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Procedure for imparting transverse orbital angular momentum by focusing
spatiotemporally coupled ultrashort pulses
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A focusing system such as a single lens or a spherical mirror imparts intrinsic transverse orbital angular
momentum (OAM) to spatiotemporal (ST) coupled fields, the ST intensity distribution of which presents ST
covariance. This fact may greatly simplify the experimental setups used to date to impart transverse OAM. We
evaluate analytically the imparted transverse OAM as a function of the focal length and the covariance. The
focused fields with transverse OAM include elliptical ST vortices and rotating pulses without any ST phase
singularity such as the “lighthouse” pulse. We provide closed-form, analytical expressions for these fields valid
at any propagation distance from the focusing system, which are of interest in applications such as the interaction
of these fields with matter. In general, focusing of ST coupled fields with intensity covariance generates mixed
fields with ST vortices and rotating pulse fronts, where one or another feature dominates depending on the input
field.
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I. INTRODUCTION

In the dynamic field of structured light, backed by ma-
jor experimental achievements, orbital angular momentum
(OAM) and vortex structures play a prominent role. After
three decades devoted to spatial vortices and longitudi-
nal OAM, research now expands to spatiotemporal (ST)
optical vortices (STOVs) [1], featuring a line phase sin-
gularity transverse to the propagation direction, and to the
associated transverse OAM. These STOVs are generated us-
ing standard, two-dimensional diffractive pulse shapers with
either phase plates [2] or spatial light modulators [3,4] placed
at the Fourier plane of 4 f systems between two diffraction
gratings. Recently, the use of metasurfaces has been proposed
[5], and methods to impart or remove transverse OAM to
already formed STOVs have been demonstrated [6].

Here, we show that a single focusing system such as a
lens or a spherical mirror can impart transverse OAM to an
OAM-free wave packet. The condition for the illuminating
pulse to acquire transverse OAM is that its ST structure is
coupled such that the intensity presents covariance between
time and a transversal coordinate. The amount of transverse
OAM per unit energy is evaluated as a function of the focal
length and the covariance of the intensity.

With an input tilted pulse, the imparted transverse OAM
produces a focusing pulse with a rotating pulse front without
involving the formation of ST singularities. This is the “light-
house” pulse previously known by its rotating wave fronts
in time at the focal plane [7–9]. Partially coherent rotating
pulses have been described, and its transverse OAM noticed
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in Ref. [10]. Here, we provide a closed-form analytical ex-
pression of rotating pulses valid at any propagation distance
for coherent illumination, which is the most frequent situation
in light-matter interaction experiments [7–9,11], and evaluate
its transverse OAM as a function of measurable parameters as
the tilt parameter, transversal size, and focal length.

In a second example, focusing a pulse with n tilted line
π steps in the phase between n + 1 tilted intensity lobes, and
carrying no transverse OAM, produces a STOV of topological
charge n at the focal plane. This illumination resembles the
output from a 4 f pulse shaper described in the experiments
in Ref. [2], which also focuses to a STOV. Here, we point out
that the 4 f pulse shaper system is not necessary since the lens
already endows the light with transverse OAM as long as the
covariance is present, and the multilobe tilted structure can be
generated by other means such as a spatial light modulator
and a simple prism. The fact that the tilted multilobe structure
of Hermite-Gauss shape focuses to a STOV has also been
reported in Refs. [12,13], where the focused field is numer-
ically evaluated at the focal plane for n = 1 and 2. Here, we
obtain analytical expressions for the propagating pulse at any
distance from the focusing system, and for arbitrary n, and
point out that multilobe tilted structures with shapes other
than Hermite-Gauss also focus into STOVs. In addition, we
evaluate analytically the amount of transverse OAM of the
focused pulse.

II. TRANSVERSE OAM IMPARTED
BY A FOCUSING SYSTEM

We consider an optical pulse E = φ(x, y, t )e−iω0t in free
space that will be focused along the z direction under paraxial
conditions and that comprises many optical oscillations ow-
ing to its narrow-band temporal frequency spectrum about
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a carrier frequency ω0. In this paper, we do not consider
few-cycle, broadband pulses. For simplicity, φ is assumed to
present ST couplings only in x and t , so that φ = ψ (x, t )Y (y).
With this choice triple integrals for the physical magni-
tudes of interest factorize in double integrals in x and t
multiplied by

∫ |Y (y)|2dy, which will not be written, and
cancel out when considering the quotient of two triple in-
tegrals. With an adequate choice of the origin of time, one
can get the temporal center of pulse packet to vanish, i.e.,
tc = ∫ |ψ |2tdxdt/

∫ |ψ |2dxdt = 0 (all the integrals extend
from −∞ to +∞). The origin of x can be chosen such
that the transversal center of the pulse is zero, i.e., xc =∫ |ψ |2xdxdt/

∫ |ψ |2dxdt = 0.
Under the above paraxial and quasimonochromatic (many-

cycle) conditions, the intrinsic OAM along the transverse y
direction and the energy carried by the wave packet can be
evaluated from [14]

J (i)
y = − ε0c

2k0
Im

∫
ψ�∂xψ (t − tc)dxdt, (1)

with tc = 0, and

W = ε0c

2

∫
|ψ |2dxdt, (2)

where ε0 is the free-space electric permittivity, c the speed
of light in free space, and k0 = ω0/c. The intrinsic transverse
OAM is the OAM about a moving axis parallel to the y
direction passing permanently through the pulse center, which
is conserved on propagation [14]. Here, the center is that of the
intensity distribution. In Ref. [15], the pulse center is also such
that the intensity distribution, and the results for the intrinsic
transverse OAM coincide with those in Ref. [14] (of course
other choices for the pulse center are possible [16], as the
center of the photon wave function, which leads to different
values of the intrinsic OAM). It is assumed that the pulse to
be focused does not carry any intrinsic transverse OAM so
that the integral (1) with tc = 0 is vanishes.

The focusing element may focus in x and y, or only in x,
e.g., a cylindrical lens or mirror. Focusing in y adds nothing
to the discussion, but simply makes Y (y) to focus remaining
decoupled. We then choose a cylindrical focusing element
focusing only in x. Its center x = 0 is aligned with input
pulse center, xc = 0. Otherwise the focusing system would
deviate the input pulse imparting an extrinsic OAM in which
we are not interested. In ideal focusing, the primary effect
of the focusing element is to impart a converging spherical
wave front represented by the factor e−ik0x2/2 f , where f > 0
is the focal length. The second effect, for ultrashort pulses, is
to introduce a pulse-front curvature described by replacing t
with t − x2/2c f in ψ . Thus, the field immediately after the
focusing system is

ψ f = ψ (x, t − x2/2c f )e−ik0x2/2 f , (3)

or ψ f = ψ (x, t f )e−ik0x2/2 f , where t f = t − x2/2c f .
To the purpose of evaluating the new intrinsic transverse

OAM, and the OAM per unit energy (“per photon”), we
first note from (3) that Wf = W , that xc, f = 0, and that the
temporal center is slightly shifted to tc, f = (	x)2/2c f , where
(	x)2 = ∫ |ψ |2x2dxdt/

∫ |ψ |2dxdt , as an effect of the pulse-
front curvature. Using (1) with the focused field (3) and with

the new center tc, f , performing the derivatives with the chain
rule, changing the integration variable t to t f , and taking into
account that xc, f = 0, one arrives at

J (i)
y, f = − ε0c

2k0

{
−ω0

c f

∫
|ψ |2x

(
t + x2

2c f

)
dxdt

+ Im
∫

ψ�

[
∂xψ − ∂tψ

(
x

c f

)]

×
(

t + x2

2c f
− tc, f

)
dxdt

}
, (4)

where ψ = ψ (x, t ) and the subindex f in t f is omitted at the
end. No particular assumption for the input field has been
made up to this point, except that the input pulse is aligned
with the focusing system.

Considering focusing, the most common situation is col-
limated illumination. Writing ψ = Aei
, where A and 
 are
the real amplitude and phase, Im{ψ�∂xψ} = A2∂x
 = 0 since
the phase does not depend on x. Then, the input field does not
indeed carry transverse OAM, and the three integral terms in
the second row of (4) containing ∂xψ vanish. For simplicity,
and to focus on the phenomenon of interest, we will assume
that the input field does not contain any temporal chirp. Sim-
ilarly, Im{ψ�∂tψ} = A2∂t
 = 0, and the three integral terms
with ∂tψ also vanish. Since the phase is constant, the input
field only can contain ST couplings in the amplitude. With
these assumptions, only the first row in (4) remains, and when
expressed per unit energy, we obtain the intrinsic transverse
OAM imparted by the focusing system as

J (i)
y, f

Wf
= 1

f

[∫ |ψ |2xtdxdt∫ |ψ |2dxdt
+ 1

2c f

∫ |ψ |2x3dxdt∫ |ψ |2dxdt

]
. (5)

The first term is the contribution from wave-front curvature
and the second one from pulse-front curvature. The relevance
of each term can be analyzed by introducing dimensionless
variables ξ = x/X0 and τ = t/t0, where X0 and t0 are char-
acteristic half beam size and half pulse duration (as in the
examples below). Then (5) can be expressed as (X0t0/ f )(I1 +
αI2), where I1 and I2 are the two same quotients of integrals
as in (5) but with variables ξ and τ , and α = (ZR/ f )/(ω0t0),
with ZR = k0X 2

0 /2 the Rayleigh distance of the incident
wave packet. The condition ZR/ f � 1 characterizes focusing
without an appreciable focal shift [17,18] or large Fresnel
number [19], and ω0t0 � 1 characterizes pulses with many
oscillations or long duration. Henceforth, we will choose
long enough duration for the desired focusing geometry
(ZR and f ) such that α � 1, whereby

J (i)
y, f

Wf
� 1

f

∫ |ψ |2xtdxdt∫ |ψ |2dxdt
. (6)

In the example of Fig. 2 with a focusing geometry with neg-
ligible focal shift (ZR/ f = 20.8), α = 0.167 for the duration
t0 = 50 fs. In the example of Fig. 3 with a relevant focal shift
(ZR/ f = 1.33), α = 0.011 for the same duration t0 = 50 fs
(of course both examples are within the paraxial regime:
respective divergence angles 0.4◦ and 0.057◦). In addition,
the second term in (5) is exactly zero for many fields with
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FIG. 1. (a) The pulse with positive covariance in (t, x) has nega-
tive covariance in (z, x). (b) The lower and upper parts of the pulse
are focused at different times, imparting opposite momenta px and
−px , but the corresponding angular momenta with respect to the
instantaneous pulse center (small circles) have the same sign.

ST couplings that preserve some symmetries, as in the two
examples below, in which case (6) is exact.

Equation (6) is simple and looks particularly appealing
conceptually. The quotient of integrals is the covariance of the
intensity |ψ |2 in the variables x and t . Focusing then imparts
an intrinsic transverse OAM proportional to the power 1/ f of
the focusing system if ψ is a ST coupled field whose intensity
distribution presents covariance. If the intensity covariates in
the first and third (second and fourth) quadrants, the transverse
OAM is positive (negative). A sketch of how the focusing sys-
tem transmits the OAM is shown in Fig. 1. Let us illustrate this
result with a couple of examples of interest in experiments.

III. EXAMPLES

A. Rotating pulse

Let the illumination be the tilted pulse [20,21]

ψ = ψx(x)ψt (t − px), (7)

where p is the tilt parameter, and the functions ψx(x) and
ψt (t ) are taken real. Then the illumination (7) does not carry
transverse OAM. It is readily seen that xc and tc of the tilted
pulse (7) are zero if the mean values of ψx(x) and ψt (t ) are
zero as functions of their respective variables. After focusing,
a simple calculus from (6) in which many integrals factorize
and cancel out, results in

J (i)
y, f

W
� p

f

∫ |ψx|2x2dx∫ |ψx|2dx
= p

f
(	x)2, (8)

meaning that the tilted pulse acquires an intrinsic transverse
OAM proportional to the tilt parameter and to the transversal
width.

With the Gaussian tilted pulse ψ = e−x2/X 2
0 e−(t−px)2/t2

0 , the
intrinsic transverse OAM per unit energy after focusing is
J (i)

y, f /W = pX 2
0 /4 f . The second term in (5) due to pulse-front

curvature vanishes in this case. The manifestation of this
transverse OAM is an intensity pattern that rotates about a
transverse y axis passing permanently through its center dur-
ing propagation, as seen in Fig. 2. Here, the transverse OAM
does not involve the formation of any ST phase singularity,
hence the phase pattern is not shown.

Since pulse-front curvature does not contribute to the trans-
verse OAM, we can evaluate the focused field neglecting it to
obtain a field with the same OAM content. We take the Fresnel
diffraction integral

ψ f (x, t ′, z) =
√

k0

2π iz

∫
dx′ψ (x′, t ′)e−ik0x′2/2 f eik0(x−x′ )2/2z

(9)

(t ′ = t − z/c is the local time) as the solution of the
paraxial wave equation ∂zψ = (i/2k0)∂xxψ for paraxial,
quasimonochromatic (many cycle, t0 � c/ω0) pulses in the
absence of material dispersion, for focusing the tilted pulse
ψ (x, t ) = e−x2/X 2

0 e−(t−px)2/t2
0 at z = 0. Use of integral 3.323.2

in Ref. [22] yields the expression

ψ f (x, t ′, z) =
√

qeff

z + qeff
e−t ′2/t2

0 exp

[
ik0x2

2(z + qeff )

]

× exp

⎡
⎣

( 2t ′ px
t2
0

+ 2i(t ′ p)2z
k0t4

0

)
qeff

z + qeff

⎤
⎦, (10)

where 1/qeff = −1/ f + 2i/k0X 2
0,eff is an initial, effective

complex beam parameter, and 1/X 2
0,eff = 1/X 2

0 + p2/t2
0 is an

initial, effective width. Figure 2 shows ST intensity patterns
as the pulse focuses and beyond in a particular example with
p > 0. At the focal plane, the tilt angle is always 90◦, and at
the far field, approaches zero. Note that the actual rotation in
the z-x plane is counterclockwise, since t ′ = t − z/c, corre-
sponding to the positive transverse OAM pX 2

0 /4 f with p > 0.
Partially coherent rotating pulses have recently analyzed in

Ref. [10], where a sophisticated scheme for their generation
using a Fourier transform pulse shaper with a spatial light
modulator at the Fourier plane is proposed, and its transverse
OAM noticed. It follows from our analysis that a simple prism
tilting the pulse and focusing produces the rotating pulse,

FIG. 2. Rotating pulse of carrier frequency ω0 = 2.5 rad/fs obtained by focusing the Gaussian tilted pulse ψ = e−x2/X 2
0 e−(t−px)2/t2

0 with
X0 = 500 µm, t0 = 50 fs, tilt parameter p = 0.1 fs/µm, with a focal length f = 5 cm. The intensity is normalized to the peak intensity at each
distance.
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FIG. 3. (a) Elliptical STOV produced at the focal plane of a lens
of focal length f = 50 cm with the illumination in (11) of carrier
frequency ω0 = 2.5 rad/fs, t0 = 50 fs, X0 = 0.4 mm, and n = 3.
Top: Intensity. Bottom: Phase of ψ . (b) Intensity of the STOV in
Eq. (16) with x0 = 2 f /k0X0 = 0.3 mm. In (a) and (b) the intensity is
normalized to the peak intensity at each distance.

whose transverse OAM can be controlled by the focal length,
tilt parameter, and transversal size according to (8).

Also, the above focused tilted Gaussian pulse has pre-
viously been used in experiments because of its important
properties at the focal plane, particularly in high-harmonic
generation experiments for the formation of the so-called at-
tosecond lighthouses [7–9]. The property that creates these
lighthouses is a rotating wave front in time at the focal plane
due to a transverse chirp at that plane. Instead, we stress
here the rotating pulse front with propagation distance as a
manifestation of its transverse OAM. In addition, (10) is an
analytical expression valid at any propagation distance for
such an interesting field that includes all above phenomena,
namely, temporal wave-front rotation at the focal plane and
pulse-front rotation on propagation, excluding only the pulse-
front curvature accrued during the act of focusing.

B. Canonical STOV

Now let the illumination be

ψ (x, t ) = e
− t2

t2
0 e

− x2

X2
0

1

2n
Hn

(
t

t0
± x

X0

)
, (11)

where Hn(·) is the Hermite polynomial of order n. This illu-
mination features n + 1 tilted intensity lobes in the t-x plane
between the zeros of the Hermite polynomial, as in the top
right-hand side of Fig. 3. The 1/2n factor cancels the 2n

factor of the highest power term of the Hermite polynomial.
This “preconditioned” illumination with n = 1 and n = 2 has
been shown [12,13] to produce STOVs of topological charges
n = 1 and n = 2 by numerical calculation of the field at the
focal plane. Also, similar preconditioned tilted lobes are the
output from a 4 f pulse shaper with a spiral phase plate placed
at the Fourier plane in one of the experiments in Ref. [2],

with this output also producing an elliptical STOV at the focal
plane (far field) of a lens [2].

Below we provide an analytical description of the focused
field at any distance from the focusing system producing el-
liptical STOVs of arbitrary charge n at the focal plane, and
evaluate its transverse OAM. As discussed below, this focus-
ing problem differs from the diffraction problem in Ref. [15]
for topological charge n = 1 and in Ref. [23] for arbitrary n,
where the diffraction of a prescribed elliptical STOV from a
waist plane is studied.

Being real, the illumination (11) does not carry transverse
OAM. After focusing, (6) [or (5) since the pulse-front curva-
ture contribution to the transverse OAM vanishes] yields the
result

J (i)
y, f

W
= ±nX0t0

4 f
, (12)

which depends only on the focal length, duration, and
transversal size of (11), and will be better understood after
examining the elliptical STOV at the focal plane. The change
from zero to (12) shows that it is just focusing that imparts the
transverse OAM for the formation of the STOV, and therefore
preconditioning systems other than the 4 f pulse shaper can
create the STOV, for example, a spatial light modulator to
create the lobes and a prism to tilt them.

Using again (9) with ψ (x, t ) in (11), the resulting integral
can be identified, after some changes of variables, with inte-
gral 7.374.8 in Ref. [22], and the focused field written as

ψ f (x, t ′, z) = e
− t ′2

t2
0

[
q0

q(z)

] 1
2

e
ik0x2

2q(z)

[
q0

q(z)

(
1 − z

f

)] n
2

× 1

2n
Hn

⎧⎨
⎩

[
q(z)

q0

1(
1 − z

f

)
] 1

2 ( t ′

t0
± x

X0

q0

q(z)

)⎫⎬
⎭,

(13)

where 1/q0 = −1/ f + 2i/k0X 2
0 and q(z) = q0 + z. Some ST

intensity and phase profiles at different propagation distances
are shown in Fig. 3(a) in a particular example. The n π -step
tilted lines at the zeros of the Hermite polynomial immediately
form n single-charged ST punctual phase singularities that
merge in a single n-charged elliptical vortex at the focal plane,
which further splits into n unit-charged vortices up to the far
field.

At the focal plane, z = f , the factor in the square bracket in
the first row becomes zero and cancels all terms of the Hermite
polynomial except for the highest power term. Equation (13)
then reduces to

ψ f (x, t ′, f ) = e
− t ′2

t2
0

(−iX0

x0

) 1
2

e
ik0x2

2 f e
− x2

x2
0

(
t ′

t0
∓ i

x

x0

)n

, (14)

where x0 = 2 f /k0X0 is the focal Gaussian width. This equa-
tion indeed represents an elliptical STOV of topological
charge n and ellipticity γ = ct0/x0. Following Ref. [14] or
[15], the intrinsic transverse OAM of a STOV can be eval-
uated from the topological charge n at the plane where it is
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elliptical as

J (i)
y

W
= ±γ

2

n

ω0
. (15)

Using that x0 = 2 f /k0X0, Eq. (15) is immediately seen to
coincide with Eq. (12), that is, the transverse OAM of the
elliptical STOV at the focal plane is that imparted by the lens.

IV. DISCUSSION

A. Focusing to versus diffraction of canonical STOVs

In the second example above we have deliberately chosen
a loose focusing geometry in Fig. 3(a) with ZR/ f = 1.33 to
make it evident that our focusing problem is different from
the diffraction problem studied in Refs. [15,23], where col-
limated, elliptical STOVs are prescribed at a “focus” and
then they are propagated freely, i.e., diffracted forwards and
backwards.

Figure 3(b) shows the elliptical STOV of Ref. [23], or
given by Eq. (16) below, of the same x0, t0, and n at the
same axial position as in Fig. 3(a) for focusing, and their
backwards and forwards propagated fields. In Fig. 3(a) for
actual focusing, the focused field is not symmetric with re-
spect to the focal plane, while in Fig. 3(b) the field diffracts
symmetrically with respect to it. In Fig. 3(a) the waist [of the
Gaussian beam enveloping the STOV in Eq. (13)] is located
18 cm before the focal plane because of the relevant focal shift
f {( f 2/Z2

R)/[1 + ( f 2/Z2
R)]} [17,18], but in Fig. 3(b) the waist

and the focal plane coincide. Indeed, the elliptical STOV in
Fig. 3(a) contains the wave-front curvature factor eik0x2/2 f in
Eq. (14), while the elliptical STOV in Fig. 3(b) does not.

The focusing problem we have addressed can only be
approximated by the diffraction problem when ZR/ f � 1,
i.e., when the focal shift is negligible [17–19]. Under this
condition, Eq. (13) can readily seen to approach Eq. (7) in
Ref. [23] with any n, and in particular to Eq. (7) in Ref. [15]
for n = 1. Specifically, Eq. (13) reduces to

ψ (x, t ′, z) � e−t ′2/t2
0

( − f

p(z)

) 1
2

e
ik0x2

2p(z)

(
z

p(z)

) n
2

× 1

2n
Hn

[(
p(z)

z

) 1
2
(

t ′

t0
± x

x0

zR

p(z)

)]
, (16)

where p(z) = (z − f ) − izR, zR = k2
0x2

0/2 is the Rayleigh
distance of the focused pulse, and again x0 = 2 f /k0X0. Equa-
tion (16) is the same as Eq. (7) in Ref. [23] except for a global
amplitude to match the actual amplitude at the focal plane.
Thus, as already pointed out in Ref. [23], Eqs. (16), and (7)
in Ref. [15] in particular, are approximations to focusing to
canonical STOVs valid only for ZR/ f � 1, while our Eq. (13)
is valid with any focusing geometry.

With regard to the intrinsic transverse OAM, we have
demonstrated that it is imparted by the focusing system to the
OAM-free illumination in Eq. (11). Instead, in the diffraction
problems in Refs. [15,23], the transverse OAM is theoretically
introduced when an elliptical STOV is prescribed at the waist
or focus, as Ref. [15] demonstrates that an elliptical STOV of
charge n carries the transverse OAM (±γ /2)(n/ω0). There is
no analysis of how it arrived there, and in particular of how a

FIG. 4. Top: Rotating-type pulse with all parameters equal to
those in Fig. 2, except that the input field ψ = e−x4/x4

0 e−(t−px)2/t2
0 has

a super-Gaussian transversal profile. Bottom: STOV-type pulse with
all parameters equal to those in Fig. 2, except that the input field
is ψ = (x/x0 )e−x4/x4

0 e−(t−px)2/t2
0 with a zero-amplitude line at x = 0.

Left: Intensity of illuminating field. Middle and right: Intensity and
phase at the focal plane.

4 f pulse shaper (and the focusing lens afterwards) in Ref. [15]
imparts the transverse OAM.

For completeness, we briefly consider the limit situation
f → ∞ in which the illumination in Eq. (11) is not focused
but propagates freely undergoing diffraction. For f → ∞ our
Eq. (12) yields zero transverse OAM. This is in agreement
with the second example in Ref. [23], Eqs. (9)–(13) and Fig. 2,
where the free-space diffraction of the same initial field with-
out focusing is studied, and its intrinsic transverse OAM is
calculated according to Ref. [15] to be zero.

B. General fields with spatiotemporal intensity covariance

The two examples in Sec. III represent opposite situations
where the imparted transverse OAM is manifested as a pure
rotation of the pulse front without ST singularities and as a
formation of a canonical, elliptical STOV with an ST phase
singularity. Other illuminations with ST intensity covariance
produce mixed fields where the first phenomenon or the sec-
ond dominate. For illuminating fields with no zeros in the
amplitude other than the Gaussian tilted pulse, a rotating-type
pulse is generally produced, which may be accompanied by
many ST vortices of very low intensity far off axis, as in Fig. 4
(top). A STOV-type pulse is produced when the amplitude
has zero lines, as in Fig. 4 (bottom), where the central ST
vortex is surrounded by an intense but imperfect ring, also
accompanied by a myriad of low-intensity ST vortices far
off axis, actually an infinite number of them at t ′ = 0. The
last example demonstrates that focusing of multilobe tilted
structures with shapes other than Hermite-Gauss shape also
create STOVs.

C. Interaction with the focusing system

It is also of interest to examine the (total) transverse OAM.
Contrary to the intrinsic part, its value depends on the par-
ticular transverse axis. When the transverse y axis (x, z) = 0
passing through the center of the focusing system is chosen,

033514-5



MIGUEL A. PORRAS AND SPENCER W. JOLLY PHYSICAL REVIEW A 109, 033514 (2024)

the transverse OAM is given by [14]

Jy = ε0z

2k0
Im

∫
ψ�∂xψdxdt − ε0

2

∫
|ψ |2xdxdt . (17)

It is obviously zero for an input collimated wave packet with
xc = 0 (irrespective of whether or not z = 0). A similar anal-
ysis under the same conditions that led to (5), leads now
to the conclusion that the total transverse OAM continues
to vanish after focusing. By conservation of the total angu-
lar momentum of the pulse-lens system, the pulse does not
transmit angular momentum to the lens. Indeed, in Fig. 1
the recoil momenta opposite to px and −px do not provide
an angular momentum to the lens, and the small amounts of
axial momenta transferred from pz to the lens in the upper
and lower parts provide opposite angular momenta and then
zero net angular momentum. Focusing is then a zero-exchange
interaction with regard the angular momentum in which the
null OAM of the pulse is split into an intrinsic part and an
opposite extrinsic part.

V. CONCLUSIONS

To conclude, ST couplings prove to be extremely useful
for generating structured light carrying transverse OAM. This
fact has also been demonstrated recently in Ref. [24], where
arbitrarily oriented vortices are produced from longitudinal
vortices with a spatial chirp. In this paper we have proposed
a simple procedure to impart transverse OAM by focusing an
ST coupled field, the ST intensity pattern of which presents
covariance in space and time.

Except in Ref. [10], research on transverse OAM has
focused on the ST phase singularities of STOVs. We have
evaluated analytically the field of coherent, rotating pulses in

full space and time, which can be of interest for the analysis
of their interaction with matter, e.g., in high-harmonic and
attosecond pulse generation [7–9], and evaluated its transverse
OAM as a function of the input transversal size, tilt parameter,
and focal length that generate the rotating pulse.

STOVs can also be created by focusing specific profiles,
where we now show that the covariance of the intensity
in space and time is the key property which ensures the
transverse OAM upon focusing. Hermite-Gauss, ST tilted
multilobe profiles focus to a perfect STOV, whose focusing
field is analytically described, and the transverse OAM is
shown to be that imparted by the focusing system. Other mul-
tilobe profiles also focus to more or less perfect STOVs with
the OAM imparted by the focusing system. To clarify these
nuances, we also showed the focusing properties of cases in
between the simple tilted pulse and the STOV that always
contain transverse OAM but show varying levels of a vortex
structure. We finally note that the magnitude of transverse
OAM in the limit cases of the rotating pulse and STOV are,
under similar focusing conditions and input duration and size,
of the same order of magnitude, implying that pulses with
transverse OAM but without ST phase singularities may be
just as useful for future applications.
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