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Pure quartic three-dimensional spatiotemporal Kerr solitons in graded-index media
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We analyze the formation of three-dimensional spatiotemporal solitons in waveguides with a parabolic
refractive index profile and pure quartic chromatic dispersion. We show, by applying both variational approaches
and full three-dimensional numerical simulations, that fourth-order dispersion has a positive impact on soliton
stabilization against spatiotemporal wave collapse. Specifically, pure quartic spatiotemporal solitons remain
stable within a significantly larger energy range with respect to their second-order dispersion counterparts.
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I. INTRODUCTION

The formation of high-dimensional solitons is a very in-
tense field of research in different domains of science, ranging
from nonlinear optics to Bose-Einstein condensates (BECs)
[1–3]. In nonlinear optics, the formation of three-dimensional
spatiotemporal solitons (STS), also known as light bullets [4],
has been predicted in Kerr nonlinear lossless materials. Their
formation is based on the counterbalance between the action
of the intensity-dependent refractive index on the one hand
and the combined effect of dispersion and diffraction on the
other hand [1]. One of the main properties of these nonlinear
waves is that, once they form, they can propagate indefinitely,
without any shape modification. However, in experiments, the
STSs have only been generated as transient objects, owing to
instabilities associated with the presence of high-order effects
[5–7].

In Kerr media, the most common instability is spatiotem-
poral wave collapse, whereby the strong contraction of a
nonlinear wave leads to a catastrophic blow-up of its am-
plitude after a finite propagation distance [4,8,9]. Many
different mechanisms have been proposed for STS stabiliza-
tion, including saturable absorption, nonlocal and quadratic
nonlinearities, and photonic lattices, to cite a few [2,3,9,10].
The positive impact of dissipative terms on the stabilization
of STS has been also extensively studied in active cavities
(see, for example, Refs. [2,3,11,12] and references therein),
and very recently in passive ones [13]. Another stabilization
mechanism relies on a parabolic modification of the transverse
refractive index profile of the material, as it occurs in graded
index (GRIN) multimode waveguides or fibers [14].

The parabolic index profile acts as a trapping potential,
which is able to arrest the wave collapse, as predicted by Yu
et al. [15] and Raghavan et al. [16] by means of variational ap-
proaches. For low pulse energy regimes, these results are well
confirmed by full three-dimensional (3D) numerical solutions
of the nonlinear wave equation. However, for sufficiently high
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pulse energies, even below the theoretically predicted insta-
bility threshold, this mechanism fails to arrest the collapse
[17]. Thus, one may wonder if there are other alternatives
for enlarging the energy-dependent stability range of light
bullets.

The use of high-order dispersive effects has proved key
for stabilizing temporal solitons in nonlinear cavities: Specif-
ically, consider the case of third- [18–20] or fourth-order
dispersion [21]. Moreover, the effect of pure quartic disper-
sion in soliton formation has been studied in the context
of microcomb generation [22,23], mode-locked lasers [24],
and single-pass (conservative) systems, where pure quartic
solitons have been theoretically studied [25–28] and ex-
perimentally demonstrated [29–31]. Pure quartic temporal
solitons possess flatter spectra and favorable energy scaling
with pulse duration, which makes them particularly attractive
from the point of view of applications. Moreover, the combi-
nation of anomalous quadratic and negative quartic dispersion
is able to stabilize light bullets in homogeneous planar waveg-
uides and bulk media [32,33].

In this article, we demonstrate theoretically the existence of
time-symmetric (i.e., t-symmetric) positive pure quartic STSs
in GRIN waveguides. To do so, we neglect second-order or
quadratic dispersion, as well as odd-orders of dispersion (e.g.,
third-order) which otherwise would break such a symmetry. In
this regard, one of the most remarkable results that we obtain
is that pure quartic dispersion alone is able to significantly
suppress wave collapse, thus greatly favoring STS stability.
To perform this analysis, we follow a twofold approach, based
on both the Ritz optimization method (i.e., the variational
approach) [34,35] and direct full 3D numerical simulations.

We need to mention that in the presence of GRIN inho-
mogeneities, the spatiotemporal localization of light can be
also interpreted as a nonlinear deformation of the fundamental
Laguerre-Gaussian mode associated with the linear system
[36], and therefore may lead to discrepancies about the cor-
rectness of refereeing to such a state as soliton. However,
based on our work [17,37], and following previous literature
[1,2,6,16], we have decided, for consistency, to use the term
soliton, in particular STS, to refer to these states.
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This article is organized as follows. In Sec. II we intro-
duce the mathematical model that we will use. In Sec. III we
apply, following a variational approach, the Ritz optimization
method to compute approximate analytical STS solutions and
to predict their stability. Section IV is devoted to comparing
the analytical findings with full 3D numerical simulations.
Finally, in Sec. V we summarize our work, drawing some final
conclusions.

II. THE MODEL

In the paraxial and slowly varying envelope approxi-
mations, and neglecting the modal dispersion, the complex
amplitude of the electric field E propagating in waveg-
uides with a GRIN profile at the carrier frequency ω0 can
be described by the Gross-Pitaevskii equation with a two-
dimensional (2D) parabolic potential [16]

∂Z E = i

2β0
∇2

⊥E + i
β4

4!
∂4

T E + in1k0R2E + ik0n2|E |2E , (1)

where k0 = ω0/c, β0 = n0(ω0)k0, β4 = d4β/dω4|ω0 , and
β(ω) = n0(ω)ω/c, with n0(ω) being the homogeneous con-
tribution of the refractive index. ∇2

⊥ ≡ ∂2
X + ∂2

Y represents
diffraction, the ∂4

T term results from fourth-order chromatic
dispersion with T being the time variable, n1 governs the
parabolic variation R2 ≡ X 2 + Y 2 of the refractive index in
the transverse dimensions X and Y , and n2 is the refractive
index nonlinear coefficient responsible for the self-focusing or
self-defocusing Kerr nonlinearity [1,14]. By taking the scaling
transformations

E = ecu, T = tct, (X,Y ) = wc(x, y), Z = zcz,

with

e4
c ≡ 2

k0β0

|n1|
|n2|2 , t4

c ≡ |β4|
4!

√
β0

2k0|n1| ,

w4
c ≡ 1

2k0β0|n1| , z2
c ≡ β0

2k0|n1| ,

Eq. (1) becomes

∂zu = i

2
∇2

⊥u + id4∂
4
t u + i

ρ

2
(x2 + y2)u + iν|u|2u, (2)

with d4 = sign(β4) = ±1, ν = sign(n2) = ±1 for self-
focusing and self-defocusing nonlinearity, and ρ =
sign(n1) = ±1 for antiguiding and guiding materials, respec-
tively. In an optical context, Eq. (1) is also referred to as a non-
linear Schrödinger equation with a 2D parabolic potential [1].

III. VARIATIONAL APPROACH

The Lagrangian density associated with Eq. (2) reads

L = −1

2
(|ux|2 + |uy|2) − d4|utt |2 + ρ

2
(x2 + y2)|u|2

+ ν

2
|u|4 + i

2
(u∗uz − uu∗

z ), (3)

and by defining the generalized field momenta P ≡ ∂u∗
z
L =

−iu/2 and P∗ ≡ ∂uzL = iu∗/2, we can obtain the Hamil-
tonian density H through the Legendre transform H =

Pu∗
z + P∗uz − L [38]. Here, we focus on shape-preserving

and vorticity-free solitons. Therefore, we write u(x, y, z, t ) =
v(x, y, t )eiκz, where κ is the propagation constant (or chemical
potential in the context of BECs) [1], and v(x, y, t ) is a real-
valued function, describing the steady-state field. With this
transformation, the Lagrangian density becomes

Lv = −1

2

(
v2

x + v2
y

) − d4v
2
tt + ρ

2
(x2 + y2)v2 + ν

2
v4 − κv2.

(4)
Using the Legendre transform previously introduced and the
transformation u(x, y, z, t ) = v(x, y, t )eiκz, the Hamiltonian
density reads

H = 1

2

(
v2

x + v2
y

) + d4v
2
tt − ν

2
v4 − ρ

2
(x2 + y2)v2. (5)

The z-independent Euler-Lagrange equations

d2

dt2

(
∂Lv

∂vtt

)
+ d

dx

(
∂Lv

∂vx

)
+ d

dy

(
∂Lv

∂vy

)
− ∂Lv

∂v
= 0 (6)

lead to the steady-state partial differential equation

1

2
∇2

⊥v + d4∂
4
t v + ρ

2
(x2 + y2)v + νv3 − κv = 0. (7)

Note that Eq. (7) can also be obtained by a direct substitution
of u(x, y, z, t ) = v(x, y, t )eiκz into Eq. (2).

In what follows, by applying the Ritz optimization method
[34,35], we will compute an approximate analytical steady
STS solution of Eq. (7). This method relies on the proper
selection of a trial function, or solution ansatz. Here, by
following previous works [15–17], we consider the parameter-
dependent ansatz

v(x, y, t ; η, a, E ) =
√

ηE

2πa2
sech(ηt )exp

(
−x2 + y2

2a2

)
, (8)

where a is the width of the spatial Gaussian profile, η−1 is the
temporal width, and E is the STS energy.

With this ansatz, the Lagrangian of the system

L ≡
∫

IR3
Lv (v, vtt , vx, vy)dxdydt (9)

reduces to

L = E

30

[
−14d4η

4 − 30κ + 5

a2

(
Eην

2π
− 3

)
+ 15ρa2

]
,

(10)

which possesses all relevant information for approximate
solutions of the form (8). For Eq. (10), the reduced Euler-
Lagrange equations for the parameters a, η, and E read as

∂L

∂η
= 0,

∂L

∂a
= 0,

∂L

∂E
= 0, (11)

which lead, respectively, to the following equations:
5νE

πa2
− 112d4η

3 = 0 (12a)

η = 6π (a4ρ + 1)

νE
(12b)

κ = − 7

15
d4η

4 − 1

2a2

(
1 − Eην

3π

)
+ ρa2

2
. (12c)
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FIG. 1. Bifurcation diagrams for STS states vs E (see green
lines). (a) Spatial width a of the STS vs E . (b) STS temporal width
η−1 vs. E, and (c) variation of the peak intensity Ip with E . The Ba

branch of solutions is plotted by using a solid line, while Bb uses a
dashed one. Orange lines correspond to the pure quadratic scenario
[17]. Label (*) corresponds to the STS depicted in panels (*).1 and
(*).2. In (*).1 we plot five isosurfaces at different peak intensities,
namely, I = 0.08, 0.12.0.3, 0.5, and 1.0. Panel (*).2 illustrates the
t = 0 cross-section intensity Iσ ≡ I (x, y, t = 0) for the STSs shown
above.

By combining Eqs. (12a) and (12b), we obtain

E4 = C1d4π
4a2(a4ρ + 1)3, (13)

with C1 = 1008 × 24/5, which relates E and a. By inserting
Eq. (13) into Eq. (12b), we find that the temporal width η−1 is
also completely parametrized in terms of the spatial width a.

In what follows, we will focus on the regime that is char-
acterized by setting d4 = 1, ρ = −1, and ν = 1. In this case,
the dependence of the STS spatial width a on E is depicted
in Fig. 1(a). This plot shows that there exist two STS solution
branches Ba (solid green) and Bb (dashed green), which coex-
ist within the same energy range, extending from E = 0 up to

FIG. 2. (a) Dependence of energy E with κ for ρ = −1 and ν =
d4 = 1. (b) Dependence of H with E . In both cases, stable (unstable)
branches are plotted by using solid (dashed) lines.

the fold ( f ) located at (E , a) = (E f , a f ). The position of this
fold can be computed from the condition dE/da = 0, which
yields

a f = (−7ρ)−1/4 E4
f = C2

π4d4√−7ρ
, (14)

with C2 = C1(6/7)3, and marks an upper energy limit, or
threshold, for the STS existence. The modifications of the
temporal width and the STS peak intensity Ip ≡ |A|2 =
Eη/(2πa2) with energy E are illustrated in Figs. 1(b) and
1(c), respectively. A specific example of STS solution on the
branch Ba is shown in Fig. 1(*) for E = 12. In Figs. 1(a)–1(c)
we also plot, in orange, the STS solution branches for the pure
quadratic dispersion regime [17]. The comparison between
these curves shows that the STS existence region for pure
quartic dispersion is �E ≈ 8.753 larger than in the quadratic
case [see Fig. 1(a)].

In order to determine the stability of the STS states,
we apply two different approaches. The first, known as the
Vakhitov-Kolokov (VK) criterion [39], is based on the de-
pendence of the propagation constant κ on E [see Eq. (12c)],
which is depicted in Fig. 2(a). According to the VK principle,
STS solutions are expected to be stable if E increases with κ

(i.e., if dE/dκ > 0), and unstable otherwise. This means that
Ba is stable, while Bb is unstable.

We can also determine the STSs stability by analyzing their
Hamiltonian function

H = E

[
−a2

2
ρ + 1

2a2

(
1 − Eνη

6π

)
+ 7

15
d4η

4

]
. (15)

Once evaluated at the equilibrium STS solutions of Eqs. (12a)
and (12b), the Hamiltonian becomes just a function of E ,
and we may write He ≡ H (E ). This function is plotted in
Fig. 2(b). According to the Lyapunov stability criteria [17],
all STS solutions on the Ba branch minimize He; therefore,
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FIG. 3. (a) and (b) Evolution of peak intensity of stable STS with energy E for the pure quartic and quadratic dispersion scenarios,
respectively. In (a), the green line shows the analytical values, while the blue circles and the error bars represent the average intensity values,
and the standard deviation for stable states. (c).1 shows the variation of the peak STS intensity vs z, and the close-up view below shows the
interval z ∈ [950, 1000] (see gray shadowed box). (c).2 shows the evolution of the STS along the latter interval, by plotting two isosurfaces at
I1 = 0.5 (red) and I2 = 0.1 (blue).

they are stable. However, those on Bb are unstable, since they
maximize He. Thus, both stability criteria lead to the same
result.

IV. NUMERICAL STUDY

The question that remains to be answered is whether such
approximate solutions, and their predicted stability, describe
accurately enough the STS solutions of Eq. (2). To bring
light to this, we performed full 3D numerical simulations
of Eq. (2) by using advanced numerical algorithms based
on a split-step predictor-corrector scheme [40]. To solve this
initial value problem, we consider as the initial condition
the approximate analytical STS solution (8), together with
Eqs. (12a) and (12b). The outcome of these computations is
illustrated in Fig. 3. Figure 3(a) compares the analytically
predicted peak intensity of the STS (see green line) with the
numerically obtained associated values (see blue dots). In the
latter, the circles and error bars represent the time-averaged
intensity values, and the corresponding standard deviation for
stable states. Stable STS are center steady states of Eq. (2)
[17]: Therefore, they are neutrally stable. This means that
any small perturbation leads to breathing oscillations around
such points. Therefore, in practice, a steadily propagating STS
is difficult to achieve. This fact may explain why, while the
agreement between the variational approach and numerical
results is quite good for low values of energy, it worsens
when increasing E . The z propagation of a STS is illustrated
in Fig. 3(c).2, together with the z evolution of its peak in-
tensity [see Fig. 3(c).1] for the interval z ∈ [0, 1000]. Larger
simulations (up to a final normalized propagation distance
z f = 5000) have confirmed the robustness of these states.

For large values of E , we find that the STSs undergo wave
collapse (see red shadowed area) before the fold f , as was
the case in the pure quadratic regime [17]. To compare the
latter scenario with the former one, we plot approximate and
numerically obtained Ip values for pure quadratic dispersion in
Fig. 3(b). This comparison shows that pure quartic dispersion

significantly delays the appearance of wave collapse, by in-
creasing by more than twice the E range of STS existence.

V. CONCLUSIONS

In this work we have reported on the emergence of pure
quartic STSs in GRIN waveguides. We show that pure pos-
itive quartic dispersion affects undoubtedly the propagation
of STS, by leading to a significant widening of their energy
stability range, and to the partial arrest of spatiotemporal
collapse.

In the absence of the GRIN structure, positive quartic and
anomalous quadratic dispersion are also capable of arresting
spatiotemporal wave collapse; however, this is insufficient for
prompting the formation of STSs [32,33]. In contrast, even
a small amount of negative quartic dispersion may lead to
the appearance of light bullets in both homogeneous planar
waveguides and bulk media, something that we have not in-
vestigated in the present work.

One potential experimental scheme where our results may
apply can be based on the experimental setup of de Sterke
et al. [31], by changing the single-mode fiber to a multimode
GRIN one. Indeed, our model [see Eq. (1)] is the master
equation describing such a fiber laser when losses and gain
are equally balanced. For some physical parameter values
regarding our model in the context of multimode GRIN fibers,
we invite the interested reader to consult Ref. [37].

In future investigations, we will analyze the implications
of combining quadratic and quartic dispersion effects, as well
as the influence of higher-order diffraction on STS stabiliza-
tion, which so far remain unknown. Another potential line of
research is related to the interaction of STSs and the excita-
tion of high-order states, such as the dipole STSs shown in
Ref. [41].
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