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angular momentum at planar reflection and refraction
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The vortex structure of wave packets on the transversal or spatiotemporal plane can significantly enhance
their shifts during the reflection and refraction. These shifts are classified into six types: Goos-Hänchen shift
within the plane of incidence, Imbert-Fedorov shift perpendicular to the plane of incidence, longitudinal shift,
together with three counterparts of angular shifts. Here, we analytically derive the expressions for these shifts
for three-dimensional spatiotemporal vortex wave packets that carry orbital angular momentum of arbitrary
orientation. It is found that the influence of the optical configurations (e.g., incident angle, refractive index,
etc.) on the shifts can be described by a deformation tensor, while that of the wave-packet structure is an
isotropic one. Interestingly, the spatial and angular shifts induced by the topological charge can be attributed
to two topologically distinct tangent vector fields on the spheres, respectively. Also, the conservation laws of
transverse linear momentum and vertical angular momentum are revisited. Our studies may find potential in
spatiotemporal pulse shaping and shed light on the recent controversy regarding the definition of intrinsic orbital
angular momentum for a spatiotemporal vortex pulse.
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I. INTRODUCTION

The problem of plane-wave refraction and reflection on
planar interfaces can be resolved using Snell’s law and the
Fresnel equations [1]. Pertaining to a realistic light pulse,
such as a Gaussian wave packet, it exhibits a finite frequency
and spatial broadening along its central wave vector. The
superposition of infinite plane waves can cause the spatial
centroid of the reflected and transmitted pulses to deviate from
the origin. These shifts include the Goos-Hänchen (GH) shift
within the incident plane, perpendicular to the propagation
direction, which is associated with the spatial gradient of the
Fresnel coefficients [2,3]. While the shift along the propaga-
tion direction caused by the frequency dependence of Fresnel
coefficients can lead to a longitudinal shift or temporal delay,
known as the Wigner time delay [4,5]. The shift perpendic-
ular to the incident plane is termed as the Imbert-Fedorov
(IF) shift [6,7], with the most notable characteristic being its
dependency on the handedness of the light’s circular polariza-
tion state, which consequently leads to the spin Hall effect
of light [8–11]. These shifts are on the same order of the
wavelength and is related to its polarization state. Similarly,
during the reflection and refraction processes, angular shifts
or momentum shifts also occur probably, analogous to the
aforementioned types [12–14]. These shifts are of the same
order of the inverse of the Rayleigh length. Intriguingly, for
higher-order vortex beams, these shifts are proportional to the
topological charge [15–18].

Previous research has predominantly concentrated on the
monochromatic vortex-structured beams with the orbital an-
gular momentum (OAM) along the propagation direction,
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but rarely care about spatiotemporal coupled vortices, mainly
because that it is not a long time after the experimental dis-
coveries and manipulations of these spatiotemporal vortex
wave packets (STVPs) [19–21]. These pulses, carrying OAM
perpendicular to the propagation direction, provide a novel
degree of freedom for photon manipulation, thereby holding
substantial research value. Notably, Mazanov and Bliokh et al.
recently reported their studies about the shifts of the STVPs
in planar reflection and refraction, using a methodology akin
to the analysis of monochromatic vortices to calculate these
shifts [22]. They focused on two specific wave packets—
type A and type B—with the vortex axes perpendicular to
the propagation direction and a two-dimensionally broadened
envelope. In general, the spatiotemporal coupled vortices can
be arbitrarily oriented in space and can be prepared using
various devices such as customized photonic crystal [23],
astigmatic mode converter [24], tight-focusing lens based
on spin-orbit coupling [25], a 4Pi optical configuration or
a spatial chirp [26,27]. It just forms the incentive of our
present work to provide a theoretical study for these shifts
of a three-dimensionally polarized STVPs with an arbitrary
spatially oriented OAM on planar reflection and refraction.
First, we analytically derive the expressions of these shifts
at the second-order correction approximation of wave vec-
tors. We also verify the reliability of analytic solutions by
comparing with precise numerical results. Second, by distin-
guishing the influences of configuration and the wave packet
intrinsic structure, we reveal the mechanism of the influence
of the orientation of OAM on these pulse shifts. This uni-
fied description establishes a connection between traditional
monochromatic vortices and STVPs. Finally, we also examine
the conservation laws involving transverse momentum and
angular momentum (AM).
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FIG. 1. The schematic diagram of reflection and refraction of a tilted STVPs at a planar interface is shown in panel (a). we use red, cyan,
and blue arrows to denote the orientation of vortex lines of the pulse at incidence, reflection, and refraction, respectively. Their OAM directions
are also denoted by red arrows. Shifts of centroid of the pulse include spatial shifts (Oa → O′a) and angular shifts (O′a → O′′a). Isointensity
surfaces in the wave-vector space for the tilted STVPs at different stages: (b) incidence, (c) reflection, (d) refraction under the first-order
wave-vector approximation, and (e) refraction under the second-order wave-vector approximation.

II. ANALYTICAL EXPRESSIONS FOR THE SHIFTS
OF TILTED SPATIOTEMPORAL VORTEX WAVE PACKETS

As shown in Fig. 1, we consider an incident STVP with the
vortex line along an arbitrary direction characterized by the
azimuth � and the elevation � relative to the accompanying
coordinate frame (X i, y, Zi ) for the incident pulse. Similarly,
the accompanying coordinate frames for the reflection and
refraction are denoted (X r, y, Zr ) and (X t , y, Zt ), respectively.
We use the superscript a = i, r, t to represent incidence, re-
flection, and refraction, respectively. According to Snell’s law,
the STVP incident along the Zi axis with an incidence angle
θ0 defines a refraction angle θ t

0 = arcsin(n−1
0 sin θ0), where n0

is the refractive index.
The three-dimensional (3D) field of the incident pulse of a

longitudinal vortex line (i.e., � = 0) can be described by the
Laguerre-Gaussian (LG) function with radial index zero and
topological charge l ,

Ẽ
i
(u, v,w) = Ñl [u + isgn(l )v]|l|e− (u2+v2+w2 )k2

0 w2
0

4 ẽ, (1)

where u = kX i/k0, v = ky/k0, and w = (kZi − k0)/k0 are the
relative deviations from the central wave vector along X i, y,
and Zi, respectively. k0 is the central wave number, w0 is the
spatial waist. Ñl is the normalized factor and ẽ = eX i

eX i +
eyey is the normalized Jones vector of uniformly distributed
polarization of the field in the transverse plane, where we
use the superscripts X i or y to denote its corresponding com-
ponent. Although Eq. (1) only gives the spatial envelope of
the pulse, it also determines the temporal envelope according

to the dispersion relation. For example, in free space, the
longitudinal spatial waist w0 also determines that the pulse du-
ration equals w0/c. Hereafter, we conduct our analysis within
the three-dimensional spatial domain and will not repeat the
temporal aspect. The pulse in free space carries intrinsic OAM
with a value of l/ωeZi per unit intensity, where eZi is the unit
vector along Zi. In general, the field of the STVP with titled
angle (�,�) can be described by

Ẽi(u, v,w) = Ñl [u
′ + isgn(l )v′]|l|

× exp
[− 1

4 (u′2 + v′2 + w′2)k2
0w

2
0

]
ẽ. (2)

Here we introduce new parameters (u′, v′,w′), which
are connected with the original parameters (u, v,w) by
(u′, v′,w′)T = R(�,�)(u, v,w)T . The related rotation ma-
trix is

R(�,�) =
⎛
⎝cos � cos � cos � sin � − sin �

− sin � cos � 0
sin � cos � sin � sin � cos �

⎞
⎠. (3)

It should be noted that the orientation of vortex line in
space is the same as that in wave-vector space. The intrin-
sic OAM of this titled STVP becomes len/ω, where en =
(sin � cos �, sin � cos �, cos �)T is the unit vector of the
vortex line. The isointensity surface of the field in wave-vector
space at incident and reflection or refraction are displayed in
Figs. 1(b)–1(e).

For the pulse with finite size, the refracted wave
vectors around the central wave undergo inhomogeneous
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recombination based on Snell’s law, and the reflected wave
vectors experience a sign reversal along the X a axis. In the
paraxial and quasimonochromatic approximation, the first-
order connection of the three components of the wave vectors
between the refraction and reflection pulse and incidence
pulse can be written as [18,22]

ka(I)
X a = k0γ

au, (4a)

ka(I)
y = k0v, (4b)

ka(I)
Za = k0na

0(w + 1), (4c)

where γ r = −1, γ t = cos θ0/ cos θ t
0, nr

0 = 1, and nt
0 = n0.

Hereafter, we refer these shifts as the first-order terms of
the wave vector. For the longitudinal wave vector given in
Eq. (4c), what we care about is the deviation from the central
wave vector δka

Za = ka
Za − na

0k0. Here, we also analytically
derived the second-order approximation of Snell’s law (see
Appendix A), where the second-order terms for the refraction
wave vectors can be written as

kt (II)
Xt = −k0 tan θ t

0

(
n2

0 − 1
)

2n0

(
u2

cos2θ t
0

+ v2

)
, (5a)

kt (II)
Zt = k0

(
n2

0 − 1
)

2n0

(
u2

cos2θ t
0

+ v2

)
. (5b)

In the derivation, we have also assumed that the medium’s
chromatic dispersion is sufficiently small to be ignored. The
final calculated shifts thereby do not include the Wigner
delay, Our subsequent derivations are also based on this
approximation.

For a given field in the wave-vector space, the angular (or
momentum) and spatial shifts can be obtained by calculating
the expectation values of the wave vectors and spatial opera-
tors. The physical meaning of spatial shift is the deviation of
the pulse’s energy centroid relative to the pulse’s center (the
origin of the accompanying frame that moves with the pulse at
the group velocity). Angular shift is the deviation of the aver-
age wave vector relative to the central wave vector, which can
be transformed into the spatial shift during the propagation of
the pulse (see Appendix B), as also shown in Fig. 1(a). The
spatial or angular shifts are uniformly described by Eq. (B9)
in Appendix B. We calculate these shifts at the moment t = 0
when the incident pulse just reaches the interface.

Next we describe the overall approach to solving this
problem: Since the amplitude of the refracted and reflected
pulse can only be determined using Fresnel’s formula, we
must calculate them under the wave-vector representation,
where the position X a becomes the operator form X̂ a = i∇a.
We can replace the parameters from the refracted (reflected)
wave vectors to the incident wave vector, then the position
(wave vector) of the refraction (reflection) becomes a func-
tion of the incident wave vector. These functions have been
calculated in Appendix A, and the functions describing the
fields are also given in Appendix B. Eventually, Eq. (B9)
is then written as an integral that depends explicitly on the
parameters (u, v,w). For example, the shift of variable Oa in

the refraction or reflection can be calculated as

〈Oa〉a =
∫∫∫ +∞

−∞ [Ẽa(u, v,w)]
†
ÔaẼa(u, v,w)dudvdw∫∫∫ +∞

−∞ |Ẽa
(u, v,w)|2dudvdw

, (6)

where Ôa is the operator for this variable, Ẽa(u, v,w) is the
field of the refraction or reflection and can be obtained by
applying Fresnel’s formula to the incident field. Note that the
Fresnel coefficient matrix generally depends on the direction
of wave vectors and frequencies. In the paraxial and quasi-
monochromatic approximation, we only need to consider their
first-order terms relative to u, v,w, which is referred to as the
effective Jones matrix and has been calculated in Ref. [18],
see also Eq. (B7) in Appendix B. They can also be used in our
case when the chromatic dispersion (or the difference between
group velocity and phase velocity) can be ignored.

Meanwhile, in the first-order approximation of the wave
vectors associated with the relative deviation from the central
wave vector, the spatial operators can be described by

X̂ (I)
a = i

1

k0γ a

∂

∂u
, (7a)

ŷ(I)
a = i

1

k0

∂

∂v
, (7b)

Ẑ (I)
a = i

1

k0na

∂

∂w
. (7c)

We have also derived the expressions of spatial operators
under the second-order approximation (see Appendix A), and
the second-order terms are

X̂ (II)
t = −i

(
n2

0 − 1
)

k0γ t n2
0cos2θ0

u
∂

∂w
, (8a)

ŷ(II)
t = i

tan θ0
(
n2

0 − 1
)

k0n2
0

v
∂

∂u
− i

(
n2

0 − 1
)

k0n2
0

v
∂

∂w
, (8b)

Ẑt (II) = 0. (8c)

The angular and spatial shifts can be obtained by substi-
tuting the related operators and effective Jones matrix into
Eq. (6) and solving the integrals. For the fundamental Gaus-
sian incident pulse, the calculation yields (see more details in
Appendixes C and D)〈

ka
X a,y,Za

〉a,0

0
= 〈

ka(I)
X a,y,Za

〉a,0

0
+ 〈

ka(II)
X a,y,Za

〉a,0

0
, (9a)

〈
ka(I)

X a

〉a,0

0 = γ a

2D

∂ ln Qa2

∂θ0
, (9b)

〈
ka(I)

Za

〉a,0

0 = na
0k0, (9c)

〈
ka(I)

y

〉a,0

0
= Re

(
eX i∗ey

)[(
f a

p

)2
Y a

p − (
f a
s

)2
Y a

s

]
D

Qa2, (9d)

〈
kt (II)

Xt

〉t,0
0 =

(
1

cos2θ0
+ 2

)
1 − n2

0

4n0D
tan θ t

0, (9e)

〈
kt (II)

Zt

〉t,0
0 =

(
1

cos2θ0
+ 2

)
n2

0 − 1

4n0D
, (9f)

〈
ya(I)〉t,0

0 = -k0
Im

(
eX i∗ey

)[(
f a

p

)2
Y a

p + (
f a
s

)2
Y a

s

]
Qa2

. (9g)
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Here the shifts have been decomposed into two parts:
the first-order terms (I) and the second-order terms (II), in
which f r,t

p,s is the Fresnel coefficients of the central wave
vector (subscripts p and s denotes the components paral-
lel and perpendicular to incident plane, respectively), Qa2 =
| f a

p eX i |2 + | f a
s ey|2, and D = k0w

2
0/2 is the Rayleigh length.

Equations (9b) and (9e) represent the first- and second-order
angular GH shifts, respectively, whereas Eqs. (9c) and (9f)
represent the first- and second-order longitudinal wave-vector
shifts, respectively. Particularly, Eqs. (9d) and (9g) give the
angular and spatial IF shifts, which do not have the second-
order terms. Change of the fundamental Gaussian pulse
orientation keeps the shifts invariant due to its rotational sym-
metry. As we can see, the first-order terms depends on the
polarization, as were also reported in Refs. [18,22], while
the second-order terms of the angular shifts are still of the
same order of D−1, independent of polarization. Also, we can
see the relation between the second-order terms in Eqs. (9e)
and (9f),

cos θ t
0

〈
kt (II)

Xt

〉t,0
0 + sin θ t

0

〈
kt (II)

Zt

〉t,0
0 = 0. (10)

For spatial shifts, the nonzero term is the IF shift of refraction
due to the partial refraction and reflection. The longitudinal
spatial shift also is absent because the chromatic dispersion is
omitted.

When the higher vortex structure is introduced into the
pulse, the pulse will acquire additional shifts that depend on
both the orientation and topological charge l . The calculation
yields the first-order terms of angular shifts (see Appendix C),

〈
ka(I)

X a

〉a
�,�

= 〈
ka(I)

X a

〉a,0

0 + |l|
[

(1 − sin2�cos2�)
〈
ka(I)

X a

〉a,0

0

− γ asin2� sin 2�

2

〈
ka(I)

y

〉a,0

0

]
, (11a)

〈
ka(I)

y

〉a
�,�

= 〈
ka(I)

y

〉a,0

0
+ |l|

[
(1 − sin2�sin2�)

〈
ka(I)

y

〉a,0

0

− sin2� sin 2�

2γ a

〈
ka(I)

X a

〉a,0

0

]
, (11b)

〈
ka(I)

Za

〉a
�,�

= 〈
ka(I)

Za

〉a,0

0 − |l|
[

na
0 sin 2� cos �

2γ a

〈
ka(I)

X a

〉a,0

0

+ na
0 sin 2� cos �

2

〈
ka(I)

y

〉a,0

0

]
, (11c)

and the second-order terms,

〈
ka(II)

Xt

〉t
�,�

=
(
1 − n2

0

)
4n0D

tan θ t
0

[
(|l| + 1)

(
1

cos2θ0
+ 1

)

− |l|sin2�

(
cos2�

cos2θ0
+ sin2�

)
+ 1

]
, (12a)

〈
ka(II)

Zt

〉t
�,�

=
(
n2

0 − 1
)

4n0D

[
(|l| + 1)

(
1

cos2θ0
+ 1

)

− |l|sin2�

(
cos2�

cos2θ0
+ sin2�

)
+ 1

]
. (12b)

We can see from Eqs. (11a)–(11c), the shifts of wave
vector are linearly dependent on |l|. In addition, the second
and third terms on the right-hand side of Eqs. (11a)–(11c)
demonstrate self-coupling and cross-coupling behaviors, re-
spectively. They are tunable by adjusting the orientation angle,
� and �. When the angles, � and �, are both chosen as π/2
(or π/2 and 0), the first-order terms reduce to the results of
type A (or type B) reported in Ref. [22], except for the cross-
coupling terms. When our 3D model degenerates into the
two-dimensional (2D) model in Ref. [22], the cross-coupling
terms disappears due to the infinite Rayleigh length along
the corresponding direction, leading to the complete agree-
ment of our present results with those presented in Ref. [22].
The cross-coupling between two transversal components and
longitudinal component also give rise to the shifts in ka(I)

Za .
For the case of the vortex with longitudinal orientation (i.e.,
� = 0 and � = 0), all the cross-coupling terms just disap-
peared, where the first-order terms are the same as those for
the monochromatic beam [16]. It is suggested that we can
choose some specific � and � to maximize (or minimize)
the sensitivity of these shifts to the OAM, as discussed in
the next section. Besides, the additional second-order terms in
Eqs. (12a) and (12b) have the same relationship as Eq. (10).

Meanwhile, we can derive the first-order terms of spatial
shifts for a tilted vortex pulse as (see Appendix D),

〈X a(I)〉a
�,� = l

w2
0

2γ a
cos �

〈
ka

y

〉a,0

0
, (13a)

〈ya(I)〉a
�,� = 〈ya〉a,0

0 − l
γ aw2

0

2
cos �

〈
ka(I)

X

〉a,0

0 , (13b)

〈Za〉a
�,� = l

w2
0

2na
0γ

a
sin � sin �

〈
ka(I)

X

〉a,0

0

− l
w2

0

2na
0

sin � cos �
〈
ka

y

〉a,0

0
, (13c)

which represent the spatial GH shifts, IF shifts, and longi-
tudinal shifts, respectively. At the same time, we have the
second-order terms (see also Appendix D)

〈X t (II)〉a
�,� = − l sin � sin �

(
n2

0 − 1
)

2k0γ t cos2θ0n2
0

, (14a)

〈yt (II)〉a
�,� = l

cos � tan θ0
(
n2

0 − 1
)

2k0n2
0

+ l
sin � cos �

(
n2

0 − 1
)

2k0n2
0

, (14b)

which rely on l linearly. The independence on spatial waists
or duration time of pulse suggests the robustness of spa-
tial shifts. Another most striking feature is that the angular
shifts can be exchanged to the spatial shifts through the vor-
tex structure [17]. For some specific � and �, Eqs. (13)
and (14) reduce to the results reported in Refs. [16,22]. In-
terestingly, the first-order terms were interpreted as the real
spatial shifts induced from imaginary angular shifts [18],
while the remaining terms including 〈ya〉a

0 and second-order
terms are related to the spin Hall effect and OAM Hall effect,
respectively.
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FIG. 2. Analytical results (curves) and numerical results (symbols) for angular and spatial shifts of the refracted (t) and reflected (r) STVPs
with a topological charge l = 1 and an orientation of � = π/3 and � = π/6, as a function of the incidence angle θ0. Several parameters are
chosen as follows: the refractive index of the medium n0 = 1.5, wavelength λ = 632 nm, waist w0 = 201 µm, and transversal polarization
e⊥ = [(1 + i)eX i + ey]/

√
3.

In the derivation of the above analytical expressions, two
approximations have been made: a second-order approxima-
tion for the correlation between the incident and refracted or
reflected wave vectors (see Appendix A), and a first-order
approximation for the Fresnel field transformation matrix (see
Appendix B). To confirm the accuracy of these derived an-
alytical expressions, we have conducted precise numerical
simulations of these shifts without these approximations by
directly utilizing Eqs. (A2) and (B2). We display in Fig. 2 the
curves of the spatial and angular shifts as the incident angle
is changed. As can be seen from the figure, the magnitudes of
spatial shifts (first column) and angular shifts (second column)
are at the orders of D−1 and k−1, respectively. As the incident
angle increases from 0 to 90 degrees, most of these shifts
also increment from nearly zero to their maximum values.
However, there are some exceptions. For instance, the angular
shift kr

y of the reflected pulse reaches a maximum near the
Brewster angle [14], which also results in an enhancement
when it is cross-coupled to spatial shifts X r or Zr , as shown
in Figs. 2(d) or 2(f). The longitudinal angular shift δkr

Z is not
zero even when the incident angle is zero, mainly contributed
by the second-order terms, as can be seen from Eqs. (9e)
and (12b).

III. INFLUENCE OF THE ORIENTATION OF VORTICES
ON THE SHIFTS

There is a more intuitive way to show spatial and angular
shifts given by Eqs. (11a)–(14b). As shown in Appendix C, the
expectation values of u, v, and w have a simpler relationship
with their expectation values for the fundamental Gaussian
pulse,⎛

⎜⎝
〈u〉a

�,� − 〈u〉a
0

〈v〉a
�,� − 〈u〉a

0

〈w〉a
�,� − 〈u〉a

0

⎞
⎟⎠ = |l|T̃ (�,�)

⎛
⎜⎝

〈u〉a
0

〈v〉a
0

〈w〉a
0

⎞
⎟⎠, (15)

where

T̃ (�,�) = R†(�,�)

⎛
⎝ 1 0 0

0 1 0
0 0 0

⎞
⎠R(�,�),

〈u, v〉a
0 �= 0, and 〈w〉a

0 = 0. In wave-vector space, we
can define a constant fundamental vector Ũa

0 = 〈u〉a
0eX a +

〈v〉a
0eya + 〈w〉a

0eZa , which can also be represented in the
form Ũa

0 = 〈u′〉a
0eX ′a + 〈v′〉a

0eya + 〈w′〉a
0eZ ′a in the frame

(X ′a, y′a, Z ′a) aligned with the vortex line of the inci-
dent pulse [i.e., (eX a , eya , eZa ) = (eX ′a , eya , eZ ′a )R(�,�)]. The
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components can be obtained from the original one by
(〈u′〉a

0, 〈v′〉a
0, 〈w′〉a

0)T = R(�,�)(〈u〉a
0, 〈v〉a

0, 〈w〉a
0)T . We can

also define the vector Ua
�,� for the titled high-order vortex

pulse in a similar way. Then, Eq. (15) can be further written
as

〈u′〉a
�,� = (|l| + 1)〈u′〉a

0, (16a)

〈v′〉a
�,� = (|l| + 1)〈v′〉a

0, (16b)

〈w′〉a
�,� = 〈w′〉a

0. (16c)

The above equations indicate that the high-order components
parallel to vortex plane are |l| + 1 times the fundamental com-
ponents, while the component parallel to vortex line remains
unchanged. We can write Ua

�,� as

Ũa
�,� = Ũa

0 + |l|[(eX ′a · Ũa
0

)
eX ′a + (

ey′ · Ũa
0

)
ey′

]
. (17)

This relation, unaffected by the optical property of the
medium and environmental configuration, is only dependent
on the pulse structure including the spatial and polarized parts.
Thus we refer to Ũa

�,� as the isotropic angular-shift vector. It
can be regarded as a natural extension of the coupling rela-
tionship of the longitudinally orientated case [18]. According
to Eq. (4), the angular shifts are just equal to the product of
k0Ua

�,� and

F̂a =
⎛
⎝γ a 0 0

0 1 0
0 0 na

0

⎞
⎠, (18)

which describes the environmental configuration including the
incidence angle and the refractive index of the material. By
substituting Eqs. (17) and (18) into Eq. (4), we obtain the re-
lations of the first-order angular shifts between the high-order
and fundamental cases,

D�ka(I)
�,� = D�ka

0 + |l|[(ea
X ′a

)T
D�ka

0

]
ẽa

X ′a

+ |l|[(ea
y′a

)T
D�ka

0

]
ẽa

y′a , (19)

where the vector �ka(I)
�,� is defined by 〈ka(I)

X a 〉a
�,�eX a +

〈ka(I)
y 〉a

�,�ey + 〈δka(I)
Za 〉eZa , being scaled by D−1. Here ẽa

X ′a,y′a

and ea
X ′a,y′a are the vectors on the vortex plane of pulse in

wave-vector space (i.e., ẽa
X ′a,y′a = F̂aeX ′a,y′a ) and in spatial

space [i.e., ea
X ′a,y′a = (F̂a)

−1
eX ′a,y′a ], respectively. In fact, the

basis (ẽa
X ′a , ẽa

y′a , ẽa
Z ′a ) is the dual basis of (ea

X ′a , ea
y′a , ea

Z ′a ). Both
of them are nonorthogonal bases due to deformation. The
last two terms on the right-hand side of Eq. (19), parallel
to the vortex plane, are actually the tangent components of
�ka

0 based on parallelogram decomposition, characterizing
the angular-angular coupling.

The above procedure can also be employed to analyze the
spatial shifts. The expectation values of i∂u, i∂v , and i∂w have
the following relationship:⎛

⎜⎝
〈i∂u〉a

�,� − 〈i∂u〉a,0
0

〈i∂v〉a
�,� − 〈i∂v〉a,0

0

〈i∂w〉a
�,� − 〈i∂w〉a,0

0

⎞
⎟⎠ = lT (�,�)

⎛
⎜⎝

〈u〉a,0
0

〈v〉a,0
0

〈w〉a,0
0

⎞
⎟⎠, (20)

where

T (�,�) = k0DR†(�,�)

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠R(�,�).

We can also refer to Ua
�,� = 〈i∂u〉a

�,�eX a + 〈i∂v〉a
�,�eya +

〈i∂w〉a
�,�eZa as the isotropic spatial-shift vector. Then, the

spatial-shift vector �ra
�,� equals k−1

0 (F̂a)−1Ũa
�,�. For the

components of the frame (X ′a, y′, Z ′a), Eq. (20) can be further
simplified as

〈i∂u′ 〉a
�,� = 〈i∂u′ 〉a

0 + lk0D〈v′〉a
0, (21a)

〈i∂v′ 〉a
�,� = 〈i∂v′ 〉a

0 − lk0D〈v′〉a
0, (21b)

〈i∂w′ 〉a
�,� = 〈i∂w′ 〉a

0. (21c)

Eventually, we obtain the relation for spatial shifts,

k0�ra(I)
�,� = k0�ra

0 + l
[(

ea
y′a

)T
D�ka

0

]
ea

X ′a

− l
[(

ea
X ′a

)T
D�ka

0

]
ea

y′a , (22)

where the vector �ra(I)
�,� is defined by 〈X a(I)〉a

�,�eX a +
〈ya(I)〉a

�,�ey + 〈Za(I)〉a
�,�eZa , being scaled by k−1

0 . Distin-
guishing from the angular-angular coupling, angular-spatial
coupling features the rule of projection decomposition and
cross-correlation between the X ′a and y′a direction, as indi-
cated in the last two terms on the right-hand side of Eq. (22).

The above coupling mechanisms have also been vividly
depicted in Fig. 3. We have identified every orientation as
an intersection point of the direction vector and an ellipsoid,
where the ellipsoid is the same as the isointensity surface of
the fundamental Gaussian pulse. The point is also employed
as the starting point of the shift vector. In this way, these
ellipsoids actually represent the parameter spaces of orien-
tation, and the shift vector field on them can be seen as a
function of this parameter space. The isotropic envelope of the
fundamental pulse is deformed from a sphere to an ellipsoid
after refraction with the emergence of unified angular shift, as
shown in Fig. 3(a). The ellipsoid and shift vector field on it can
be simultaneously deformed backed to a sphere and a funda-
mental isotropic angular-shift vector field by (F̂a)−1, as shown
in Fig. 3(d). Increasing the topological charge by one induces
an additional isotropic angular-shift vector field, which is ac-
tually spherical tangent components of the fundamental vector
field, as shown in Fig. 3(e). It can further be deformed into the
induced angular-vector field that is also a tangent vector field
of the ellipsoid by F̂a. Given the orientation of the vortex line,
we can obtain the corresponding tangent vector. Specifically,
the field have two zero points, as shown in Fig. 3(b), almost
along the X t axis. Therefore, the shift vector of the pulse
with the vortex line oriented along this direction will not be
changed by increasing the topological charge. Meanwhile,
by rotating this induced isotropic angular-shift vector field
90 degree clockwise along the oriented axis, we can obtain
the induced isotropic spatial-shift vector field, as shown in
Fig. 3(f), which can be deformed by (F̂a)−1 into the induced
spatial-vector field, as shown in Fig. 3(c). These shift vector
fields induced by increasing topological charges have two
singularities; although they have a Poincaré index of +1, the
angular-shift vector field is of a source-sink type, whereas
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FIG. 3. The shift vectors related to the refracted pulse as a function of the orientation of vortex line. Each orientation corresponds to an
intersection point of the orientation vector and the ellipsoid. The point is also chosen as the starting point of the shift vector. Specifically, the
ellipsoids in panels (a) and (b) represent the isointensity surfaces of the refracted fundamental Gaussian pulse in wave-vector space, while panel
(c) shows the surface in spatial space. The sphere in panels (d), (e) and (f) is predeformed, representing the incident fundamental Gaussian
pulse’s isointensity surfaces. In every subplot, the scales serve to measure the magnitude of the shift vectors. The first-order angular-shift
vectors of the fundamental pulse (a) can induce angular-shift vectors (b) and spatial-shift vectors (c) by increasing one topological charge.
Three ellipsoids and three shift-vector fields can be simultaneously deformed by the tensor F̂a into three spheres with (d) the fundamental
isotropic angular-shift vector field, (e) the induced isotropic angular-vector field, and (f) the isotropic spatial-shift vector field, respectively.
The incident angle is 60 degrees and other parameters are the same as those in Fig. 2

the spatial-shift vector field is of a circulation type. These
singularities also exhibit robustness to deformations of the
parameter space.

IV. CONSERVATION LAWS OF TRANSVERSAL LINEAR
MOMENTUM AND VERTICAL ANGULAR MOMENTUM

The translational symmetry of configuration along the x
and y directions implies that transversal momentum of the
pulse must be conserved on reflection and refraction,

Qr2〈kx,y〉r
�,� + n0

cos θ t
0

cos θ0
Qt2〈kx,y〉t

�,� = 〈kx,y〉i
�,�. (23)

Here we assume that medium is nonmagnetic, μ = 1. The
above equation gives constraints on the components in the lab-
oratory coordinate frame (x, y, z), as shown in Fig. 1(a). For
the fundamental Gaussian pulse, our results given in Eq. (9a)
includes the two additional terms of second-order angular
shifts compared with previous results, which had been proven
to satisfy the above conservation laws [18]. They contribute
additional transversal linear momentum,〈

k(II)
x

〉t,0
0 = cos θ t

0

〈
kt (II)

Xt

〉t,0
0 + sin θ t

0

〈
kt (II)

Zt

〉t,0
0 . (24)

Note that the above equation is just equivalent to zero accord-
ing to Eq. (10). Therefore, the fundamental shifts satisfy the
conversation laws. For angular shifts of the tilted STVP, we
can prove that every first-order terms in Eqs. (11) satisfies
the conservation law: (I) Self-coupling parts for the reflection
and refraction are just equal to the corresponding shifts of
fundamental Gaussian pulse times the same constant, thereby
satisfies the conservation law. (II) For the cross-coupling
parts, such as the last term of 〈ka(I)

X a,ya〉a
�,� and the last two terms

of 〈ka(I)
Za 〉a

�,� in Eqs. (11), we can substitute it into Eq. (23) to
obtain the requirements of the conservation. The requirements
are

− cos2 θ0Qr2〈kr(I)
y

〉r
0
γ r + n0 cos2 θ t

0Qt2〈kt (I)
y

〉t
0
γ t = 0 (25)

for the angular GH shifts 〈ka(I)
X a 〉a

�,�,

cos θ0Qr2
〈
kr(I)

X r

〉r
0

/
γ r + n0 cos θ t

0Qt2
〈
kt (I)

Xt

〉t
0

/
γ t = 0 (26)

for the angular IF shifts 〈ka(I)
ya 〉a

�,�, and

sin θ0 cos θ0n0Qr2
〈
kr(I)

y

〉r
0
+ sin θ t

0 cos θ t
0n0Qt2

〈
kt (I)

y

〉t
0

= 0,

(27a)
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sin θ0 cos θ0n0Qr2〈kr(I)
X r

〉r
0

/
γ r

+ sin θ t
0 cos θ t

0n0Qt2
〈
kt (I)

Xt

〉t
0

/
γ t = 0 (27b)

for the longitudinal wave-vector shifts 〈ka(I)
Za 〉a

�,�, respec-
tively. By using γ r = −1, γ t = cos θ0/ cos θ t

0, and n0 =
sin θ0/ sin θ t

0, Eqs. (25)–(27) can be reduced to

−Qr2
〈
kr(I)

X

〉r
0 + n0

cos2 θ t
0

cos2 θ0
Qt2

〈
kt (I)

X

〉t
0 = 0, (28a)

Qr2
〈
kr(I)

y

〉r
0
+ n0

cos θ t
0

cos θ0
Qt2

〈
kt (I)

y

〉t
0

= 0, (28b)

which just returns to the conservation laws for the first-order
shift of a fundamental Gaussian pulse along the x and y di-
rections. Besides, the second-order terms given in Eqs. (12)
contribute zeros to 〈k(II)

x 〉t
�,� based on Eq. (10). These terms

thereby also satisfy the conversion law. Therefore, total angu-
lar shifts of the tilted STVP satisfy the conversation law of
transversal linear momentum.

In addition to linear momentum conservation, the rota-
tional symmetry along the z axis gives the conservation
equation for z components of total angular momentum,

Qr2〈Jz〉r
�,� + n0

cos θ t
0

cos θ0
Qt2〈Jz〉t

�,� = 〈Jz〉i
�,�, (29)

where total AM consists of spin AM, intrinsic OAM, and
extrinsic OAM: Ja = Sa + Lai + Lae. Specifically, the uni-
fied polarization determines spin AM Sa = 2Im(eX a ∗

eya
)eZa ,

whereas the spatial shift along the y direction determines ex-
trinsic OAM Lae = k0〈ya〉eX a . For the fundamental Gaussian
pulse without intrinsic OAM, the spatial shift 〈ya(I)〉t,0

0 given
in Eq. (9a) is the same as the result in Ref. [18] satisfying
conservation law of AM.

For higher-order titled STVPs, we should consider the
intrinsic OAM. However, there is a controversy about the
intrinsic OAM of STVPs: one claim is that the circularly
symmetric STVPs with topological charge l carries l h̄/2 of
intrinsic OAM per photon in free space [28–30], whereas the
other claim is that this value is l h̄ under the same condi-
tion [31,32]. Here we calculate the intrinsic OAM based on the
second claim. Although the profile of the pulse at refraction
is deformed and cannot be described by standard or elliptic
LG modes, as shown in Fig. 1(e), we can still calculate its
intrinsic OAM. In fact, the operator of the intrinsic OAM of
STVPs can be written as Lai = i∇a × ka in the second claim.
By substituting it into Eq. (6) and calculating the integral, we
can obtain expectation of the components of intrinsic OAM:〈

Lai
X a

〉a
�,�

= (
na

0 + 1/na
0

)
l sin � cos �/2, (30a)〈

Lai
ya

〉a
�,�

= (
γ a/na

0 + na
0/γ

a
)
l sin � sin �/2, (30b)〈

Lai
Za

〉a
�,�

= (γ a + 1/γ a)l cos �/2. (30c)

The above equation indicates that the orientation of intrinsic
OAM, affected by the deformation of pulse, is neither along
the vortex line at incidence nor along the vortex line at reflec-
tion or refraction. Eventually, z components of total AM at

incidence, reflection, and refraction can be written as

〈Jz〉a
�,� = cos θa

0 〈SZa〉a
�,� − sin θa

0

〈
Lai

X a

〉a
�,�

+ cos θa
0

〈
Lai

Za

〉a
�,�

− k0 sin θa
0 〈ya〉a

�,�. (31)

By combining Eqs. (13), (14), (28), (30), and (31), we
can prove that they indeed satisfy the conversation law
given by Eq. (29). The confirmation of the conversation
law suggests the rationality of the intrinsic OAM we used.
Reverse reasoning from Eq. (29) suggests a method for
calculating 〈ya〉a

�,�. It should be noted that the result ob-
tained by using this method excludes the cross-coupling term
cos �〈ka(I)

X 〉a,0
0 lγ aw2

0/2, which does not conflict with Eq. (29)
because of its compatibility with the equation of linear mo-
mentum conservation law.

V. CONCLUSION

Under the approximation of second-order wave vector
connection and first-order Fresnel coefficients, an analytic
derivation for the spatial and angular shifts of a 3D STVP
with an arbitrarily oriented OAM at planar reflection and
refraction has been presented. These results are in excellent
agreement with the precise numerical calculations and at the
same time extend the studies of longitudinal and transversal
vortices in Refs. [16,22] to a more general situation. These
results highlight the fact that the influence of orientation, to
some extent, can be regarded as an isotropic problem after
distinguishing a deformation tensor. It is found that the angu-
lar shifts and spatial shifts induced by the topological charge
number can be described by two tangent vector fields on the
sphere, respectively. Moreover, conservation laws of linear
and angular momentum have also been examined, especially
emphasizing the importance of the intrinsic OAM. Our study
is expected to not only guide a possible solution on recent
controversy on the intrinsic OAM of STVP [28–32] but also
provide theoretical support for precise manipulation on the
STVPs. Another further investigation can include chromatic
dispersion to study the Winger time delay.
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APPENDIX A: WAVE VECTOR AND POSITION
OPERATORS AT REFRACTION

For the wave vector of the incident pulse, the transforma-
tion between the components of laboratory coordinate frame
and accompanying coordinate frame is

ki
x = cos θ0kX i + sin θ0kZi ,

ki
z = − sin θ0kX i + cos θ0kZi ,

ki
y = ky. (A1)
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Snell’s law gives the relationship between the incident wave
vector and the refracted wave vector as follows:

kt
x,y = ki

x,y,

kt
z =

√
n2

0

[(
ki

x

)2 + (
ki

y

)2 + (
ki

z

)2] − (
ki

x

)2 − (
ki

y

)2
, (A2)

where we have ignored the frequency dependence of the
refractive index n(ω) ≈ n0. Similarly, the transformations

between the components for the refracted pulse are

kt
Xt = cos θ t

0kt
x − sin θ t

0kt
z, kt

Zt = sin θ t
0kt

x + cos θ t
0kt

z. (A3)

Here, ky remains unchanged and will be omitted hereafter. By
combining Eqs. (A1) and (A2), we can represent Eq. (A3) as
a functions of the variables,

u1 = kX i/k0, u2 = ky/k0, u3 = kZi/k0 − 1, (A4)

which shows that

kt
Xt = k0 cos θ t

0[u1 cos θ0 + (u3 + 1) sin θ0] − k0 sin θ t
0

√
n2

0

[
u2

1 + u2
2 + (u3 + 1)2

] − [u1 cos θ0 + (u3 + 1) sin θ0]2 − u2
2,

kt
Zt = k0 sin θ t

0[u1 cos θ0 + (u3 + 1) sin θ0] + k0 cos θ t
0

√
n2

0

[
u2

1 + u2
2 + (u3 + 1)2

] − [u1 cos θ0 + (u3 + 1) sin θ0]2 − u2
2. (A5)

Performing a Taylor expansion of the above equation, we can obtain the first two-order terms,

kt
Xt ≈

3∑
i=1

∂kt
Xt

∂ui

∣∣∣∣∣
0

ui +
3∑

i, j=1

∂2kt
Xt

∂ui∂u j

∣∣∣∣∣∣
0

uiu j = γ t k0u1 − k0 tan θ t
0

(
n2

0 − 1
)

2n0

(
u2

1

cos2θ t
0

+ u2
2

)
,

δkt
Zt ≈

3∑
i=1

∂kt
Zt

∂ui

∣∣∣∣∣
0

ui +
3∑

i, j=1

∂2kt
Zt

∂ui∂u j

∣∣∣∣∣∣
0

uiu j = n0k0u3 + k0
(
n2

0 − 1
)

2n0

(
u2

1

cos2θ t
0

+ u2
2

)
, (A6)

where δkt
Zt = kt

Zt − n0k0. By substituting Eqs. (A4) into Eqs. (A6), we obtain the connection of wave vectors in a second-order
approximation.

The position operators at refraction can also be expended in the basis (i∂/∂u1, i∂/∂u2, i∂/∂u3), that is,

X̂ t , y, Zt = i
∂

∂kt
Xt ,y,Zt

=
3∑

i=1

∂ui

∂kt
Xt ,y,Zt

i
∂

∂ui
. (A7)

Note that the expectation of i∂ui for a Gaussian pulse is the same order as that of ui. Therefore, the second-order approximation
of the position operators for a Gaussian pulse involves the zero- and first-order terms of the Jacobian matrix

∂ (u1, u2, u3)

∂
(
kt

Xt , kt
y, kt

Zt

) ,

which can be further determined by calculating the inverse matrix of the Jacobian matrix

∂
(
kt

Xt , kt
y, kt

Zt

)
∂ (u1, u2, u3)

.

From Eqs. (A6), it yields

∂
(
kt

Xt , kt
y, kt

Zt

)
∂ (u1, u2, u3)

= k0

⎛
⎜⎜⎝

γ t − tan θ t
0(n2

0−1)
n0cos2θ0

u1 0 (n2
0−1)

n0cos2θ0
u2

− tan θ t
0(n2

0−1)
n0

u1 1 (n2
0−1)
n0

u2

0 0 n0

⎞
⎟⎟⎠.

(A8)

After inverting Eq. (A8) under zero- and first-order approximations and some algebraic calculations, we have

∂ (u1, u2, u3)

∂
(
kt

Xt , kt
y, kt

Zt

) = 1

k0

⎛
⎜⎜⎜⎝

1
γ t 0 − sec2θ0

γ t

(
1 − 1

n2
0

)
u1

tan θ t
0

γ t

(
n0 − 1

n0

)
u2 1 −(

1 − 1
n2

0

)
u2

0 0 1
n0

⎞
⎟⎟⎟⎠. (A9)

By substituting Eq. (A9) into Eq. (A7) and denoting (u1, u2, u3) as (u, v,w), we eventually obtain the second-order approxima-
tion of the position operators,

X̂ t = i
1

k0γ t

∂

∂u
− i

(
n2

0 − 1
)

k0γ t n2
0cos2θ0

u
∂

∂w
, ŷt = i

1

k0

∂

∂v
+ i

tan θ0
(
n2

0 − 1
)

k0n2
0

v
∂

∂u
− i

(
n2

0 − 1
)

k0n2
0

v
∂

∂w
, Ẑt = i

1

k0n0

∂

∂w
. (A10)
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APPENDIX B: EFFECTIVE JONES MATRIX

In this Appendix, we summarize the method presented in
Ref. [18] to calculate the transformation between the incident
and the refracted or reflected monochromatic 2D field under
a first-order approximation of the Fresnel formula. Here, we
present its 3D version for the polychromatic pulse. The Fres-
nel formula can be written as follows:(

Ẽ a
θ (ka), Ẽ a

ϕ (ka), 0
)T = Fa(ki )

(
Ẽ i

θ (ki ), Ẽ i
ϕ (ki ), 0

)T
,

Fa(ki ) =
⎛
⎝ f a

p (ki) 0 0
0 f a

s (ki ) 0
0 0 1

⎞
⎠, (B1)

where p mode Ẽ a
θ (ka) and s mode Ẽ a

ϕ (ka) are the polar and
azimuthal component of field Ẽa of the wave vector ka in the
spherical coordinate frame. Fresnel coefficients f a

p,s depend on
ki (actually on the polar angle θ i and frequency ω of ki) in the
following way [1]:

f t
p(ki ) = 2 cos θ i(ki )

n(ki ) cos θ i(ki ) + cos θ t (ki )
,

f t
s (ki ) = 2 cos θ i(ki )

cos θ i(ki ) + n(ki ) cos θ t (ki )
,

f r
p (ki ) = n(ki ) cos θ i(ki ) − cos θ t (ki )

n(ki ) cos θ i(ki ) + cos θ t (ki )
,

f r
s (ki ) = cos θ i(ki ) − n(ki ) cos θ t (ki )

cos θ i(ki ) + n(ki ) cos θ t (ki )
, (B2)

where the refraction angle as the functions of wave vectors
can be expressed as θ t (ki ) = arcsin[n−1(ki ) sin θ i(ki )]. The
transformation between the components of spherical coordi-
nate and accompanying coordinate is[

Ẽ a
θ (ka), Ẽ a

ϕ (ka), 0
]T = U (ka)

[
Ẽ a

X a (ka), Ẽ a
y (ka), Ẽ a

Za (ka)
]T

,

(B3)
where the matrix U (ka) is defined by

U (ka) = Ry
[
θa

0 (ki )
]
Rz[ϕ

a(ki )]R†
y[θ0(ki )], (B4)

with Ry and Rz representing the rotation matrix along the y
and z axes. By combining Eqs. (B1) and (B3), we can obtain
the field transformation between the incident and the refracted
or reflected pulse,[

Ẽ a
X a (ka), Ẽ a

y (ka), Ẽ a
Za (ka)

]T

= Ta(ka)
[
Ẽ i

Zi (ki ), Ẽ i
y(ki ), Ẽ i

Zi (ki )
]T

, (B5)

where the effective Jones matrix Ta(ka) =
U †(ka)Fa(ki )U (ki ). Considering the paraxial and
quasimonochromatic approximation of the pulse, it
is reasonable to consider the first-order terms of
Ta(ka) = U †(ka)Fa(ki )U (ki ), which can be calculated
as follows:

Fa = diag

[
f a

p

(
1 + u

∂ ln f a
p

∂θ
+ wm0

∂ ln f a
p

∂n0

)
,

f a
s

(
1 + +u

∂ ln f a
s

∂θ
+ wm0

∂ ln f a
s

∂n0

)
, 1

]
. (B6)

Here m0 = ∂ωn|ω0 = n0(1 − v0
p/v

0
g ) describes the relative dif-

ference between group velocity and the group velocity at the
central frequency. In this paper, we do not consider the terms
wm0∂ ln f a

p,s/∂n. It is valid when that the group velocity of
the medium equals its phase velocity, or when the chromatic
dispersion at center frequency can be ignored. Eventually, the
first-order approximation of the effective Jones matrix can be
written as

Ta(ka) ≈ Ta(u, v) = Ta0 + uTau + vTav, (B7)

where

Ta0 =
[

f a
p 0

0 f a
s

]
, Tau =

[
f a

p X a
p 0

0 f a
s X a

s

]
,

Tav =
[

0 f a
pY a

p

− f a
s Y a

s 0

]
, (B8)

and Taw = 0. Here X a
p,s = ∂θ ln f a

p,s|θ0 , Y a
p,s = [1 −

f a
s,p/(γ a f a

p,s)] cot θ0, and the 3 × 3 matrices have been
degenerated into 2 × 2 matrices by considering the
negligibility of the Za components in the paraxial
approximation.

Before applying the aforementioned field transformation
formulas, we should acquire a more detailed understanding
of the shifts we are calculating: Since the energy density of
the pulse at position r is I (r) ∝ ε|E(r)|2, then, similar to the
formula for calculating the mass centroid, the formula for
calculating the energy centroid of the refracted or reflected
pulses in the wave vector representation is

〈ra〉a =
∫∫∫

[Ẽ′a(ka)]
†
(i∇a)Ẽ′a(ka)dka∫∫∫ |Ẽ′a(ka)|2dka

. (B9)

Similarly, we can define the average wave vector 〈ka〉a. These
six components are exactly the six types of shifts mentioned in
the main text. It is important to note that, as the pulse changes
over time, the energy centroid will also change with time,
although the mean of wave vector will not change. We define
the moment the pulse just arrives at the interface as t = 0. It
is not difficult to show that its energy centroid at the moment
t0 would be

〈ra(t0)〉a = 〈ra(0)〉a + v0
gn(�〈ka〉a)t0, (B10)

where v0
g is group velocity, 〈ra(0)〉a is the spatial shift vector

at t = 0, n(v) is the unit vector of v, and �〈ka〉a = 〈ka〉a − ka
0

indicates the deviation of the mean of wave vector relative to
the central wave vector. Therefore, as the pulse propagates,
the orientation of �〈ka〉a can be transformed into spatial shift
vector, which also explains why we refer to �〈ka〉a as the
angular shift vector in the main text. We have also illustrated
this process in Fig. 1(a).

It should be noted that the refracted field obtained in
Eq. (B1) is just the amplitude of a plane wave with wave
vector k but is not the representation of the refracted pulse
in wave-vector space due to the inhomogeneity of distribu-
tion of refracted wave vectors. In fact, the representation
of the refracted pulse is actually formulated as Ẽ′a(ka) =
[∂ (ki)/∂ (ka)]1/2Ẽa(ka). Therefore, by replacing the param-
eters from the refracted or reflected wave vectors ka to the
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incident wave vector ki, Eq. (B9) can be rewritten as

〈Oa〉a =
∫∫∫

[Ẽ′′a(ki )]
†
Ôa(ki )Ẽ′′a(ki )dki∫∫∫ |Ẽ′′a(ki )|2dki

. (B11)

Here, Oa is the spatial or wave vector operator as a function of
ki, as provided in Appendix A, and the field Ẽ′′a is the specific
functional form of Eq. (B1) depending on ki. We can rewrite
Eq. (B9) as

Ẽ′′a(ki ) = Ẽa(ka) = Fa(ki )Ẽi(ki ). (B12)

By replacing the parameters from ki to (u, v,w), we even-
tually obtain Eq. (6), which is consistence with that given in
Refs. [5,18,22].

APPENDIX C: ANGULAR SHIFTS

The denominator in right-hand side of Eq. (B9) denoted
Qa2 equals | f a

p eX i |2 + f a
s ey|2 under the zeroth-order approx-

imation and represents the intensity of refracted or reflected
pulse. Based on Eq. (B9), the angular shifts of the tilted STVP
with a vortex line along (�,�) have the form

〈�ka〉a
�,�

= 1

Qa2

∫∫∫
�kah(u, v)|LGl (u

′, v′,w′)|2dudvdw,

(C1)

with the new scaled components of the wave vec-
tor (u′, v′,w′)T = R†(�,�)(u, v,w)T , LG mode
LGl (u′, v′,w′) = Ñl (u′ + isgn(l )v′)|l|e−k2

0w2
0 (u′2+v′2+w′2 )/4,

and polarization-dependent quadratic form

h(u, v) = (
eX i ∗

, ey∗)TT (u, v)T(u, v)
(
eX i

, ey
)T

. (C2)

Equation (C2), given by Eq. (B7), can be linearly approxi-
mated as follows:

h(u, v) ≈ h0 + huu + hvv + hww, (C3)

where the expansion coefficients are

h0 = (
eX i ∗

, ey∗)(Ta0)2
(
eX i

, ey
)T = Qa2,

hu = (
eX i ∗

, ey∗)(TauT Ta0 + Ta0Tau)
(
eX i

, ey
)T

= ∂θQa2,

hv = (
eX i ∗

, ey∗)(TavT Ta0 + Ta0Tav )
(
eX i

, ey
)T

= 2Re
(
eX i ∗

ey
)[(

f a
p

)2
Y a

p − (
f a
s

)2
Y a

s

]
,

hw = 0. (C4)

To solve the integral in Eq. (C1), we represent all involving
terms on the parameters (u′, v′,w′). First, the quadratic form
is expended in the new scaled components, that is, h(u, v) =
h0 + hu′u′ + hv′v′ + hw′w′. The relationship between these
new expansion coefficients and the coefficients given in
Eq. (C4) can be expressed as

(hu′ , hv′ , hw′ )T = R(�,�)(hu, hv, hw )T . (C5)

Second, according to Eq. (4a), the first-order wave vector
�ka(I)

�,� can represented as

�ka (I) = k0γ
aueX a + k0vey + k0naweZa

= k0(γ aeX a , ey, naeZa )R(�,�)(u′, v′,w′)T . (C6)

Third, the infinitesimal element is rewritten as du′dv′dw′ =
dudvdw. By substituting Eqs. (C5) and (C6) into Eq. (C1),
and after some algebraic operations, we have

〈�ka (I)〉a
�,� = k0

Qa2
(γ aeX a , ey, naeZa )

⎛
⎝U

V
W

⎞
⎠,

⎛
⎝U

V
W

⎞
⎠ = RT (�,�)

⎛
⎝ml

u 0 0
0 ml

v 0
0 0 ml

w

⎞
⎠

× R(�,�)

⎛
⎝ hu

hv

hw

⎞
⎠. (C7)

Here ml
u, ml

v , and ml
w are actually the second-order moments

of LG modes, defined by

ml
u =

∫∫∫
u′2|LGl (u

′, v′,w′)|2dudvdw

= (|l| + 1)/(2k0D),

ml
v =

∫∫∫
v′2|LGl (u

′, v′,w′)|2dudvdw

= (|l| + 1)/(2k0D),

ml
w =

∫∫∫
w′2|LGl (u

′, v′,w′)|2dudvdw

= 1/(2k0D), (C8)

respectively. In above derivation, we have used some feature
of LG modes, such as the odd-order moments equals zeros.
Equation (C7) can also be explicitly represented as

〈
ka(I)

X a

〉a
�,�

= 〈
ka(I)

X a

〉a,0

0 + |l|
[

(1 − sin2�cos2�)
〈
ka(I)

X a

〉a,0

0

− γ asin2� sin 2�

2

〈
ka(I)

y

〉a,0

0

]
, (C9a)

〈
ka(I)

y

〉a
�,�

= 〈
ka(I)

y

〉a,0

0
+ |l|

[
(1 − sin2�sin2�)

〈
ka(I)

y

〉a,0

0

− sin2� sin 2�

2γ a

〈
ka(I)

X a

〉a,0

0

]
, (C9b)

〈
ka(I)

Za

〉a
�,�

= 〈
ka(I)

Za

〉a,0

0 − |l|
[

na
0 sin 2� cos �

2γ a

〈
ka(I)

X a

〉a,0

0

+ na
0 sin 2� cos �

2

〈
ka(I)

y

〉a,0

0

]
, (C9c)
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where 〈ka(I)
X 〉a,0

0 , 〈ka(I)
y 〉a,0

0 , and 〈ka(I)
Z 〉a,0

0 are the angular shifts
for the fundamental pulse with following forms:

〈
ka(I)

X a

〉a,0

0 = γ a ∂θ ln Qa2

2D
,

〈
ka(I)

y

〉a,0

0
= Re

(
eX i ∗

ey
)(

f a
p

)2
Y a

p − ( f a
s )2Y a

s

DQa2
,

〈
ka(I)

Za

〉a,0

0 = 0. (C10)

In the above derivation, we have only considered the first-
order wave vector �ka(I)

�,�. Now, we intend to calculate the

expectations of the second-order wave vector �ka(II)
�,� given in

Eq. (5a). In the second-order approximation of the expecta-
tion, we only need consider the zeroth-order approximation
of polarization-dependent quadratic form given in Eq. (C2).
By exchanging the parameters (u, v,w) to (u′, v′,w′), this
problem can also be attributed to calculate the second-order
moment matrix of LG modes. Specifically, Eq. (C8) lists all
nonzero elements of this matrix of LG modes. By utilizing
(u, v,w) = R(�,�)(u′, v′,w′), it is straightforward to obtain

〈u2〉a
�,� = [|l|(1 − sin2�cos2�) + 1]/(2k0D),

〈v2〉a
�,� = [|l|(1 − sin2�sin2�) + 1]/(2k0D). (C11)

By substituting Eq. (C11) into Eq. (5a), we have

〈
ka(II)

Xt

〉t
�,�

=
(
1 − n2

0

)
4n0D

tan θ t
0

[
(|l| + 1)

(
1

cos2θ0
+ 1

)

− |l|sin2�

(
cos2�

cos2θ0
+ sin2�

)
+ 1

]
, (C12a)

〈
ka(II)

Zt

〉t
�,�

=
(
n2

0 − 1
)

4n0D

[
(|l| + 1)

(
1

cos2θ0
+ 1

)

− |l|sin2�

(
cos2�

cos2θ0
+ sin2�

)
+ 1

]
. (C12b)

APPENDIX D: SPATIAL SHIFTS

The procedure of the derivation of spatial shifts is the same
as the derivation of angular shifts but more complex. We
first calculate the expectation of the first-order spatial shifts
given in Eq. (A10). For a titled STVP, we also introduce new
scaled components of spatial operator (i∂u′, i∂v′ , i∂w′ ), which
are connected with the original one by a rotational matrix,

(i∂u, i∂v, i∂w ) = R(�,�)(i∂u′ , i∂v′ , i∂w′ ). (D1)

The expectation of i∂u′ , similar to Eq. (B9), can be calculated
by

〈i∂u′ 〉a
�,� = 1

Qa2

∫∫∫
LG∗

l (u′, v′,w′)P̂a
u′

× LGl (u
′, v′,w′)du′dv′dw′, (D2)

where i∂u′ and all of the related Jones matrices have been put
in

P̂a
u′ = (

eX i ∗
, ey∗)TaT (u, v)i∂u′Ta(u, v)(eX i

, ey)T . (D3)

We can decompose P̂a
u′ into two parts, P̂a(1)

u′ and P̂a(2)
u′ , defined

as

P̂a(1)
u′ = i

(
eX i ∗

, ey∗)TT (u, v)Tau′(
eX i

, ey
)T

,

P̂a(2)
u′ = (h0 + hu′u′ + hv′v′ + hw′w′)i∂u′ , (D4)

where we have given the definition of h0 and hu′ , etc. in Ap-
pendix C. Considering the odd-order moments of LG modes
equal to zero, the expectation of P̂a(1)

u′ for the scalar LG modes
can be resolved into〈

P̂a(1)
u′

〉a
�,�

= i
(
eX i ∗

, ey∗)T0Tau′(
eX i

, ey
)T /

Qa2

= ih′
u′/Qa2. (D5)

Here we denote (eX i ∗
, ey∗)T0Tau′

(eX i
, ey)T as h′

u′ . For the sec-
ond part, we note that

LG∗
l i∂u′LGl = k0D[sgn(l )v′|LGl−1|2

+ iu′|LGl−1|2 − iu′|LGl |2]. (D6)

By combining Eqs. (D4) and (D6), we can resolve the expec-
tation of P̂a(2)

u′ into following form:

〈
P̂a(2)

u′
〉a
�,�

= k0D

Qa2

[
sgn(l )hv′ml−1

v + ihu′ml−1
u − ihu′ml

u

]
.

(D7)
By combining Eqs. (D5), (D7), and (C8), we obtain

〈i∂u′ 〉a
�,� = [lhv′ + i(h′

u′ − hu′/2)]/Qa2. (D8)

The other two components, i∂v′ and i∂w′ , can also be resolved
in the same way. The calculated result shows

〈i∂v′ 〉a
�,� = [−lhu′ + i(h′

v′ − hv′/2)]/Qa2,

〈i∂w′ 〉a
�,� = i(h′

w′ − hw′/2)/Qa2. (D9)

In analogy to (hu′ , hv′ , hw′ ), (h′
u′ , h′

v′ , h′
w′ ) can be obtained by

the rotation of the original one, namely,

(h′
u′ , h′

v′ , h′
w′ )T = R(�,�)(h′

u, h′
v, h′

w )T . (D10)

It is not difficult to show that the original one satisfies

i(h′
u − hu/2) = 0,

i(h′
v − hv/2) = −Im(eXi∗ey)

[(
f a

p

)2
Y a

p + (
f a
s

)2
Y a

s

]
,

i(h′
w − hw/2) = 0. (D11)

For the fundamental Gaussian pulse and the tilted angle � =
0,� = 0, we have

〈i∂u′ 〉a,0
0 = 0,

〈i∂v′ 〉a,0
0 = −Im(eXi∗ey)

[(
f a

p

)2
Y a

p + ( f a
s )2Y a

s

]/
Qa2,

〈i∂w′ 〉a,0
0 = 0. (D12)

Equation (D12) implies that only the IF shift 〈�y〉a,0
0 =

−k0Im(eXi∗ey)[( f a
p )2Y a

p + ( f a
s )2Y a

s ]/Qa2 occurs. The reason is
that our configuration is actually an example of partial reflec-
tion, while the GH shift only occurs at total reflection. When
the topological charge increases along the orientation (�,�),
we can combine Eqs. (C5), (D1), (D8)–(D10), and (D12) to
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obtain the these scaled spatial shifts. The result shows⎛
⎜⎝ 〈i∂u〉a

�,� − 〈i∂u〉a,0
0

〈i∂v〉a
�,� − 〈i∂v〉a,0

0
〈i∂w〉a

�,� − 〈i∂w〉a,0
0

⎞
⎟⎠ = lT (�,�)

⎛
⎝ 〈u〉a,0

0
〈v〉a,0

0
〈w〉a,0

0

⎞
⎠,

T (�,�) = k0DR†(�,�)

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠

× R(�,�). (D13)

Eventually, the expression of the first-order spatial shifts can
be written as

〈X a(I)〉a
�,� = l

w2
0

2γ a
cos �

〈
ka

y

〉a,0

0
, (D14a)

〈ya(I)〉a
�,� = 〈ya〉a,0

0 − l
γ aw2

0

2
cos �

〈
ka(I)

X

〉a,0

0 , (D14b)

〈Za〉a
�,� = l

w2
0

2na
0γ

a
sin � sin �

〈
ka(I)

X

〉a,0

0

− l
w2

0

2na
0

sin � cos �
〈
ka

y

〉a,0

0
, (D14c)

Solving the second-order spatial shifts, as shown in Eq. (A10),
can be attributed to solving the spatial-angular moment

matrix of LG modes. The skill of derivation is the same as the
previous section. Here we only provide the result. The new
spatial-angular moment matrix is⎛

⎜⎝ 〈u′i∂u′ 〉a
�,� 〈u′i∂v′ 〉a

�,� 〈u′i∂w′ 〉a
�,�

〈v′i∂u′ 〉a
�,� 〈v′i∂v′ 〉a

�,� 〈v′i∂w′ 〉a
�,�

〈w′i∂u′ 〉a
�,� 〈w′i∂v′ 〉a

�,� 〈w′i∂w′ 〉a
�,�

⎞
⎟⎠

= 1

2

⎛
⎝−i −l 0

l −i 0
0 0 −i

⎞
⎠, (D15)

which is independent on the polarization, frequency, and spa-
tial waist of the pulse. After applying the rotation operator,
the related elements of the original spatial-angular moment
matrix take the form

〈iu∂w〉a
�,� = l sin � sin �/2,

〈iv∂u〉a
�,� = l cos �/2,

〈iv∂w〉a
�,� = −l sin � cos �/2. (D16)

Specifically, the expression of orbital angular momentum pre-
sented in Eqs. (30) can be easily derived from above equation.
By substituting Eq. (D16) into Eq. (A10), we can obtain the
explicit expressions of the second-order spatial shifts (14).
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