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We investigate the nonlinear frequency conversion of nondiffracting optical modes via a nondegenerate four-
wave mixing (FWM) process in rubidium vapor. In this process, two strong control fields and a weak probe field
mutually interact via a four-level double-� type atomic system to produce a low frequency weak Stokes field
which is a phase conjugate to probe. We show that any arbitrary mode such as Airy, Bessel, Mathieu, and Weber
beams encoded initially in the spatial envelope of the probe field are efficiently transferred to the FWM Stokes
field by satisfying the phase-matching condition. Interestingly, we found that the transmitted intensity profiles
of the Stokes beam are identical to that of the probe beam, while the phase profile is complementary. The phase
conjugation property of output beams is revealed by interfering them with a copropagating plane wave. We
further found the fidelity in terms of structural similarity between two transmitted modes of about 99%, which
substantiates the high efficiency of the FWM process. The efficient transfer and frequency conversion of such
diffraction-free beams may have potential applications in nonlinear optical and quantum technologies.
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I. INTRODUCTION

The nonlinear frequency conversion of electromagnetic ra-
diation has received great attention recently due to its broad
range of applications in the development of optical and quan-
tum technologies [1–4]. For example, such conversion is often
required in the functioning of an all-optical integrated device
whose individual components operate at certain specific fre-
quencies. To achieve this, nonlinear processes such as sum- or
different-frequency generation and four-wave mixing (FWM)
techniques have been explored in various nonlinear media
such as crystals and atomic vapor [5]. Various frequency
up- and down-conversion processes have been developed to
generate or detect radiation with frequency ranging from
extreme-ultraviolet to far-infrared spectrum [6–8]. The fre-
quency conversion of multimode images is also crucial due
to its applications in nonlinear imaging and quantum infor-
mation processing. Utilizing a stimulated down-conversion
process in a nonlinear crystal, Ribeiro et al. have theoreti-
cally proposed [9] and experimentally demonstrated [10] the
transfer of a transverse intensity profile from a pump field
to a down-converted idler field. However, the conversion ef-
ficiency is low in crystal media and a high-intensity laser or
a resonant cavity is often required to increase efficiency. In
order to solve the problem of low conversion efficiency, an
atomic ensemble is used in various multilevel configurations.
An atomic ensemble is a good candidate for studying the
generation, propagation, and manipulation of optical beams.
This is because its absorptive and dispersive properties are
easily controlled by atomic coherence. Ding et al. reported a
frequency up-conversion process based on FWM to transfer
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an image from infrared field to visible light using atomic
vapor [11]. The transfer of orbital angular momentum (OAM)
states of an optical vortex beam from one frequency to another
frequency light has been studied using an FWM process in
atomic vapor [12,13].

Using a nondegenerate FWM process, Tabosa et al. [14]
reported experimentally the transfer of OAM from a vortex
beam to another oscillating at a different frequency via optical
pumping in a cold cesium atomic system. Akulshin et al.
[15] have suggested a technique to transfer OAM from an
incident laser beam to a newly generated optical beam in a
ladder-type atomic system. They have further analyzed the
transverse intensity and phase profiles of the forward-directed
collimated blue and near-IR light using self-interference and
astigmatic transformation techniques. In another work, Akul-
shin et al. [16] reported how the orientation of the Rb cell can
significantly affect the intensity and spectral characteristics of
both the frequency up- and down-converted fields generated
by nonlinear processes in Rb vapor. They found that the pro-
cess of velocity-insensitive two-photon excitation is crucial to
understand the coherent blue and mid-IR light enhancements.
Chopinaud et al. [17] have reported the OAM conversion from
a red optical vortex to a blue one with topological charge rang-
ing from −30 to +30 in a rubidium atomic vapor. Prajapati
et al. [18] proposed theoretically and verified experimentally
the generation of the collimated blue light in 85Rb vapor using
two resonant laser fields exciting atoms into the 5D3/2 state
via an intermediate state 5P1/2 or 5P3/2. They have compared
the blue light generation for different values of frequency
detunings, powers, and polarizations of the pump lasers in two
D-line transitions of 85Rb atoms. Their results show that the
blue light emission is higher for the D1 transition as compared
to the D2 transition for similar conditions. Mallick et al. [19]
discussed a scheme to transfer the OAM from an externally
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applied Laguerre-Gaussian beam to a new frequency FWM
field in a homogeneously broadened 85Rb atomic system in
a diamond-type configuration. In this case, it is shown how
phase singularities of the input vortex beams are mapped onto
atomic coherence in a transverse plane, which leads to transfer
of OAM to the FWM field. Recently, Qiu et al. [20] proposed a
scheme to transfer and manipulate the helical phase wavefront
of a vortex beam via space-dependent FWM in sodium vapor
consisting of four-level atoms. They found that the FWM
field can be significantly enhanced and its dynamical phase
twist can be completely suppressed by suitably choosing the
intensity and detuning of the control field. Yu et al. [21]
investigated a scheme to control the helical phase wavefront
of the FWM beam using two control fields in a six-level
tripod atomic system. It is shown that the helical phase-front
of the transferred vortex FWM beam can be controlled or
suppressed by varying the intensities of two control fields and
the detuning of the probe field.

The process of FWM is a well-established nonlinear
phenomenon that essentially depends on high intensities of
external laser fields [5]. In this process, three laser fields co-
herently interact with medium to generate a fourth field with a
different frequency. The transverse profile of these laser fields
and their propagation dynamics strongly affect the efficiency
of FWM processes [22,23]. This is because a laser beam ex-
periences a natural paraxial spreading due to diffraction while
propagating in free space or medium. This eventually results
in a severe distortion of the laser beam profile and causes
loss of information in the course of propagation. Further, this
beam distortion also degrades the efficiency of the FWM pro-
cess. To sustain the efficiency, various techniques have been
developed to eliminate the distortion due to diffraction [24].
Shpaisman et al. [25] have proposed an electromagnetically
induced waveguiding mechanism to control the diffraction of
a Gaussian probe beam in both single �-type and closed-loop
double-� configurations. In the double-� system, the lower
�-system acts as a waveguide to induce a spatial confine-
ment to laser beams in the upper �-system, which undergoes
diffraction in the absence of a waveguiding system. They have
further shown the frequency conversion between the fields
via FWM in the closed-loop double-� system. They found
that when the upper �-system initially interacts with only a
single laser beam, the loop is completed by a newly gener-
ated anti-Stokes field at the FWM frequency. Their results
show that both the applied probe and generated anti-Stokes
fields exhibit electromagnetically induced waveguiding and
are spatially confined for several diffraction lengths. This
waveguiding effect is strongly phase sensitive as it derives
from the phase-dependent effective third-order susceptibility
of the closed-loop double-� system.

In order to escape the diffraction, one can use a class
of nondiffracting spatial modes which are exact solutions of
the Helmholtz equation (HE) in different coordinate systems.
These solutions include Airy [26–28], Bessel [29,30], Math-
ieu [31,32], and Weber beams [33,34]. They possess several
properties such as diffraction-free propagation, self-healing,
and self-acceleration in the transverse direction. In the case
of diffraction-free propagation, the beam preserves its shape
and size while traversing through free space or medium. By
their self-healing nature, these beams can reconstruct their

original form after being disturbed by smaller objects. The
self-acceleration quality is associated with an Airy beam
where it experiences a constant acceleration in the transverse
plane during propagation. Recently, Wei et al. have experi-
mentally demonstrated the generation of Airy beams based
on the FWM process in a rubidium atomic vapor [35]. These
unique properties make the Airy beam extremely useful for a
variety of applications such as particle clearing [36], genera-
tion of curved plasma [37], light-sheet microscopy [38], and
spatiotemporal light bullets [39]. In this paper, we introduce
a scheme to show the transfer and frequency conversion of
these nondiffracting beams via the nonlinear FWM process in
an atomic vapor.

The paper is organized as follows. In Sec. II A, we in-
troduce our theoretical model for a closed-loop four-level
double-� system and apply semiclassical theory to describe
light-matter interaction. In Sec. II B, we use the density ma-
trix approach to describe dynamics of the atomic system and
derive analytical expressions for linear and nonlinear response
of the medium under steady-state condition. In Sec. II C, we
use the Maxwell-Schrödinger equation to observe the spatial
evolutions of probe and FWM fields within paraxial approx-
imation. In Sec. III, we present our numerical results for
transfer and frequency conversion of various nondiffracting
modes from a probe field to a frequency-converted Stokes
field in the FWM process. Section IV provides a brief sum-
mary of our results.

II. THEORETICAL FORMULATION

A. Model system

We consider an ensemble of lifetime-broadened 87Rb cold
atoms. Each atom is modeled as a four-level system in a
double-� configuration as depicted in Fig. 1. The electric
dipole-allowed transitions |3〉 ↔ |1〉 and |4〉 ↔ |2〉 are cou-
pled by two strong control fields of Rabi frequencies Gc1

and Gc2, respectively. The remaining two transitions |4〉 ↔
|1〉 and |3〉 ↔ |2〉 are driven by a weak probe and newly
borne Stokes fields having Rabi frequencies gp and gs, re-
spectively. The generic energy level scheme for FWM can be
realized in the magnetic sublevels of 87Rb with two ground
states assigned as |1〉 = |5S1/2, F = 1, mF = −1〉 and |2〉 =
|5S1/2, F = 2, mF = −2〉 and two excited states assigned
as |3〉 = |5P1/2, F ′ = 2, m′

F = −1〉 and |4〉 = |5P3/2, F ′ =
2, m′

F = −2〉 [35,40]. The electric fields associated with four
optical beams are defined as

�Ej (�r, t ) = ê jE j (�r) e−i(ω j t−�k j ·�r) + c.c., (1)

where E j (�r) are the slowing varying envelopes, ê j the unit
polarization vectors, ωi the laser field frequencies, and k j the
wave numbers of fields. The index j ∈ {p, s, c1, c2} denotes
the probe, Stokes, and control fields. The Hamiltonian of the
atom-field system in electric dipole and rotating-wave approx-
imations is given by

Ĥ/h̄ = ω1|1〉〈1| + ω2|2〉〈2| + ω3|3〉〈3| + ω4|4〉〈4|
− gpe−iωpt |4〉〈1| − gse

−iωst |3〉〈2| − Gc1e−iωc1t |4〉〈2|
− Gc2e−iωc2t |3〉〈1| + H.c., (2)
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FIG. 1. Four-wave mixing in a closed-loop four-level double-�
type atomic system. In the first � system, a probe field and a control
field of Rabi frequencies gp and Gc1 drive the transitions |4〉 ↔ |1〉
and |4〉 ↔ |2〉, respectively. The second � system is created by
the FWM generated Stokes field and another control field of Rabi
frequencies gs and Gc2 interacting with transitions |3〉 ↔ |2〉 and
|3〉 ↔ |1〉, respectively. The angular frequencies and single-photon
detunings of the four fields are denoted by ωi and �i. The ground
state frequency splitting is denoted by ω0.

where h̄ω j is the energy of the corresponding atomic
level | j〉. The Rabi frequencies of four fields are defined
as gp = �d41 · êpEpei�kp·�r/h̄, gs = �d32 · êsEsei�ks·�r/h̄ and Gc1 =
�d31 · êc1Ec1ei�kc1·�r/h̄, Gc2 = �d42 · êpEc2ei�kc2·�r/h̄. Here, d jk are
the dipole moments of respective transition | j〉 ↔ 〈k| ( j ∈
{3, 4}, k ∈ {1, 2}).

B. Atom dynamics

The equation of motion of atoms can be derived using the
standard density matrix approach,

∂ρ

∂t
=− i

h̄
[Ĥ, ρ] + Lρ, (3)

where Lρ is Lindblad operator which describes population
and coherence decay. On substituting the Hamiltonian of
Eq. (2) into Eq. (3), we get equations of motion for the density
matrix elements. The resulting 16 equations have explicit time
dependence which can be removed by introducing suitable
transformations and ensuring energy conservation condition
ωc1 + ωc2 = ωp + ωs for the FWM process [13]. Now in or-
der to solve these time-independent equations analytically,
we find out perturbative solutions to the density matrix ele-
ments under steady-state condition (∂σ/∂t = 0). For this, we
assume that the probe and Stokes fields are weak enough as
compared with control fields so that they can be treated as a
perturbation to the system in linear order. Thus, we calculated
the atomic coherences σ41 and σ32 to first order in probe and
Stokes fields while all orders in control fields as follows:

σ41 = αpgp + βpg∗
s (4a)

σ32 = αsgs + βsg
∗
p, (4b)

where the coefficients αi and βi are listed in the Appendix.
The above two atomic coherences are used to obtain the po-
larization of the medium for probe ( �Pp) and Stokes ( �Ps) fields
oscillating at frequencies ωp and ωs as

�Pp(ωp) = N ( �d14σ41e−iωpt + c.c.) (5a)

�Ps(ωs) = N ( �d23σ32e−iωst + c.c.), (5b)

with respective amplitudes Pp(ωp) = Nd14σ41 and Ps(ωs) =
Nd23σ32. Here, N is the atomic density of the medium. After
substituting expressions for σ41 and σ32 from Eqs. (4) along
with Rabi frequencies for four fields, we can express the
polarizations of two fields as a sum of two parts: (1) linear
polarization oscillating at frequency ωi and (2) nonlinear po-
larization oscillating at frequency ωc1 + ωc2 − ωi (i ∈ {p, s})
as follows:

Pp(ωp) = χ11(ωp)Epei�kp·�r + χ12(ωc1 + ωc2 − ωs)

× E∗
s ei(�kc1+�kc2−�ks )·�r (6a)

Ps(ωs) = χ22(ωs)Ese
i�ks·�r + χ21(ωc1 + ωc2 − ωp)

× E∗
pei(�kc1+�kc2−�kp)·�r, (6b)

where χi j is the complex susceptibility of the atomic medium
[41]. The first term χii (∝ αp,s) describes the linear sus-
ceptibility whose real and imaginary parts are respectively
responsible for dispersion and absorption of both fields inside
the medium. The second term χi j (∝ βp,s) represents χ3-type
nonlinear susceptibility and describes the FWM parametric
process. In a parametric process an atom is driven from one
ground state to another ground state and back to the ini-
tial state. Consequently, two photons from control fields are
converted into two photons of probe and Stokes fields with
frequencies (wave vectors) ωp (kp) and ωs (kc). Thus, this
cross polarization acts as a source term in the propagation
equations and enables efficient energy transfer between light
fields provided the phase-matching condition (��k = 0) is sat-
isfied. Here, ��k is the geometric phase mismatch ��k = �kc1 +
�kc2 − �kp − �ks. It is also important to note that even though
there is no Stokes field (Es = 0) at the input, Eq. (6b) implies
that there exists a nonzero term due to nonlinear polarization
at frequency ωs, i.e., Ps(ωs) = χ21E∗

p . This simply implies
that the nonlinear interaction of the optical fields leads to
the generation of a Stokes field provided the four-photon
resonance condition is satisfied. Further, it is interesting to
note here that the polarization Ps(ωs) is proportional to the
complex conjugate of the probe (E∗

p ) and thus, the generated
Stokes wave would be a phase conjugate to the probe beam.
Now, in order to see the effect of medium response on beam
propagation we use the Maxwell wave equation.

C. Propagation dynamics

We assume that the control fields are so strong that they
are undepleted during propagation and merely acquire phase
shifts due to self-phase modulation in the FWM process
[5]. So we study only the influence of both linear and non-
linear contributions of polarizations on spatial evolution of
the probe and the Stokes beams through the medium. The
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paraxial wave equations governing propagation dynamics of
probe and Stokes fields can be written in terms of their Rabi
frequencies as

∂gp

∂z
= i

2kp

(
∂2

∂x2
+ ∂2

∂y2

)
gp + iηpσ41 , (7a)

∂gs

∂z
= i

2ks

(
∂2

∂x2
+ ∂2

∂y2

)
gs + iηsσ32 , (7b)

where η j (= 3Nλ2
j/8π ) are the coupling constants. The first

terms in the parentheses on the right-hand sides account for
the diffraction. The second terms on the right-hand sides are
responsible for the dispersion and absorption or gain of both
the probe and Stokes beams. Note that the two propagation
equations are coupled via atomic coherences σ41 and σ32. The
intensity gains for probe and Stokes beam are respectively
described by Ip = |gp|2/|gp0|2 and Is = |gs|2/|gp0|2, where
gp0 is the seed signal given on the input of probe beam.

III. RESULTS AND DISCUSSION

We solve the paraxial wave Eqs. (7) using a numeri-
cal integration technique based on the split-step fast Fourier
transform approach to take into account the diffraction and
the integration of the first-order differential equations by the
fourth-order Runge-Kutta method to include the source term
[42]. In the following, we simulate the coupled Eqs. (7)
numerically for different input modes of probe beam as a
seed signal and show how intensity and phase profiles are
efficiently transferred to the newly generated Stokes beam.

A. Airy beam

Optical Airy beams (ABs) were first discovered by
Siviloglou et al. in 2007, as a solution of paraxial wave
equation in both one and two dimensions [27]. Ideally, an
Airy beam contains an infinite energy extended over an in-
finite space. This makes it impossible to create such a beam
physically since it would require an infinite amount of energy.
However, the finite-energy Airy beam has been realized in
practice by introducing an exponential aperture to truncate
the infinite Airy tail. Siviloglou et al. experimentally observed
the finite-energy one-dimensional (1D) and two-dimensional
(2D) Airy beams by imposing a cubic-phase modulation on
a broad Gaussian beam in both dimensions [28]. Mathemat-
ically, the finite-energy Airy beam is usually obtained by
multiplying the Airy function with an exponentially decaying
function. In order to demonstrate the frequency conversion,
we first choose the probe beam profile as a finite-energy 2D
Airy beam. The electric field envelope associated with the
finite-energy Airy probe beam at the input facet of the medium
(z = 0) has the following form:

gp(x, y) = gp0

2
Ai

(
x

x0

)
Ai

(
y

y0

)
exp

(
a1

x

x0
+ a2

y

y0

)
, (8)

where gp0 is the initial probe amplitude, and Ai(x/x0) and
Ai(y/y0) represent the Airy functions of transverse coordi-
nates x and y normalized by the arbitrary transverse scales x0

and y0. The parameters a1 and a2 appearing in the exponential
function represent the positive quantities. This decay factor
truncates the field in both transverse directions and ensures

FIG. 2. Normalized intensity profiles of finite energy Airy probe
beam (a) at the input z = 0 and (b) after propagating z = 20 cm
in free space. Transmitted profiles of (c) probe beam preserving its
original profile and (d) FWM Stokes beam showing identical profile,
after traversing z = 5-cm-long medium. (e) and (f) Interference pat-
terns of output probe and Stokes beams with a coherent plane wave,
respectively. The parameters used are gp0 = 0.01γ , Gc = 4γ , �c1 =
�c2 = �p = �s = 0, γ0 = 0.01γ , γ = 2π × 6 MHz, λp = 780 nm,
λs = 795 nm, and N = 1×109 atoms/cm3. The input amplitude of
the Stokes beam is assumed to be zero.

the finite energy of the Airy beam. Figure 2(a) depicts the 2D
normalized intensity profile of the finite-energy Airy beam at
the entrance of the medium (z = 0) for x0 = y0 = 100 µm and
a1 = a2 = 0.1. Figure 2(b) illustrates 2D normalized intensity
of the Airy beam after propagating a distance of z = 20 cm
in free space. This clearly shows the diffraction-free nature
of such a beam. Thus, as expected, the beam maintains its
transverse intensity distribution as it propagates in free space.
Further, it is also evident from Fig. 2(b) that the Airy beam
has accelerated along the 45◦ axis in the x-y plane. This
is so because we have set an equal scaling in the x and y
directions. Now, in order to interpret the FWM in an atomic
vapor, we propagated the 2D Airy probe beam of Fig. 2(a)
through a 5-cm-long medium. Since the Stokes beam is zero
at the input, the probe beam is initially absorbed because
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the linear part dominates over the nonlinear part, which is
negligible due to the zero value of the Stokes field. After a
short propagation distance, the probe beam resumes its shape
due to the generation and parametric amplification by the
Stokes field inside the medium. It is interesting to note that
the probe is significantly amplified due to its coupling to a new
beam created by FWM. Therefore, the gain due to parametric
amplification compensates any linear absorption loss of weak
probe and Stokes beams at the expense of absorption in strong
control fields. The transmitted intensity profile of the probe
beam at the exit of the medium is shown in Fig. 2(c). The
beam structure is well preserved due to the robustness of
such a beam toward the diffraction. Figure 2(d) shows the
transmitted intensity profile of the FWM-generated Stokes
field. Note that the initial amplitude of the Stokes field was
set to zero at the entrance of the medium. However, it is
interesting to see that the transverse profile of the probe beam
is successfully transferred onto the Stokes beam via the FWM
process. We further found that newly generated Airy Stokes
beam has started accelerating in a direction opposite to that
of probe beam acceleration. These propagation dynamics in
FWM medium confirm that the generated Stokes beam is an
Airy beam. It is also observed that probe and Stokes beams are
significantly amplified due to parametric gain resulting from
the FWM process. The integrated intensity gain for the probe
and Stokes beam is evaluated to be 1.09 and 1.08, respectively,
at the end of the medium. We have further assessed the quality
of image transformation by estimating the structural similarity
between two output modes, which is about 0.997 [43]. The
exact similarity between two transmitted beams reveals the
high efficiency of the FWM process. Now, in order to ex-
tract the information about transverse phase distribution, we
superimpose the output probe and Stokes Airy modes with a
copropagating coherent plane wave. The resultant interference
patterns are shown in Figs. 2(e) and 2(f) just below the output
beams. It should be noted that the multiple high-intensity
lobes of an Airy beam are separated by nodal lines (zero
intensity) in both the x and y directions. This means that the
electric field of an Airy beam undergoes a phase shift of π

radians between all adjacent high-intensity lobes. The coher-
ent superposition of such an Airy beam with a plane wave
results in alternate maxima and minima intensity distribution
as a consequence of constructive and destructive interference,
respectively. Any phase conjugation of this interference would
result in exchange of maxima and minima position. This is
evident when we compare Figs. 2(e) and 2(f). This simply
implies that the generated Stokes beam is a conjugate to the
probe beam.

B. Bessel beam

Optical Bessel beams (BBs) are diffraction-free light fields
whose amplitude is described by a Bessel function of the
first kind. Such Bessel function originates as a solution of the
HE when written in circular cylindrical coordinates. Theoret-
ically, an ideal Bessel beam contains an infinite number of
concentric rings spreading over an infinite area. Thus, it would
carry an infinite energy similar to a plane wave, and it is not
possible to realize a true Bessel beam with such an infinite
energy and extent. However, some suitable approximations

have been made to create a Bessel beam experimentally which
exhibit the nondiffraction properties over a finite distance and
are useful in many optical applications. In practice, Bessel
beams of finite energy are produced either by focusing a
Gaussian beam with an axicon lens, or by using axisymmetric
diffraction gratings, or by placing a narrow annular aperture
in the far field. In the year 1987, Durnin et al. first theoreti-
cally predicted [29] and later experimentally observed [30] the
zero-order Bessel beam by illuminating an annular slit placed
in the focal plane of a lens. These beams are extremely useful
for optical tweezing, particle manipulation, and biomedical
imaging [44]. The electric field envelope associated to an ideal
Bessel probe beam can be described by

gp(r, φ, z) = gp0Jn(krr) exp(ikzz) exp(±inφ), (9)

where r =
√

x2 + y2 and Jn is the nth-order Bessel function
of the first kind, and kr and kz are the radial and longi-
tudinal wave vectors with k = √

k2
z + k2

r . The parameter kr

determines the effective width of the Bessel beam, and at
kr = w/c = 2π/λ the central spot assumes its minimum pos-
sible diameter. Note that for kr = 0, Eq. (9) reduces to a plane
wave. However, for 0 < kr � w/c, it represents a nondiffract-
ing beam as it has same intensity profile J2

0 (krr) in every
plane normal to direction of propagation. For numerical sim-
ulation we have fixed kr = 24/mm. The transverse intensity
distribution for a zero-order (n = 0) Bessel beam shows a
bright core at the center. The high-order (n > 0) Bessel beams
have a phase singularity on the beam axis and hence have
a dark core at the center. We consider such an axially sym-
metric finite-energy zero-order Bessel beam to demonstrate
the FWM process. We numerically simulated the propagation
of a zero-order Bessel beam imprinted initially in the inten-
sity profile of a probe beam through a 5-cm-long medium.
Figure 3(a) depicts the normalized intensity distribution of
a transmitted Bessel probe beam having a set of concentric
rings. The transverse structure of the probe beam is well
preserved due to its immunity to optical diffraction. The trans-
mitted intensity profile of frequency-converted Stokes beams
is shown in Fig. 3(b). Interestingly, the transmitted profile of
the Stokes field has acquired the spatial features identical to
that of the probe beam, which signifies the high efficiency
of the FWM process. Note that both the probe and Stokes
beams have been amplified due to their parametric gain of the
FWM process, avoiding any loss due to linear absorption. The
integrated intensity gain for both the probe and Stokes beams
is close to unity, whereas the structural similarity between
transmitted modes is estimated to be about 0.999. Since a
Bessel beam is assumed to be made up from plane waves
propagating on a cone, one can easily infer that the nodes (null
intensity) of the beam correspond to a phase shift of π radians
between adjacent rings. This is clearly visible in the phase
profiles as depicted in Figs. 3(c) and 3(d) just below their
intensity profiles. In order to extract phase information, we
superimpose output beams with a copropagating plane wave.
This results in an interference pattern with alternate maxima
and minima intensity as shown in Figs. 3(e) and 3(f). A careful
analysis of these two images suggests that interference fringes
are complementary to each other. Thus, we conclude that the
generated Stokes beam is a phase conjugate to the probe beam.
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FIG. 3. Normalized intensity distribution of transmitted (a) zero-
order Bessel probe beam and (b) converted FWM Stokes beam,
(c) and (d) corresponding phase profiles, and (e) and (f) respective
interference patterns of these beams with a plane wave. All other
parameters are the same as in Fig. 2.

We further anticipate that a similar concept would apply for
higher-order Bessel modes.

C. Mathieu beam

Optical Mathieu beams (MBs) are the most general class
of nondiffracting fields whose amplitude is described by the
radial and angular Mathieu functions. These functions are
solutions of the HE when expressed in the elliptical coordi-
nates system (ξ, η, z). Gutiérrez-Vega et al. first theoretically
predicted [31] and experimentally demonstrated [45] the zero-
order Mathieu beam as a new member of the nondiffracting
beam. In their experimental setup they used a thin annular
slit modulated by angular Mathieu functions to generate such
modes in elliptic coordinates. Mathematically, these modes
are described by a product of radial and angular Mathieu
functions of order m along with an even (e) and an odd (o)
parity. For the sake of simplicity, we consider Mathieu beams
with even parity for our FWM analysis as follows:

gp = MBe
m(ξ, η; q) = gp0Cm(q)Jem(ξ ; q)cem(η; q), (10)

FIG. 4. Normalized intensity distribution of transmitted (a) zero-
order Mathieu probe beam and (b) converted FWM Stokes beam,
(c) and (d) are the corresponding phase profiles, (e) and (f) show the
respective interference patterns of these beams with a plane wave.
All other parameters are the same as in Fig. 2.

where Cm(q) (m = 0, 1, 2, ...) is a normalization constant
that depends on a dimensionless parameter q. Here, q =
h2k2

t /4 describes the ellipticity of the elliptic coordinate sys-
tem with interfocal separation h and transverse wave number
kt = 2π/a, where a is characteristic beam size. Jem(ξ ; q)
and cem(η; q) are mth-order radial and angular even Mathieu
functions of the first kind describing the radial and angu-
lar distribution of the Mathieu beam, respectively. Here, ξ ∈
[0,∞) and η ∈ [0, 2π ) correspond to radial and angular vari-
ables in the elliptical coordinate system. For simplicity in
our numerical simulation, we consider the initial probe beam
profile as the zero-order Mathieu beam. We choose the pa-
rameter of ellipticity q = 25 and characteristic structure size
a = 25 µm. The numerically propagated transverse profile for
the zero-order Mathieu probe beam is shown in Fig. 4(a),
whereas the transferred image onto Stokes beams is displayed
in Fig. 4(b). These intensity distributions consisting of bright
spots along elliptic curves clearly display the elliptical behav-
ior of Mathieu beams. The intensity profiles of transmitted
beams are well preserved due to their propagation-invariant
nature. Note that this time the nodal lines (or null intensity)
are in the form of elliptic lines and correspond to a jump
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of π radians phase shift between adjacent bright spots. The
phase distributions of both beams are illustrated in Figs. 4(c)
and 4(d). The interferograms of superposition of output probe
and Stokes modes with a coherent plane wave are shown in
Figs. 4(e) and 4(f), respectively. It is evident from the inter-
ference fringes that the separate regions of different phases lie
on the ellipses. Thus, the characteristics of the elliptic coor-
dinate system are fully reflected in both transverse intensity
and phase distributions. Moreover, the interference fringes
obtained in two images are complementary to each other, i.e.,
a maximum corresponds to a minimum and vice versa. A care-
ful visualization of these interference patterns suggests that
the generated Stokes beam is a conjugate to the probe beam.
A similar concept would apply for higher-order even and odd
Mathieu beams. Moreover, the integrated intensity gain for the
transmitted probe and Stokes Mathieu beam is estimated to be
unity. The structural similarity is approximately 0.998.

D. Weber beam

Optical Weber beams (WBs), also referred to as parabolic
beams, are the fourth family of nondiffracting fields. Their
spatial structure is described by parabolic cylinder functions.
These functions are the exact solutions of the HE written in
the parabolic cylindrical coordinate system (ξ, η, z). Bandres
et al. were the first to demonstrate both theoretically [33]
and experimentally [46] the zero-order Weber beam by means
of a suitable angular modulation of a thin annular slit. The
parabolic coordinates are related to the Cartesian coordinates
(x, y, z) by the transformation equations as x = (η2 − ξ 2)/2,
y = ηξ , and z = z with domains ξ ∈ [0,∞), η ∈ (−∞,∞),
and z ∈ (−∞,∞). There are two different solutions for the
transverse field distributions of Weber beams corresponding
to an even and odd parity. However, single Weber beams are
defined by products of functions having the same parity in η

and ξ . For simplicity in our numerical simulation, we consider
only the even Weber beam as follows:

gp = W Be
0(ξ, η; a) = gp0

|�1|2
π

√
2

Pe(σξ ; a)Pe(ση; −a), (11)

where Pe is the even real solutions of the parabolic cylinder
differential equation. Here, σ = √

(2kt ) and �1 = �(1/4 +
ia/2), where a ∈ (−∞,∞) is a continuous parameter and
defines the order of the beam. We consider the fundamental
zero-order mode a = 0 for the present study. We numerically
simulated the propagation of an even zero-order Weber beam
imprinted initially in the spatial envelope of the probe beam
through a 5-cm-long medium. Figures 5(a) and 5(b) illustrate
the normalized intensity profiles of transmitted probe and
generated Stokes beams consisting of alternate bright and
dark regions along parabolic paths. This clearly shows the
parabolic characteristics of Weber beams. It is obvious to
see that transverse structures of both beams are identical and
preserved during propagation. Note that the intensity patterns
are symmetrical about the x and y axes. The nonlinear gain due
to parametric amplification compensates any loss by linear
absorption. In this case, the integrated intensity gain for the
output probe and Stokes Mathieu beam is found to be unity.
The structural similarity between the two output modes is
nearly equal to 0.999. The transmitted beams also exhibit

FIG. 5. Normalized intensity distribution of transmitted (a) zero-
order Weber probe beam and (b) converted FWM Stokes beam,
(c) and (d) corresponding phase profiles, and (e) and (f) respective
interference patterns of these beams with a plane wave. All other
parameters are the same as in Fig. 2.

well-defined parabolic nodal lines (null intensity). This simply
implies that there is a jump of π radians phase shift between
adjacent bright spots. This is evident from phase profiles
shown in Figs. 5(c) and 5(d). The interference of two output
beams with a copropagating plane wave results in alternate
maxima and minima intensity distribution. Figures 5(c) and
5(d) depict the fringe patterns. It is noticeable that the result-
ing fringes are complementary to each other. This implies that
both beams are phase conjugate to each other.

IV. CONCLUSION

In conclusion, we have studied the transfer and the non-
linear frequency conversion of different nondiffracting modes
based on the FWM process in cold atomic vapor. We have
modeled each atom as a four-level double-� type atomic
system where two strong control fields and a weak probe field
mutually interact to produce a low frequency weak Stokes
field. We have found that an arbitrary mode such as Airy,
Bessel, Mathieu, and Weber beams imprinted initially in the
envelope of the probe beam is preserved and successfully
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transferred to the generated Stokes field after propagation
through medium. We have further used the interferometry
technique to confirm that the phase profiles of the frequency
converted Stokes beam are phase conjugate to that of the
transmitted probe beam. It is also observed that any loss due to
linear absorption is compensated by parametric amplification.
The structural similarity between two transmitted images is
estimated to be about 99%, indicating the high success and
efficiency of the nonlinear FWM process.

ACKNOWLEDGMENT

O.N.V. gratefully acknowledges the financial support from
the UGC Government of India for funding this research work
through a D.S. Kothari Postdoctoral Fellowship with Grant
No. F.4-2/2006(BSR)/PH/20-21/0054.

APPENDIX: COEFFICIENTS FOR POLARIZATIONS

αp = −i|Gc|2
D

[(
�21 + �43

�23
+ �21�43

|Gc|2
)

N14

− �21N13

�31
− �43N24

�24

]
�23 (A1)

βp = −iG2
c

D

[
�21 + �43

�23
N23 − �43

�31
N13 + �21

�42
N24

]
�23 (A2)

αs = i|Gc|2
D∗

[(
�12 + �34

�14
+ �12�34

|Gc|2
)

N23

+ �34N13

�13
− �12N24

�24

]
�14 (A3)

βs = −iG2
c

D∗

[
�12 + �34

�14
N14 + �12

�31
N13 + �34

�42
N24

]
�14, (A4)

with

D = �21�23�41�43 + |Gc|2(�23 + �41)(�21 + �43)

N13 = N14 = |�31|2
4|Gc|2 + |�31|2 + |�42|2

N23 = N24 = |�42|2
4|Gc|2 + |�31|2 + |�42|2 ,

where the complex decay rates are defined as �21 = γ c
21 +

i(�p − �c1) = �∗
12, �31 = [γ31 + γ32 + i�c2] = �∗

13, �32 =
[γ31 + γ32 + i�s] = �∗

23, �41 = [γ41 + γ42 + i�p] = �∗
14,

�42 = [γ41 + γ42 + i�c1] = �∗
24, and �43 = [γ41 + γ42 +

γ31 + γ32 + i(�p − �c2)] = �∗
34. Here, �p = ω41 − ωp,

�s = ω32 − ωs, �c1 = ω31 − ωc2, and �c2 = ω42 − ωc1

are respective single-photon detunings. γ jk are the radiative
decay rates from the state | j〉 to |k〉 and are treated to be equal:
γ31 = γ32 = γ41 = γ42 = γ /2. The dipole dephasing rate due
to collisions is assumed to be zero (γ c

jk =21 = 0) except ground
state coherence: γ c

21 = γ0. To simplify the expressions, we
have assumed that Gc1 = Gc2 = Gc.
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