imagining
[2] or ptychography [3]; and atomic, molecular, and optical
sciences [4] or material sciences [5].

The spectrum of radiation from HHG consists of several
harmonic orders; some applications of these sources, however,
require only specific photon energy. In such cases, other har-
monic orders can cause parasitic signals, and therefore need to
be removed from the beam by, e.g., grating monochromators
[6,7]. These monochromators consisting of several reflective
optical elements provide relatively low transmission, which
decreases the flux of the desired harmonic typically below
30% [8,9]. Recently, schemes for HHG using the second or
third harmonic of the fundamental laser to generate a spectrum
with sparsely positioned harmonic orders have been reported
[10–13]. The largely separated VUV harmonics can then be
filtered using narrowband transmission filters or multilayered
mirrors. Other approaches exploited wavefront control [14]
or plasma resonances [15]. However, these approaches might
not always be suitable, as the frequency upconversion of the
laser driver lowers the harmonic cutoff, and narrowband optics
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reduce the versatility of the experimental setup. The aim of
this study is, therefore, to design a HHG scheme providing
highly monochromatic radiation (single harmonic frequency)
for direct application without the need of further filtering or
monochromatization.

Several advanced target designs for HHG have already
used quasi-phase-matching (QPM) to increase the yield of
generated harmonics [16–19] by manipulating phase mis-
match between the driver field and the generated one. Here we
further expand this concept to suppress all harmonics except
the optimized one. To achieve this, we employ Bessel-Gauss
(BG) driving beams, which provide a strong geometrical
phase shift along the focus. Furthermore, these beams form
stable structures along the propagation axis [20]. We demon-
strate that the strong geometrical phase, combined with a
highly modulated longitudinal gas profile, provides suitable
conditions for the generation of monochromatic radiation di-
rectly from the HHG source. Our design thus brings a unique
mechanism to control the macroscopic HHG process by BG
beams in the density-modulated media resulting in highly
selective quasi-phase-matching.

The paper is organized in the following way. First, the basic
principle of monochromatic HHG is presented in Sec. II. It is
followed by the description of a detailed strategy to design
an optimal generation scheme in Sec. III; the stability of the
scheme is analyzed in Sec. IV. The general presentation is
accompanied by examples of monochromatizing harmonics
within the range 20–30 in Ar by an 800 nm laser (as one
of the typical conditions in HHG), and the 41st harmonic by
1030 nm in Ar (a case providing straightforward analysis as
absorption is more uniform in the vicinity of this harmonic).
Next, in Sec. V, we use the scheme for the 401st harmonic
generated by 1600 nm in He. This case is of particular interest
as it falls within the water window, and absorption plays a
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FIG. 1. Example of evolution of the phase mismatch �ϕq in
two medium periods. Green background highlights the presence of
the gas. The phase mismatch for selected harmonic order q evolves
exactly with multiples of 2πn at the end of each period, while the
neighboring orders get phase mismatch whose difference to 2πn
increases with further propagation.

minor role in the generating medium. These results are fol-
lowed by a general discussion in Sec. VI.

II. BASIC PRINCIPLE OF MONOCHROMATIC HHG

The laser-atom interaction responsible for emission of
XUV radiation [21] is happening throughout the medium;
therefore it is usually beneficial, if the emerging qth-order har-
monic wave keeps a constant phase shift with the driver wave
to add up constructively. In other words, the wave number
mismatch between the driver and the qth-order wave defined
as �kq = kq − qk1 [22], where kq, k1 are corresponding wave
numbers, should be reasonably small, or zero. In our model,
we consider the generated harmonic beam as a plane wave,
while the driving beam has nonzero wave vector contribution
kgeo due to its focusing, so that its on-axis wave number reads
k1 = 2πn1

λ1
+ kgeo with λ1 denoting the laser wavelength and

n1 = n1(λ1) the refractive index of the medium for the laser
wavelength. Tailoring the geometrical phase of the driving
beam and the refractive index of the medium is the core
concept of our monochromatic HHG scheme.

We start with the refractive index in a periodically mod-
ulated gas target. For the initial simplification, let us assume
that a medium with constant pressure alternates with empty
spaces. We denote the length of a single period zp (containing
the medium and the empty space). The basis of our concept is
that the phase mismatch of desired harmonic order q accumu-
lated within one period of a generating medium that reads

�ϕq(zp) =
∫ zp

0
�kqdz (1)

equals 2πn, where n is a positive integer. This ensures
that radiation of the qth harmonic from a period adds up
constructively with the radiation from the previous period.
Meanwhile, the absolute phase mismatch accumulated in the
part of the period with a generating medium cannot exceed π

to ensure coherent buildup of the harmonic signal here. The
rest of the phase mismatch (up to 2πn) is then accumulated
in the empty space (see Fig. 1).

In the configuration, where the phase mismatch of the
qth harmonic after one period equals 2πn, the neighboring
harmonic’s mismatch will depart from 2πn as (1) is a function

of the harmonic order. Note that the contribution of the phase
mismatch in the empty space is caused by the geometrical
phase of the driving laser. Therefore, one needs to employ a
driving beam with a large geometrical contribution of the on-
axis wave number. For Gaussian beams, which are typically
used for driving HHG, the geometrical phase evolves only
from –π/4 to π/4 across the focus region which is too little
to achieve a large enough phase shift in a single period of
the medium, if we want to employ several periods within the
laser focus. BG beams, on the other hand, provide a strong
geometrical phase [20] described by the on-axis wave number
as

kgeo = −2πn1

λ1
ζ = −2πn1

λ1
(1 − cos θ ), (2)

where ζ is a relative difference from a plane wave. Such
beams can be generated by focusing a hollow laser beam
as depicted in Fig. 2. The parameter ζ relates to the half-
divergence angle θ of the BG beam by ζ = 1− cos θ ≈ θ2/2.
The on-axis wave number of BG beams is very high and
almost constant across the focus. This allows us to design the
experiment with the required geometrical phase shift of the
desired harmonic order.

By employing multiple medium periods, the accumu-
lated phase mismatch �ϕq of nondesired harmonic orders
increases, and generation of these orders is effectively sup-
pressed. The rough estimate of the number of periods needed
to suppress the neighboring harmonic orders reads q/2n (see
Appendix B for details). This value is accurate mainly in the
low-absorption, low-dispersion case, e.g., for HHG nonab-
sorbing gases, such as helium.

Even though we analyze mostly the HHG in targets with
idealized “steplike” density modulation throughout this paper,
as this can be calculated analytically (see Appendix A), the
buildup of the harmonic signal can also be evaluated numeri-
cally for arbitrary density distribution of the medium as

Eq(Lmed) = Aq

∫ Lmed

0
σ (z)ei

∫ z
0 �kq (z′ )dz′

dz, (3)

where Aq is the amplitude of the generated electric field of the
qth harmonic, σ (z) is density, and �kq(z) is the wave number
mismatch. Note that the latter is a complex function of the
spatial coordinate (accounting also for absorption of XUV in
the medium).

In the first example, we will examine a case of the 29th
harmonic (H29) generated by an 800 nm laser in argon. Fig-
ure 3 shows the signal of H29 and its neighboring harmonics
as a function of propagation through the generating medium.
For clarity and simplicity, we have chosen equal lengths of
generating media and empty spaces. To show the robustness
of our approach, we plot the results for the medium with a
binary (steplike) density profile as well as a sinusoidal density
profile. The phase mismatch of the H29 after each period is
equal to 2π , i.e., n = 1, in this example of geometry config-
uration. Figure 3 clearly indicates that the signal of H29 is
more than an order of magnitude stronger than neighboring
harmonics H27 and H31.

Considering our concept in the temporal domain, each
of the medium segments is a source of an attosecond pulse
train with characteristics typical for HHG with a single color
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FIG. 2. Schematic of the setup for monochromatic HHG. A hollow beam is focused into a periodically density-modulated gas target, where
angle theta determines the geometrical phase according to (2). Blue schematic peaks denote temporal addition of attosecond pulses generated
in consecutive medium segments (more details in text).

driving field. A pulse train generated by the following seg-
ment is temporally advanced from the train generated by the
previous one by nT/q = nλq/c with T denoting the period of
the driving laser field and c being the speed of light, because
the driving field is effectively phase shifted by 2πn/q. The
overall signal can, thus, be considered as an attosecond pulse
train where the separation of peaks of the XUV electric field
is an n multiple of the qth harmonic period (as indicated in
Fig. 2), which secures the significant spectral content of the
qth harmonic and reduction of the other harmonic orders, if
there are enough segments involved.

III. AN OPTIMIZED CONFIGURATION
OF MONOCHROMATIC HHG

In the previous section, we presented the basic principle of
monochromatic HHG by employing a Bessel-Gauss driving
beam and density-modulated periodic medium. In this section,
we show a way to optimize the design of the monochromatic
HHG scheme; i.e., we show how to determine the density pro-
file of the generating medium and parameters of the driving

FIG. 3. Evolution of the XUV signal generated in density-
modulated argon using an 800 nm driver as a function of the length of
the medium. Signal of H27, H29, and H31 from binary (full line) and
sinusoidal (dashed line) medium with peak argon pressure in the tar-
get of 100 mbar and divergence angle of the BG beam θ = 9.5 mrad.
Full and dashed lines are calculated using the numerical model (3)
and blue diamonds correspond to the analytical formula for a binary
medium (see Appendix A).

BG beam. We will use a bottom-up strategy starting from an
optimal design of generation in a single period of a binary
medium using the analytical approach, i.e., assuming a step-
like density profile for simplicity.

Every period of the generating target is divided into a
segment with a medium of length l1 and free space of length
l2 fulfilling zp = l1 + l2. The goal is to maximize generation
of the harmonic when the medium is present; therefore phase
mismatch within the segment with the medium should be
equal to 0 (phase matching is achieved there). Furthermore,
the length l1 and pressure p should be chosen so that the
total medium length-pressure product is not too high to enter
the absorption-limited generation regime. Therefore, the total
effective length of the gaseous medium L = Ml1, with M
denoting the number of periods, should be approximately

L � 3Labs(p, q), (4)

with p denoting the pressure in the medium segment, where
Labs is the absorption length of the qth harmonic order in the
medium. Furthermore, the length of a single medium segment
should always be

l1 � Labs (5)

to achieve sufficient monochromaticity of the selected har-
monic order. Depending on further conditions (harmonic
order, absorption at this point), there is certain freedom to
fulfill the optimizing conditions (4) and (5) to trade off
the contrast and the strength of the signal. By approach-
ing the equality in condition (4), the signal strength of
the selected harmonic increases to ∼1/2 of the asymptotic
absorption-limited maximum [23], while prioritizing condi-
tion (5) enhances the monochromaticity of the generated
radiation at the expense of harmonic signal strength. We found
out that the number of periods in a medium corresponding to
q/2n provides a good rule of thumb for achieving reasonable
signal monochromaticity, in particular for cases with low ab-
sorption (see Appendix B for details). In cases with significant
absorption, i.e., where condition (4) approaches equality, there
are, generally, fewer medium periods needed.

Once l1 and p are set, the geometrical phase needs to be
set up in a way to compensate for the effects of material
dispersion and achieve perfect phase matching in the segment
with the medium. The optimum parameter (described above)
of the BG beam thus reads (see Appendix A for further details
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of the derivation)

ζopt = σ

2

(
�α̃r − η

e2

ε0meω
2
1

)
, (6)

where σ is density, �α̃r is a real part of the difference of polar-
izabilities of neutrals between the driver and harmonic order,
η denotes the ionization degree of the gas, e is electron charge,
ε0 vacuum permittivity, me electron mass, and ω1 angular
frequency of the driving laser. In this design, the ionization is
a parameter which is only restricted to the interval between 0
and the value corresponding to the complete plane-wave phase
matching, ηc, of the studied gas. Because ηc is typically a few
percent, we do not correct �α̃r for the depletion of the neutrals
(see the justification of this approximation in Appendix C).
In this initial study, we assume that ionization is uniform
in the region where the harmonics are efficiently generated.
Generally, our optimization scheme works if η < ηc; we have
chosen a fixed value of η = ηc/4 (see Appendix D for exam-
ples of other choices of η). The discussion on time-dependent
ionization is in Sec. VI.

In the free-space segment of the target period, the geomet-
rical phase of the beam is the only factor changing the phase
mismatch; therefore the ratio of medium to vacuum segment
lengths ξ = l2/l1 needs to be established as

ξopt = 1

ζopt

2πn

qk0l1
, (7)

where k0 is the vacuum wave number of the laser driver,
to ensure the phase mismatch 2πn accumulated within the
period. Note that the length of the medium l1 generally differs
from the length of free space l2. By calculating ζopt and ξopt,
the driving beam and the single period of the medium are fully
defined.

At this point, the last parameter to determine is the number
of periods. By increasing the constant n, fewer periods will be
required to clearly pronounce only single harmonic order, on
the other hand; it provides strain on the required target length.

The calculation of the signal of various harmonics af-
ter each period of a scheme optimized for monochromatic
H41 in Ar driven by a 1030 nm laser shows that in the
absorption-limited case (L = 3Labs) there is a reasonable
monochromaticity achieved already after 11 periods. The sig-
nal buildup is shown in Fig. 4. The dispersive properties are
tabulated in [24,25]; see [26] for all the details of the imple-
mentation.

We define the contrast of a given harmonic by the ratio
of its signal and the signal of the strongest harmonic in its
neighborhood. Therefore, various designs can be conveniently
evaluated by comparing the total signal of the selected har-
monic and its contrast.

Considering the design of monochromatic H41 generation
with parameters shown in the caption of Fig. 4 as the refer-
ence case, we can elaborate upon other possible designs. The
first alternative design has two-times shorter segments of the
medium (while keeping all the other parameters fixed), which
doubles the maximum contrast with respect to the reference
case after 14 periods, while the total signal of H41 is 40%
lower in that case [Fig. 5(a)]. Another interesting case is
similar to the reference case, with doubled empty segments

FIG. 4. Harmonic signal as functions of number of periods M in
a setup optimized for H41 generated in Ar by a 1030 nm laser. The
design parameters are the following: l1 = 1 mm, l2 = 0.87 mm, p =
120 mbar, η = 0.7%, and θ = 7.6 mrad (n = 1). Contrast of H41
is plotted with gray dashed line. (Note that the “arb. units” of the
signal are related to the asymptotic value of perfectly phase-matched
(absorption-limited) optimized harmonic generation. This definition
of arb. units is applied in all the figures.)

(again keeping all the other parameters fixed) to reach phase
mismatch of H41 after each period to be 4π , i.e., a case
with n = 2. A very high contrast of ∼40 is achieved already
after seven periods with lower H41 signal strength [Fig. 5(b)].
These examples represent a general trade-off between the
contrast (monochromaticity) and the signal strength.

FIG. 5. Variations of the design for monochromatic H41 in Ar
driven by a 1030 nm laser: (a) two-times shorter segments, (b) n = 2.
Setup parameters are the following: (a) l1 = 0.5 mm, l2 = 0.87 mm,
p = 120 mbar, η = 0.7%, and θ = 7.6 mrad (n = 1); and (b) l1 =
1 mm, l2 = 1.74 mm, p = 120 mbar, η = 0.7%, and θ = 7.6 mrad
(n = 2) (b). Contrast of H41 is plotted with the gray dashed line.
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FIG. 6. Signals (a), (c) and contrasts (b), (d) of the H41 as a
function of pressure in the medium, divergence angle of the BG beam
θ (a), (b), and degree of ionization (c), (d). The central points of each
figure indicated by the red cross correspond to the optimal designed
values according to (6) and (7). Further examples of this case with
ionization degree set to η = 0.5ηc and η = 0.75ηc can be found in
Appendix D.

IV. STABILITY OF THE METHOD

An important parameter of the monochromatic HHG is
its stability with respect to various experimental parameters
that might differ from the design values due to manufacturing
or alignment errors. We have investigated the stability of the
reference case of monochromatic generation of H41 designed
in the previous section (using 11 periods of the medium) with
respect to deviations of gas pressure in the target, geometrical
phase of the driving beam (divergence angle of the BG beam),
and ionization degree of the medium. The results are depicted
in Fig. 6.

When the real experimental parameters depart from the
design values, the easiest way to ensure fulfillment of the prin-
cipal condition of monochromatic HHG (i.e., the 2πn phase
shift of the desired harmonic after one period) is usually to
adjust the pressure in the target. Changing the pressure allows
us to shift our scheme within the parametric space (θ , pres-
sure, ionization) into the region with a strong monochromatic
signal. The differences between these regions for signals
[Figs. 6(a) and 6(c)] and contrasts [Fig. 6(b) and 6(d)] illus-
trate also the trade-off between the contrast and the signal.

Consequently, one can conveniently optimize an experi-
ment with the gas pressure to compensate for parameters that
are difficult to tune experimentally, such as the driving beam
divergence and ionization degree.

V. MONOCHROMATIC HHG IN THE WATER WINDOW

The monochromatic HHG setup can be designed for any
type of medium. Generally, the selection mechanism works

FIG. 7. Signal of H401 of a 1600 nm driver laser and neighboring
harmonic orders as a function of the number of target periods M
together with the contrast of H401. The parameters are the fol-
lowing: l1 = 0.2 mm, l2 = 0.12 mm, p = 100 mbar, η = 0.34%, and
θ = 7.61 mrad (n = 1). Contrast of H401 is plotted with the gray
dashed line (in logarithmic scale).

the best if the HHG is dominated by phase matching and not
by absorption. As a next example of optimized monochro-
matic generation, we present the 401st harmonic of a
1600 nm laser (λq ≈ 4 nm) generated in helium, which falls
into the water window wavelength range. Setting l1 = 200 µm
and p = 100 mbar at the beginning of the optimization pro-
cedure, the obtained harmonic signal (Fig. 7) is further away
from the absorption-limited optimum, because of the very low
XUV photoionization cross section of helium (L ∼ 0.16 Labs,
assuming 200 periods). This is why this generation scheme
can provide very high contrast of more than three orders of
magnitude. The contrast of the optimized configuration is,
indeed, mainly given by fulfillment of condition (5), as also
seen in Eq. (B1), where the ratio l1

Labs
is the only parameter

defining the contrast of the harmonic assuming a large enough
number of periods.

Due to the large number of periods needed for monochro-
matizing such high harmonic order it is worth considering
a configuration with higher-order phase mismatch, i.e., with
n = 2 or n = 3. The evolution of the harmonic signal along
the periodic target for three configurations with n = 1, 2, and
3 together with the contrast of the H401 is shown in Fig. 8.

These results indicate that, in general, the harmonic orders
close to integer multiples of q/n are enhanced, which can
give rise to subharmonic frequencies of the desired harmonic
in the case of n > 1. This is understandable, as while the
harmonic q gains phase mismatch 2πn after one period, the
harmonic q/n reaches the phase mismatch 2π or, more gener-
ally, harmonic mq/n gains phase mismatch 2πm where m is
an integer. In fact, this might reduce the strict monochromatic-
ity for higher-order phase mismatches. In some cases, this
monochromatization might be sufficient, if the subharmonic
peaks are spectrally separated allowing for their removal by a
single high-pass filter. Experimentally, this can be achieved,
e.g., with a state of the art multilayer mirror, as the en-
hanced harmonics are spectrally considerably separated (200
harmonic orders for n = 2 and >130 orders for n = 3). There-
fore, we believe the schemes with higher values of n broaden
our parameter palette as these configurations might be
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FIG. 8. Signal of various harmonics as function of the number of periods for experimental configuration described in the caption of Fig. 7(a)
and for the same configuration but with l2 = 0.24 mm (n = 2) (b), and l2 = 0.36 mm (n = 3) (c). Contrast of H401 as a function of the number
of periods for the three phase-mismatch configurations (d).

practical due to less stringent experimental requirements–
mainly a lower number of medium periods needed.

VI. DISCUSSION

The examples presented in the paper demonstrate the abil-
ity to analytically find the optimal parameters in the binary
medium given by (6) and (7). The same strategy holds for
any periodic density profile of the medium that provides suf-
ficient modulation to reach required phase differences (see
Appendix A). For example, Fig. 9 shows the analogical design
as presented in Fig. 4 by replacing the binary medium by
11 “Gaussian jets,” defined by p(z) = p0exp(−[(z − zi )/a]2),
where zi is the position of the jet and a characterizes its width.
The optimal values of the geometrical phase and jets’ spacing
are found numerically to optimize the signal of H41 (see
corresponding Jupyter notebook in [26] for details). It shows
that the optimization works similarly as in the idealized case;
the contrast remains similar and the signal decreases by only
13% with respect to the analytical case with a binary medium.

Although in practice it might be difficult to set all the
experimental parameters exactly, a similar design principle
as described in Sec. III can be applied experimentally. This
way, one optimizes the XUV signal with a single segment.
Segment number and spacing are then to be tuned for the
desired contrast.

Ionization degree is, unlike the other experimental pa-
rameters, a dynamic variable that might change during the
passage of the driving pulse and reduce the overall contrast of

FIG. 9. The signal of H41 and its contrast for the medium with
“Gaussian jets” (the density profile is depicted below the plot) instead
of the binary profile of Fig. 4. The medium period is ∼1.3 mm, a ≈
0.3 mm, and peak pressure p0 = 120 mbar (the amount of gas in
each period is the same as in Fig. 4); η = 0.7%. The optimized BG
beam divergence is θopt = 9.20 mrad.
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FIG. 10. Contrast as a function of ionization degree and diver-
gence angle of the BG beam for H41 generated in Ar with a 1030 nm
laser (a), H401 generated in He with a 1600 nm laser (in log scale)
(b), and H23 generated in Ar by an 800 nm laser (c). The red crosses
indicate the design values of the schemes.

the required harmonic order. Pressure tuning cannot be used
efficiently in this case as it is a static dispersion compensa-
tion method. Therefore, for the cases of rapid ionization of
the generating medium, we propose to employ laser driving
fields with BG beams and pulses with spatiotemporal coupling
(STC) [27] that has decreasing divergence angle θ within
the laser pulse to compensate for the generally increasing
ionization degree of the medium. To give an example, we plot
the contrast as a function of ionization degree and divergence
angle of the BG beam in Fig. 10. In the cases of H41 generated
by a 1030 nm laser driver in Ar and H401 generated by a
1600 nm laser in He, driving pulses with STC seem to be
necessary to sustain monochromatic HHG. In contrast to that,
the generation of H23 by an 800 nm laser in Ar shows much
lower sensitivity to ionization degree and a sufficient level of
contrast can be achieved even with standard pulses without
STC. In general, the sensitivity of ionization degree decreases
with decreasing wavelength of the laser driver and decreasing
harmonic order, but also with the medium density [mathe-
matically, this stems from the optimizing condition (A7) in
Appendix A].

Moreover, it should be noted that monochromatic HHG
with BG beams and pulses with STC would benefit from
the possibility to adjust the group velocity in the focus [28],
because the pulses in the BG beam without STC are superlu-
minal as vg = c

cos θ
. The monochromatic HHG with BG beams

and STC is, however, beyond the scope of this paper and it will
be discussed in the following publication.

Experimental limitations of the monochromatic HHG lie
mainly in fitting the desired number of medium periods in
the region, where geometrical phase together with sufficient
laser intensity is available, or in technological limitation of
preparing the density-modulated medium with high enough
modulation on a short length scale. However, we believe the
example designs presented here are feasible with current man-
ufacturing and laser technologies.

VII. CONCLUSION

In this paper, we introduce a method for a direct gen-
eration of purely monochromatic harmonic radiation using
Bessel-Gauss beams and a periodically density-modulated
medium. We apply this method to monochromatize HHG with
significant absorption (the generation in Ar) or negligible ab-
sorption (the generation in He), which shows the universality
of the method. We believe that our generation scheme out-
performs the standard HHG systems with monochromators as
well as other monochromatizing methods, and provides strong
monochromatic radiation required in many user applications.
Furthermore, we provide our simulations in the form of a
Jupyter notebook written in PYTHON [26], for the readers to
test our conclusions or to design a configuration suitable for
their own application.
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APPENDIX A: ANALYTICAL COMPUTATION
OF THE SIGNAL

Here we present a simplified model of the harmonic gen-
eration by Bessel-Gauss beams (approximated by diffraction-
free beams within our interaction region) in the discretized
medium given by the rectangular profile of the pressure in the
laser propagation direction z. This assumption permits us to
find the analytic expressions of optimal parameters (6) and
(7).

First, we find the phase mismatch using the diffraction-free
beams and dispersion relations. Second, we derive the analytic
expression of the harmonic signal. At the end, we will show
that the main feature—the selection mechanism of a given
harmonic—holds also for an arbitrary medium profile.

Let us introduce the geometry imprinted by the Bessel-
Gauss beams. We consider the target composed from consecu-
tive segments of the medium and vacuum of respective lengths
l1 and l2. Within our assumption, the phase mismatch along
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the propagation axis z is retrieved from the diffraction-free
beam profile EIR(z, ρ ) = exp(iαz)J0(βρ ) [29], where α and
β are linked with the dispersion relation by

α2 + β2 = k2, (A1)

where k is the wave number. We find how the geometrical
phase α changes on the transition between the vacuum and
the medium. Because of the continuity of the field on the
interface, β is equal on both sides and we have

αm =
√

k2
m − k2

v + α2
v , (A2)

where the indices v and m denote vacuum and medium,
respectively. We start our analytic considerations by the rect-
angular modulation of gas and vacuum segments; i.e., the gas
density σ is constant in the gas segments and zero in the
vacuum segments.

Now, we compute the harmonic signal from (3). First, we
need to find the wave number mismatch:

�kx,q = kx,q − q αx, x ∈ {m, v}. (A3)

Let us list the considered effects. In vacuum, the harmonics
propagate as a plane wave, kv,q = qk0, and the fundamen-
tal beam is affected only by the geometrical phase, αv =
k0(1−ζ ) [see Eq. (2)]. The situation is more complex in
the medium. The harmonics are affected only by dispersion,
km,q = qk0

√
1 + σ α̃q, where σ is the density and α̃q the po-

larizability for the qth harmonic. The fundamental beam is
affected by the dispersion and free electrons; it gives km =
qk0

√
1 + σ [(α̃IR − ηe2/(ε0meω

2
1 )]; the included quantities are

described below (6). Considering the wave numbers (A2),
taylorizing square roots, and neglecting ζ 2 terms, the wave

number mismatches are

�km,q ≈ qk0

[
σ

2

(
α̃IR − α̃q − ηe2

ε0meω
2
1

)
− ζ

]
, (A4a)

�kv,q = −qk0ζ . (A4b)

Using (A4a), we can find the signal at the end of the first
gas segment,

S1 =
∫ l1

0
Aqei�km,q zdz = iAq(ei�km,q l1 − 1)

�km,q
, (A5)

with Aq denoting the amplitude of the generated electric field
of the qth harmonic. Because the dephasing is piecewise con-
stant, its integration gives a continuous piecewise linear phase
and the signal at the end of the Mth gas segment is obtained as
the signal from the first segment modulated by a geometrical
sum:

SM = S1

M∑
m=0

eim�ϕq = S1
(ei�ϕqM − 1)

(ei�ϕq − 1)
, (A6)

�ϕq = qk0l1

[
σ

2

(
α̃IR − α̃q − ηe2

ε0meω
2
1

)
− ζ (1 + ξ )

]
, (A7)

where ξ = l2/l1. Note that the stability and sensitivity of a
scheme (discussed in Secs. IV and VI) are inferred from (A7).
The selection condition is Re(�ϕq) = 2πn, where n is an
integer. Since this condition is achieved by the cancellations of
different terms contained in (A7), the required relative preci-
sion imposed on the different quantities (σ, η, ζ , ξ ) increases
as they grow. In other words, the stability decreases if the
aforementioned quantities increase.

Now we find the analytic form of the XUV intensity:

|S1|2 = 4|Aq|2e− l1
2Labs

sinh2
( l1

4Labs

) + sin2
( qk0l1

2

[
σ
2 (�α̃r − ηA) − ζ

])
q2k2

0

[
σ
2 (�α̃r − ηA) − ζ

]2 + 1
4L2

abs

, (A8)

|SM |2 = |S1|2e− (M−1)l1
2Labs

sinh2
( Ml1

4Labs

) + sin2
(Mqk0l1

2

[
σ
2 (�α̃r − ηA) − ζ (1 + ξ )

])
sinh2

( l1
4Labs

) + sin2
( qk0l1

2

[
σ
2 (�α̃r − ηA) − ζ (1 + ξ )

]) , (A9)

where Labs = 1
2Im(km,q ) , and A = e2/(ε0meω

2
1 ). Note that the

absorption comes only from the imaginary part of α̃q. Using
the power-reduction for sin, the signal within the single gas
segment, |S1|2, given by (A8) can be recast into Eq. (1) from
[23], where Lcoh = π/|qk0[ σ

2 (�α̃r − ηA) − ζ ]/2|. Equations
(A8) and (A9) directly provide the optimizing conditions for a
given harmonic q. The former equation gives (6) and the latter,
(7).

Finally, we show that this reasoning can be generalized for
an arbitrary gas profile. Let us assume that the support of an
elementary medium is confined within the distance l1 and the
gas segments are spaced by l2. The signal at the end of the first
gas segment is

S1 =
∫ l1

0
Aq(z)ei

∫ z
0 �km (z′ )dz′

dz. (A10)

Next, we find the signal at the end of the second gas
segment,

S2 = S1 +
∫ 2l1+l2

l1+l2

Aq(z)ei
∫ z

0 �k(z′ )dz′
dz

= S1 +
∫ l1

0
Aq(z′ + l1 + l2)ei

∫ z′+l1+l2
0 �k(z′′ )dz′′

dz′

= S1 + ei
∫ l1+l2

0 �k(z)dz
∫ l1

0
Aq(z)ei

∫ z+l1+l2
l1+l2

�k(z′ )dz′
dz

= S1 + ei
∫ l1+l2

0 �k(z)dz
∫ l1

0
Aq(z)ei

∫ z
0 �k(z′′+l1+l2 )dz′′

dz

= S1 + ei
∫ l1+l2

0 �k(z)dz
∫ l1

0
Aq(z)ei

∫ z
0 �k(z′ )dz′

dz

= S1(1 + ei
∫ l1+l2

0 �k(z)dz ), (A11)
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where we assume that both Aq(z) and �km(z) depend on z
only through the density (this means Aq(z) = Aq[σ (z)] and
�km(z) = �km[σ (z)]) meaning that they are (l1 + l2) peri-
odic, which justifies the equalities within (A11). The same
reasoning can be inductively repeated for adding more gas
segments. It thus leads to the same geometric sum as (A6).
The only difference is that the phase �ϕq is not expressed
analytically and is replaced by

�ϕq =
∫ l1+l2

0
�k(z)dz =

∫ l1

0
�km(z)dz − qk0l2ζ . (A12)

The above derivation uses the assumption that the gas seg-
ments are separated by vacuum. However, the vacuum could
be easily replaced by a residual nonzero gas density until
the contribution to the XUV signal generated there, which is
dephased from the effective gas segments, is small. In other
words, the density modulation must be strong relative to the
residual density.

In conclusion, the main monochromatizing mechanism
stays unaffected for a general gas profile with a sufficiently
strong density modulation. The difference is that the optimiz-
ing parameters cannot be generally expressed analytically as
for the discretized medium.

APPENDIX B: NUMBER OF PERIODS AND CONTRAST

The contrast and its evolution with the number of gas seg-
ments is inferred from the analytic model (A9). We define the
contrast of harmonics q and q̃ after M segments as Cq,q̃,M =
|S(q)

M |2

|S(q̃)
M |2

. Let us assume that the dispersion is the same for the

harmonics q and q̃. We start with the estimate of the number of
periods while the absorption is negligible (Labs = +∞). The
theoretical contrast in this case is extremely high (see Fig. 7).
The optimizing condition for the harmonic selection (7) leads
to k0l1

2 { σ
2 [α̃IR − Re(α̃q) − ηA]−ζ (1 + ξ )} → πn/q. If we in-

sert this value into the signal (A9) for the q̃th harmonic, the
numerator gives sin2(Mq̃πn/q). The first zero of this func-
tion (i.e., the value for which the signal of the q̃th harmonic
vanishes) is reached at M = q/(|n|�q), where �q = |q̃ − q|.
Particularly, we find M = q/2 for neighboring harmonics and
n = 1.

If the absorption plays a significant role (as in cases studied
in Figs. 4 and 5), Eq. (A9) allows us to evaluate the contrast
as a function of the absorption length. The contrast is

Cq,q̃,M =
(

sinh2
( l1

4Labs

) + sin2
( q̃

q nπ
)

sinh2
( l1

4Labs

)
)

×
(

sinh2
( Ml1

4Labs

)
sinh2

( Ml1
4Labs

) + sin2
(
M q̃

q nπ
)
)

M→+∞→ sinh2
( l1

4Labs

) + sin2
( |n|�q

q nπ
)

sinh2
( l1

4Labs

) . (B1)

The limit M → +∞ provides the asymptotic contrast,
which gives a good estimate of the expected contrast even
for lower number of periods (see the difference in the scale
of the contrast in Figs. 4 and 5). Since the optimal conditions
are reached for all the arguments close to 0, the asymptotic

FIG. 11. Comparison of signal and contrast evolution of H41
of a 1030 nm driver with a BG beam with a divergence of θ =
7.4 mrad in an argon medium (l1 = l2 = 1 mm, medium pressure
124 mbar, and η = 0.7%). Blue curves represent the situation with-
out included depopulation of neutrals, as in the phase-matching
model used throughout the paper, and yellow curves represent the
model with included depopulation of neutrals.

contrast is Cq,q̃,M ≈ 1 + 16π2( n�qLabs

ql1
)
2 ≈ 16π2( n�qLabs

ql1
)
2
. It

shows that the contrast increases with the ratio Labs /l1 and
with the order of phase mismatch n. As this model is fully
analytic, these particular cases may be efficiently studied with
simple tools (see the attached notebooks [26]).

APPENDIX C: PHASE-MATCHING MODEL:
THE DEPOPULATION OF NEUTRALS AND IONIC

CONTRIBUTION TO POLARIZABILITY

We have neglected the depopulation of neutrals due to ion-
ization in our phase-matching model. In some models, such
as in [30], the depopulation is taken into account, but the ions
are not assumed to contribute to the polarizability. Here, we
show that the difference is negligible for the small ionization
degree assumed in our work. First, we show the difference
between the two models. Then, we derive their error ana-
lytically while also considering the ionic contribution to the
polarizability.

Figure 11 shows the signals and contrast calculated with
our model and the one including the depopulation of neutrals.
The latter case is modeled by replacement of (α̃IR − α̃q) by
(α̃IR − α̃q)(1−η) in Eq. (A4a). Indeed, the differences are
small.

Now we further analytically estimate the difference with
and without assuming the depletion of neutrals. In both cases,
whether neutrals are reduced by (1−η) or not, the models
do not account for the dispersive properties of ions. Let
us include them. Denoting �α = αIR − αq the difference of
polarizabilities of neutrals and �α+ = αIR,+ − αq,+ the dif-
ference of the polarizabilities of ions, we can write the wave
number mismatch as

�kq = qk0

[
σ

2
(�α(1 − η) + �α+η − A η) − ζ

]
. (C1)

First, we can find the optimal value of ionization degree
providing a perfect phase matching for plane waves (without
considering geometrical effects, i.e., ζ = 0) as defined in [31].
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In the complete model it reads

ηc = �α

A

(
1

1 + �α−�α+
A

)

=�α

A

[
1 − �α − �α+

A

+
(

�α − �α+
A

)2

−
(

�α − �α+
A

)3

+ · · ·
]
. (C2)

The first correction, which gives the relative error, is of the
order of �α−�α+

A , which is itself about a few percent because
this value corresponds to the typical values of the optimal
ionization for phase matching.

Next, we use the same reasoning to express the contribu-
tion of the geometrical effect ζ used in Eq. (6); the result is

ζopt = σ

2

[
�α − ηA

(
1 + �α − �α+

A

)]
. (C3)

Again, the relative difference is of the order �α−�α+
A .

The model from [30] still neglects the role of ions by
setting �α+ = 0. For example, the contribution of �α+ is
estimated to be more than the half of �α for HHG in Ar
driven by a 270 nm laser, which was obtained by ab initio
calculations as shown in the supplement of [12]. This would
indicate that the approach without using the correction for
depopulation of neutrals might be even more accurate in these
conditions. Moreover, the polarizability of ions has not been
thoroughly tabulated and investigated in detail for a large
range of wavelengths; furthermore, a precise treatment of the
ultrafast phenomena may formally need a dynamical treat-
ment [32]. However, as shown above, these differences are
usually negligible in HHG schemes, so even a simple phase-
matching model considering only dispersion of neutrals and
free electrons, which was used throughout this paper, provides
sufficient accuracy.

APPENDIX D: IONIZATION DEGREE OF THE MEDIUM

The choice of the initial ionization degree η is not treated
in detail in our work. The reason is that η is a free parameter
in our general design. In real experimental conditions, the
ionization depends mainly on the driving-pulse intensity. This
would need to be considered in a concrete design implement-
ing the scheme introduced in the paper. Here we show that our
optimized monochromatizing scheme works well for a broad
range of η fulfilling η < ηc (ηc being the level satisfying the
perfect phase-matching condition for plane waves introduced
below Eq. (6); see [31] for more details).

To illustrate the role of various values of ionization degree,
we show analogies of Fig. 6 for η = 0.5ηc and η = 0.75ηc in
Figs. 12 and 13, respectively. For those examples, we have
recalculated the optimal geometrical phase ζ of the BG beam
and ξ (the ratio of lengths of the empty space and the seg-
ment with gas), while all the other parameters remained the
same. Similarly to Fig. 6, the red crosses indicated the values
obtained by the optimization algorithm.

These results show that, upon optimization, there is no
significant difference in both the harmonic signal and the

FIG. 12. The analogy of Fig. 6 for η = 0.5ηc, i.e., η = 1.3%.

contrast for the different values of η (the color bar ranges of
all the figures are very similar). It is apparent that for a given
configuration the trade-off between signal and contrast does
not depend on the ionization degree η.

On the other side, the ionization degree clearly affects the
optimized design, as we see the effect of different initial η

on the optimized parameters ζ ≈ θ2/2 and ξ . According to
Eq. (A4a), the main idea of our optimized design is that the
optimal phase matching within a single period is given by the
sum of wave number contributions of the ionization through η

and the BG beam characterized by θ . Therefore, higher values

FIG. 13. The analogy of Fig. 6 for η = 0.75ηc, i.e., η = 2%.
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of η lead to the decrement of θ as indicated by the red crosses
in the figures. Consequently, ξ is incremented to ensure the ac-
cumulation of the proper phase jump in the “empty” segment.
Namely, for the currently discussed case, ξη=0.25ηc ≈ 0.87
(the value used in the main manuscript), ξη=0.5ηc ≈ 1.3, and
ξη=0.75ηc ≈ 2.6. All these values seem realistic for a potential
experimental implementation.

We note that the basic monochromatizing condition in-
troduced in Sec. II works also for η > ηc. However, the

generation within a single period of the medium can-
not be phase matched anymore. This is caused by the
fact that the negative contribution to the wave number
from the geometrical aspect of focusing cannot compen-
sate for the negative contribution of the neutrals and
plasma when the ionization degree overcomes the crit-
ical value. Mathematically, it would require ζopt < 0 in
Eq. (6), which violates the geometrical constraints of BG
beams.
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