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The occurrence of exceptional points (EPs) is a fascinating non-Hermitian feature of open systems. A
level-repulsion phenomenon between two complex states of an open system can be realized by positioning
an EP and its time-reversal (T ) conjugate pair in the underlying parameter space. Here, we report interesting
nonreciprocal responses of such two conjugate EPs by using a dual-mode planar waveguide system having two
T -symmetric active variants concerning the transverse gain-loss profiles. We specifically reveal an all-optical
scheme to achieve correlative nonreciprocal light dynamics by using the reverse chirality of two dynamically
encircled conjugate EPs in the presence of local nonlinearity. A specific nonreciprocal correlation between two
designed T -symmetric waveguide variants is established in terms of their unidirectional transfer of light with
a precise selection of modes. Here, the unconventional reverse chiral properties of two conjugate EPs allow
the nonreciprocal transmission of two selective modes in the opposite directions of the underlying waveguide
variants. An explicit dependence of the nonlinearity level on a significant enhancement of the nonreciprocity
in terms of an isolation ratio is explored by investigating the effects of both local Kerr-type and saturable
nonlinearities (considered separately). The physical insights and implications of harnessing the features of
conjugate EPs in nonlinear optical systems can enable the growth and development of a versatile platform for
building nonreciprocal components and devices.
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I. INTRODUCTION

The synergy of non-Hermitian quantum physics and pho-
tonics has been revealing a novel and promising direction
for building a range of photonics components and devices
[1]. An extensive study on the perturbation theory in quan-
tum mechanics once revealed the occurrence of exceptional
point (EP) singularities as an explicit mathematical feature
of non-Hermitian or open systems [2]. EPs usually appear
as topological defects in the system’s parameter space, af-
fecting the eigenspace dimensionality, which results in the
simultaneous coalescence of at least two coupled eigenvalues
and the associated eigenstates [2–6]. The parity-time (PT )-
symmetric systems (a special class of non-Hermitian system
with real eigenvalues) [7,8] encounter an EP at a spontaneous
transition from real (exact-PT -phase) to complex (broken-
PT -phase) eigenvalues [9–12]. Recently, the engineering of
ubiquitous non-Hermitian components (e.g., loss and gain)
in photonic systems has revealed such EP-like mathematical
objects as a powerful tool to manipulate and detect the energy-
states of light [11–17]. A controlled parametric variation in
the vicinity of EPs can immensely boost a versatile range of
quantum-photonic technologies in the context of, e.g., asym-
metric energy transfer [18], programmable state-switching
[19,20], phonon lasing [21], coherent perfect absorption [22],
slow-light engineering [23], enhanced energy harvesting [24],
parametric instability [25], and highly precise sensing [26,27].
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The concept of the occurrence of conjugate EPs has re-
cently been introduced based on the complex parameter
dependence of a non-Hermitian Hamiltonian [28]. This can
be described by considering a generic two-level (without
loss of generality for higher-order situations) non-Hermitian
Hamiltonian H(λ), which depends on a complex parame-
ter λ = λR + iλI. The associated eigenvalues E1,2(λ) and the
eigenvectors �1,2(λ) would be analytical functions in the
complex-λ plane except at a singularity λ = λs, known as an
EP. Concerning the imaginary part of the dependent parameter
λ (i.e., λI), the considerations of λI < 0 and λI > 0 ideally
define two complementary variants of H(λ). Such two com-
plementary systems can be correlated based on time-reversal
(T ) symmetry. Here, two variants of H(λ) under T -symmetry
separately host two EPs in the complex λ plane at λs =
λR

s + iλI
s and λ∗

s = λR
s − iλI

s (say, EP and its conjugate EP*,
respectively), which are in the complex conjugate relation.
Such two correlated EPs in two T -symmetric complementary
systems can be called as conjugate EPs.

Unconventional light guidance mechanism based on the
chirality of EPs has extensively been studied, where a suf-
ficiently slow length-dependent gain-loss dynamics along a
closed two-dimensional (2D) loop around an EP can steer
the adiabatic and nonadiabatic conversions of modes [29,30].
Here, even though the adiabaticity is maintained in the
sense of the exchange of eigenvalues for a quasistatic gain-
loss variation [31], the associated eigenmodes fail to meet
adiabaticity while propagating along the length, which results
in the conversion of all the modes into different particular
dominating modes, based on the device chirality (in terms of
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direction of light propagation) [32–36]. Such a chirality-based
asymmetric transfer of modes has recently been explored to
reveal a distinct reverse-chiral behavior of a pair of conjugate
EPs, while dynamically encircling them in two T -symmetric
active variants of a waveguide-based optical system [28].

Moreover, the reciprocity of such a chiral light dynamics
can be broken by introducing nonreciprocal elements, where
the occurrence of an EP can considerably enhance nonre-
ciprocity [37,38]. Nonreciprocal devices, such as isolators and
circulators, allow only one-way light transmission with an
asymmetric scattering matrix, which is indispensable to mini-
mize unwanted back-reflection and multi-path interference in
photonic circuits [39]. However, the common magnetooptical
approaches (such as a Faraday rotator), mainly applied for
bulky free-space devices, are usually inefficient in enabling
a sufficient nonreciprocity for photonic circuits. Hence, there
are growing demands to achieve high nonreciprocity on the
chip-scale footprint, where the chiral response of an EP in
nonlinear media can play a crucial role in meeting such
demands. Recently, an EP-induced mode-selective isolation
scheme has been revealed, where local nonlinearity has served
as an efficient tool to enable all-optical nonreciprocity with-
out using any magneto-optical effect [36]. In this context,
the chiral response of two conjugate EPs in nonlinear me-
dia could have immense potential in developing correlative
nonreciprocal devices with highly precise mode manipulation.
Moreover, the recently developed non-Hermitian formalism
of Liouvillian superoperators [40,41] can also be exploited
for the quantum implementation of our waveguide-based clas-
sical analysis to explore the correlated features of conjugate
quantum EPs.

In this article, we comprehensively report the correlated
nonreciprocal response of two T -symmetric active variants
of a gain-loss assisted dual-mode planar waveguide, operat-
ing near two conjugate EPs. Here, all-optical nonreciprocity
is achieved with the introduction of local nonlinearity. We
investigate the hosting of conjugate EPs in complemen-
tary gain-loss parameter planes based on Riemann surface
connections associated with two quasi-guided modes. Be-
sides establishing the reverse-chiral response concerning the
asymmetric mode conversion process driven by dynamical
parametric variation in the vicinity of two conjugate EPs, we
exclusively investigate the asymmetric nonreciprocal wave-
guidence mechanism in the context of all-photonic isolation
through two T -symmetric waveguide variants. Here, a cor-
relation in the nonreciprocal transmission of selective modes
with an enhanced isolation ratio (say, IR) through two comple-
mentary waveguides is established. Moreover, a comparative
study on the individual effect of local Kerr-type nonlinearity
and saturable nonlinearity is reported by showing the possi-
bility of enhancing the IR significantly.

II. RESULTS AND DISCUSSION

A. Designing two time-symmetric active waveguide variants

To explore the correlated nonreciprocity in two T -
symmetric waveguide variants, we design a framework
consisting of a 2D planar step-index optical waveguide.
The geometrical dimensions of the designed waveguide are

considered as w = 20λ/π (width) and l = lm × 103 (length)
with lm = 7.5λ/π (i.e., both the dimensions are considered in
the unit of wavelength λ). We set λ = 2π corresponding to a
normalized wave number k = 1 to consider the entire oper-
ation in dimensionless units. The waveguide, consisting of a
core and a surrounded cladding (with the refractive indices nco

and nclad, respectively), is distributed in the xz plane, where
x ∈ [−w/2,w/2] and z ∈ [0, l] are the transverse and prop-
agation axes, respectively. The real (background) refractive
index profile is considered as

Re[n(x)] =
{

nco

nclad

: −w/6 � x � w/6,

: w/6 � |x| � w/2.
(1)

We determine nco = 1.5 and nclad = 1.46, for which the de-
signed waveguide can be realized with glass- and silica-based
material combinations in a fabrication-feasible platform.
Based on the chosen dimensional parameters and Re[n(x)]
profile, the designed waveguide supports only two scalar
modes: the fundamental mode �F and the first higher-order
mode �H.

Now, we enable non-Hermiticity via the introduction of
an unbalanced gain-loss profile [i.e., the imaginary part of
n(x)] in the designed passive waveguide, which results in the
coupling between two quasiguided modes �F and �H. We
can control such coupling with the modulation of a gain-loss
profile in a 2D parameter space characterized by the gain-loss
coefficient γ and a loss-to-gain ratio τ . Using this waveguide
framework, we consider two complementary active variants

FIG. 1. (a) Schematic design of WGA and WGT (T symmetric)
based on the framework of a gain-loss assisted planar waveguide.
Two arrows indicate their opposite propagation directions. Circular
plus and minus signs in different segments are associated with the
positive (loss) and negative (gain) imaginary indices as in Eq. (2).
(b) Transverse background refractive index profile, i.e., Re[n(x)],
(dotted black line; corresponding to the left vertical axis) along with
normalized intensity profiles of two supported modes �F and �H

(corresponding to the right vertical axis). (c) Transverse gain-loss
distributions, i.e., Im[n(x)], for two T -symmetric variants WGA

(solid green line) and WGT (solid black line) for γ = 0.01 and τ = 2.
w and l (= lm × 103) are considered in units of λ.
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connected via T -symmetric Im[n(x)] profiles given by

(2)

Such two T -symmetric waveguide variants, say WGA and
WGT are shown in Fig. 1(a). Figure 1(b) shows the profile
of Re[n(x)] [dotted black line; given by Eq. (1)] of the back-
ground framework along with the normalized intensity profile
of two symmetric scalar modes �F and �H supported by the
passive waveguide (i.e., when γ = 0). Here, the validation of
scalar modal analysis based on Maxwell’s equations is justi-
fied for computing the mode profiles, as we considered a small
index difference between the core and cladding (�n = 0.04).
Figure 1(c) shows the profiles of Im[n(x)] of two active vari-
ants WGA and WGT (represented by green and black lines,
respectively) for a specifically chosen γ = 0.01 and τ = 2.

As per the constraints of T symmetry, i.e., T : {i, t, x} →
{−i,−t, x} (i is the imaginary quantity; t and x are the time
and space coordinates, respectively), WGA and WGT host
exactly two complex conjugate profiles of n(x) with respect
to the transverse axis [as can be understood from Eq. (2) and
Fig. 1(c)]. Here, we have to consider two opposite propaga-
tion directions for WGA and WGT to maintain T -symmetric
equivalence based on the quantum-optical analogy t ≡ z.
Now, we initially host two conjugate EPs in the gain-loss pa-
rameter space of two T -symmetric waveguide variants while
operating in the linear regime. After establishing the reverse
chiral response of two conjugate EPs in the linear regime, we
introduce nonlinearity to explore the nonreciprocal effects and
the corresponding correlations.

In this context, the independent variations of γ and τ

[i.e., Im(n)], irrespective of the chosen Re(n)-profile, must
adhere to the Kramers-Kronig causality condition. This re-
quirement is particularly crucial in our context, as we consider
a patterned gain-loss profile (which is also applicable to PT -
symmetric systems) to encounter conjugate EPs. Fulfilling the
causality condition is feasible only for a discrete frequency
and cannot be achieved across any finite frequency range [42].
Consequently, we focus on performing the overall study for
a single operating frequency (k = 1) to fulfill the causality
relation [43]. As a result, the dispersive effects of core and
cladding materials can safely be disregarded.

B. Riemann surface connections: Hosting conjugate EPs

To host the pair of conjugate EPs, we study the interaction
between two coupled eigenvalues associated with �F and �H,
while varying the control parameters γ and τ , simultaneously,
within chosen ranges. Toward elucidating the phenomenon
of the hosting of conjugate EPs, a comprehensive analytical
treatment based on a non-Hermitian Hamiltonian, which is
analogous to our proposed waveguide-based system, is under-
taken. The detailed discussion can be found in the Appendix.

For our waveguide system, the complex propagation con-
stants (β values), i.e., βF and βH (associated with �F and
�H, respectively) are considered as the eigenvalues, which
are calculated by computing the solutions of the 1D scalar
wave equation [∂2

x + k2n2(x) − β2]ψ (x) = 0. We identify the
connections between the Riemann sheets associated with cou-

pled βF and βH in Fig. 2(a) [with the distributions of Re(β)
and Im(β) as shown in Figs. 2(a.1) and 2(a.2)], where the
formation of a pair of conjugate EPs is clearly evident. The
dotted red and blue curves show the trajectories of βF and βH

concerning a continuous variation of γ , when we particularly
choose τ = 3.1607. Here, we can observe a simultaneous
bifurcation and a coalescence of the associated Re(β) and
Im(β) values at γ = −8.1 × 10−3, as in Figs. 2(a.1) and
2(a.2), respectively. In contrary, a simultaneous coalescence
and bifurcation of the associated Re(β) and Im(β) values can
be observed at γ = 8.1 × 10−3. Hence, two different circum-
stances corresponding to γ < 0 and γ > 0 for a specific τ

refers to perfect complex conjugate situations (as the param-
eters γ and τ are associated with Im[n(x)], i.e., gain-loss),
which can ideally be observed in two active variants WGA

and WGT. The associated characteristics of βF and βH refer to
the encounter of two conjugate EPs at (±8.1 × 10−3, 3.1607)
(say, an EP and its conjugate EP* for WGA and WGT,
respectively) in the respective (γ , τ ) planes. Topological dis-
similarities in ARC-type interactions between βF and βH can
clearly be observed alongside these conjugate EPs. The coa-
lescence of the eigenmodes (�F and �H) at both the conjugate
EPs can be understood from the variation of 〈�F|�H〉 with γ

at a fixed τ = 3.1607, where 〈�F|�H〉 = 1 only at EP and
EP*, as shown in Fig. 2(b).

The effect of parametric encirclement of the embedded
conjugate EPs in terms of chiral branch-point features is inves-
tigated in Fig. 2(c). Here, we consider two parametric loops in
the 2D (γ , τ ) plane according to the equations

γ (ϕ) = γc sin
(ϕ

2

)
and τ (ϕ) = τc + r sin(ϕ), (3)

which leads to a closed and simultaneous variation of gain
and loss around the EP and EP*. A slow variation of ϕ ∈
[0, 2π ] governs the stroboscopic encirclements based on the
characteristic parameters γc, τc, and r ∈ (0, 1], where the
conjugate EPs would be inside the parametric loop only for
|γc| > |γEP| (γEP = 8.1 × 10−3; γ value at the location of the
EP). Here, the variations ϕ : 0 → 2π and ϕ : 0 ← 2π enable
a clockwise (CW) and a counterclockwise (CCW) gain-loss
variation around the EP for γc > 0, and vice versa around the
EP* for γc < 0. Such two parametric loops are shown in the
ground surfaces of both Figs. 2(c.1) and 2(c.2) (for r = 0.3,
γc = ±1.5 × 10−2. and τc = 3.1607), where the associated
trajectories of coupled βF and βH are shown on their respec-
tive Riemann surfaces. Here, we observe that βF and βH are
swapping their identities from their respective surfaces [con-
cerning both Re(β) and Im(β), as can be seen in Figs. 2(c.1)
and 2(c.2), respectively], and exchange their initial positions
upon the completion of encirclement schemes. Such switching
between complex βF and βH around both EP and EP* justify
their branch-point behavior.

C. Dynamically encircled conjugate EPs:
Asymmetric transfer of modes in a linear medium

Here, we investigate the correlative dynamics of the light
(modes) propagation in the linear regime while encircling
the conjugate EPs dynamically. The correlation is eluci-
dated from a chiral perspective, highlighting the reciprocal
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FIG. 2. (a) Connections between the Riemann surfaces associated with βF and βH, while varying the control parameters γ and τ ,
simultaneously. (a.1) and (a.2) show the distributions of Re[β] and Im[β], respectively. Dotted red and blue curves represent the trajectories of
βF and βH for a chosen τ = 3.1607, which reveal the encounter of two conjugate EPs based on the coalescence and bifurcations in Re[β] and
Im[β] at γ = ±8.1 × 10−3. Dotted blue squares separate the regions for WGA and WGT. (b) Variation of 〈�F|�H〉 with respect to γ (when
τ = 3.1607), which shows the coalescence of �F and �H via 〈�F|�H〉 = 1 at both EP and EP*. (c) Parametric encirclement of two conjugate
EPs in the (γ , τ )-plane following Eq. (3) (shown in the ground surfaces) and associated transfer process of βF and βH from their respective
surfaces.

direction-dependent response of the device. Such an under-
standing would establish a promising foundation, paving the
way for nonreciprocal behaviors upon the introduction of non-
linearity. We consider the length dependence (analogous to
the time dependence) on the gain-loss parameter space to host
dynamical encirclement schemes in two T -symmetric waveg-
uide variants. Figure 3(a) shows the chosen parametric loops
for WGA and WGT [to encircle EP and EP*; exactly the same

FIG. 3. (a) Parametric loops to encircle an EP and its conjugate
EP* in the (γ , τ ) plane [following Eq. (3)]. (b) Associated dynamical
variation of gain-loss profiles, i.e., two complex conjugate active
potentials (separated via a transparent plane), experienced by two T -
symmetric waveguide variants WGA and WGT. w and l (= lm × 103)
are considered in units of λ.

loops, as can be seen in the ground surfaces of Fig. 2(c)]. We
map the associated gain-loss distribution along the length (z
axis) of respective waveguides. Here, the reversal of the time
axis (t → −t) under the constraint of T symmetry allows us
to consider mapping obligatorily in opposite directions (i.e.,
z → −z as t ≡ z) for WGA and WGT. Hence, we distribute
the gain-loss profile from z = 0 to z = l based on the encir-
clement of EP (EP*) governed by ϕ : 0 → 2π (ϕ : 2π → 0)
for WGA (WGT). Such a z-dependent gain-loss distribution
can be implemented by reconsidering Eq. (3) as a function of
z as

γ (z) = γc sin
(πz

l

)
and τ (z) = τc + r sin

(
2πz

l

)
. (4)

Figure 3(b) shows two complex conjugate 2D Im(n) profiles
[governed by Eq. (4)] to encircle the EP and EP* dynamically.
Such a parameter space allows the recovery of symmetric
modes (passive) while considering propagation in any of two
directions (as γ = 0 at both z = 0 and z = l). Here, the CW
and CCW directions of encirclements are realized through one
complete pass of light in the forward direction (z : 0 → l) and
backward direction (z : l → 0), respectively, for WGA, and
vice versa for WGT.

Now, we implement the scalar beam propagation method
to investigate the individual light transmission through WGA

and WGT. The characteristic beam propagation equation of an
input beam can be written as

−2ik∂z�(x, z) = [
∂2

x + k2�n2(x, z)
]
�(x, z), (5)
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with �n2(x, z) ≡ n2(x, z) − n2
clad, which is generally formu-

lated as a solution to the Helmholtz equation under paraxial
and slowly varying-envelope approximations. We develop a
MATLAB code to implement the beam propagation method
based on Eq. (5) by using a split-step analysis. Here, we
consider the active �n profile (non-Hermitian) and compute
Eq. (5) for both �F and �H with extremely fine split-step
computation. Similar beam propagation investigations can
be performed in feasible three-dimensional (3D) systems
based on coupled waveguide and fiber geometries, where an
extended approach of our proposed theoretical model can
be implemented with appropriate numerical methods [44].
Recently, a gain-loss assisted dual-core fiber system imple-
menting a dynamical encirclement of a second-order EP was
reported as a potential 3D platform [45].

Figure 4 shows the resultant propagation characteristics,
while considering the dynamical encirclements around the
EP and EP* in WGA and WGT, respectively. Here, we
initially verify the linear response (i.e., without any nonlin-
earity) in the context of an asymmetric transfer between the

FIG. 4. (a) Propagation dynamics of �F and �H through WGA

(upper panel) from z = 0 to z = l (associated with the CW dy-
namical EP encirclement) followed by the asymmetric conversions
{�F, �H} → �H; (lower panel) from z = l to z = 0 (associated with
the CCW dynamical EP encirclement) followed by the asymmetric
conversions {�F, �H} → �F. (b) Similar modal dynamics through
WGT (upper panel) for the CW dynamical encirclement around
the EP* with z : l → 0, exhibiting the asymmetric conversions
{�F, �H} → �F; (lower panel) for the CCW dynamical encirclement
around the EP* with z : 0 → l , exhibiting the asymmetric conver-
sions {�F, �H} → �H. Intensities are renormalized at each step of
evolution along z to show the inputs and outputs clearly. w and
l (= lm × 103) are considered in units of λ.

modes, which occurs due to the failure of the adiabatic ap-
proximation led by a dynamically encircled EP, despite the
associated omnipresent β-switching process. Here, the EP (or
EP*) itself acts as a source of chirality, which mainly steers
the response of the underlying system in the context of a
direction-dependent transfer of modes. Such an unconven-
tional modal dynamics can be observed for both WGA and
WGT, as shown in Figs. 4(a) and 4(b), respectively.

To enable a dynamical encirclement of the EP in the CW
direction, we consider the propagation of light from z = 0
to z = l (forward direction) in WGA. We can observe the
corresponding dynamics of �F and �H in the upper panel
of Fig. 4(a), where �F is converted into �H, following the
adiabatic expectation. However, �H violets the system adi-
abaticity, i.e., it becomes restructured and remains as �H.
Thus a light signal launched at z = 0 of WGA is converted
into a dominating �H at z = l . The lower panel of Fig. 4(a)
shows the modal transitions, while considering light propaga-
tion in the backward direction (z : l → 0; associated with the
CCW encirclement process). Here, �F dominates at the output
z = 0 with the asymmetric conversions {�F, �H} → �F,
where only �H maintains the adiabatic expectations (unlike
the case for the CW encirclement process). Thus during the
dynamical encirclement of an EP, the system partially main-
tains the adiabaticity, which however turns into a fascinating
chiral light dynamics, where irrespective of the excited modes
at the input, the device delivers two different dominating
modes in the opposite directions.

Such a violation in the system adiabaticity around an EP,
can be predicted with the associated nonadiabatic correc-
tion terms (NF→H and NH→F for the adiabatic expectations
�F → �H and �H → �F, respectively) from the adiabatic
theorem [29]. These corrections mainly rely on the accu-
mulated relative-gain (�γ ad

F,H) factor during the transition of
modes as (generalized with a quantum-optical analogy under
the operating condition)

NF{H}→H{F} ∝ −{+} exp
∫ l

0
�γ ad

F,H(γ , τ )dz. (6)

Here, �γ ad
F,H can be estimated from the relative difference

between the average loss (γ m) accrued by the individual
modes. The adiabatic trajectories of Im(β) values [as shown
in Fig. 2(c.2)] for �F and �H gives the associated γ m with∮ {Im(β )/2π}dϕ.

Here, the variant WGA operating with a dynamically en-
circled EP gives �γ ad

F,H > 0 for the CW direction, whereas
�γ ad

F,H < 0 for the CCW direction. These particular relations
result in the domination of the N factor associated with the
amplifying exponent of �γ ad

F,H over the overall adiabatic ex-
pectations, whereas cooperation of the N factor corresponding
to the decaying exponent of �γ ad

F,H with the adiabatic ex-
pectations. Hence, the domination of NH→F in the forward
direction yields the nonadiabatic transition of �H(→ �H),
whereas the cooperation of NF→H supports the adiabatic con-
version of �F(→ �H). On the other hand, the domination
of NF→H in the backward direction yields the nonadiabatic
transition of �F(→ �F), whereas the cooperation of NH→F

supports the adiabatic conversion of �H(→ �F). The de-
tailed analytical predictions completely support our numerical
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beam-propagation results for WGA, as shown in Fig. 4(a).
From the dependence of the relative-gain factor �γ ad

F,H on
the EP-induced asymmetric mode conversions, one can
generically conclude that the mode transiting with a lower
average loss (γ m) follows the adiabatic rules, whereas its
coupled counterpart evolves nonadiabatically.

Now, if we consider the dynamical encirclement around
EP*, then the concerned waveguide variant WGT exhibits
reverse-chiral dynamics compared to the chiral behavior of
WGA, as can be seen in Fig. 4(b). During the encirclement
in the CW directions, �F and �H transmit along the back-
ward direction (z : l → 0) with �γ ad

F,H < 0, which allows the
nonadiabatic transfer of �F and the adiabatic transfer of �H

with the asymmetric conversions {�F, �H} → �F at z = 0 [as
shown in the upper panel of Fig. 4(b)]. In this case, �H evolves
with a lower γ m and maintains the adiabatic expectations.
In contrary, the modal transmissions in the forward direc-
tion (z : 0 → l) of WGT with a positive relative-gain factor
(�γ ad

F,H > 0) yields the delivery of the dominating �F with the
asymmetric conversions {�F, �H} → �H, while considering
the encirclement in the CCW direction [as shown in the lower
panel of Fig. 4(b)]. Here, �F evolves with a lower γ m and
maintains the adiabatic expectations. Hence, based on the
constraints of the T symmetry, we exclusively demonstrate
interesting opposite chiral responses of two active variants
designed on the same background waveguide system, where
the opposite encirclement directions around the EP and EP*
result in the delivery of modes of the same order.

D. Effect of nonlinearity on the asymmetric state-transfer
process: Enabling nonreciprocity around two conjugate EPs

The direction-dependent light transmission process with
the asymmetric transfer of modes (as described for two
waveguide variants) can be understood by a scattering matrix
(S-matrix) relation. We meticulously formulate an S matrix
to encompass all possible input and output combinations
facilitated by our specially engineered two-port dual-mode
waveguide system. Such an S-matrix relation can be written as⎡⎢⎢⎣

�1

�2

�3

�4

⎤⎥⎥⎦
op

=

⎡⎢⎢⎣
0 0 S13 S14

0 0 S23 S24

S31 S32 0 0
S41 S42 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

�1

�2

�3

�4

⎤⎥⎥⎦
in

, (7)

which allows for a comprehensive comparison with the
functionality of an analogous four-port device, as depicted
in Fig. 5. In Eq. (7), a 4 × 4 S matrix (with the elements
Smn) relates the input and outputs matrices [�n]in and [�m]op

with {m, n} ∈ {1, 2, 3, 4}, where Smn = 〈�n
in|�m

op〉. In this
context, the wave functions at the ports {1, 2} and {3, 4} of
the four-port device mimic two supported modes {�F, �H} at
z = 0 and z = l of our two-port waveguide system.

The 4 × 4 S matrix can be partitioned into four distinct
2 × 2 blocks. The elements of the top-left and bottom-right
blocks correspond to the potential reflections at z = 0 and
z = l , respectively (while considering the two-port operation),
and are, thus, considered as 2 × 2 null matrices in order to
disregard any such reflections. Consequently, the obtained S
matrix captures the input-output relationships between �F and
�H originating from two opposite ends. In this arrangement,

FIG. 5. A schematic analogy between a four-port optical device
and our designed dual-mode waveguide operating with a dynam-
ically encircled EP or EP* in the presence of nonlinearity. This
analogy is essentially drawn to construct a 4 × 4 S-matrix [given by
Eq. (7)] considering all the possible transmissions.

the elements in the bottom-left block correspond to the trans-
mission from z = 0 to z = l (forward direction), whereas the
elements in the top-right block correspond to the transmission
from z = l to z = 0 (backward direction). Now, it can be
understood that if [S] defines the scattering matrix for WGA,
then the analytical transpose form of [S] would be associated
with WGT (however, their respective matrix elements would
be different, due to the presence of two opposite gain-loss
profiles for WGA and WGT).

In the linear regime, the chirality-driven asymmetric mode
conversion process in a particular waveguide variant follows
Lorentz’s reciprocity with a symmetric S-matrix, i.e., [S] =
[S]T . Now, the direction dependence on the system’s response
can bring up a special interest in achieving one-way trans-
mission, which is compulsory for designing nonreciprocal
devices. However, the presence of nonreciprocity obligato-
rily indicates the breakdown of Lorentz’s reciprocity with an
asymmetric S matrix, i.e., [S] 
= [S]T [46]. In this context, uni-
directional transmission with a symmetric scattering matrix
was reported in a photonic circuit [47], where isolation is not
realizable [46,48].

To break the reciprocity in EP-induced light dynamics,
we exploit the effect of local nonlinearity. We schematically
represent our proposed scheme in Fig. 5 with an operational
analogy between one of the designed dual-mode waveguide
variants (hosting a dynamically encircled EP or EP*) with
nonlinearity and a four-port isolator device. Here, we quantify
a particular nonlinearity level as Nl = (�nNL/�n) × 100%
(with �n = 0.04; for the designed passive waveguide), where
the variation of �nNL depends on the modal field-intensities
(I ≡ |�|2) for a particular nonlinear coefficient (n2). Here, we
initially study the effect of Kerr-type nonlinearities to achieve
an adequate level of nonreciprocity for both waveguide vari-
ants (in terms of an isolation ratio, say, IR) with proper
optimization. Then, we also explore the effect of saturable
nonlinearities to enhance the IR further and perform a quan-
titative comparison. We consider the forms of two different
types of nonlinearities, viz.,

Kerr-type nonlinearity: �nNL(x, z) = n2I, (8a)

Saturable nonlinearity: �nNL(x, z) = n2I

1 + I/Is
. (8b)

033511-6



CORRELATED NONRECIPROCITY AROUND CONJUGATE … PHYSICAL REVIEW A 109, 033511 (2024)

Is in Eq. (8b) defines a saturating intensity. The op-
erations of two T -symmetric waveguide variants in terms
of nonlinearity-induced optical isolations are illustrated in
Figs. 6 and 7. Figure 6 shows prototype isolation schemes for
both the variants with the one-way transfer of selective modes
at an optimized nonlinearity level (Nl ), where Fig. 7 illustrates
how we optimize such a specific Nl .

In Fig. 6(a), we show the one-way propagation of modes
through WGA (which hosts a dynamically encircled EP) with
Kerr-type nonlinearity in the spatial index distribution. We
judiciously optimize the nonlinearity level at Nl = 6.75%.
Here, we observe that the waveguide is active for the encir-
clement in the CW direction, where both quasiguided modes
are fully transmitted from z = 0 to z = l . Moreover, the
adiabatic and nonadiabatic relations [from Eq. (6)] for this

FIG. 6. (a) Nonreciprocal transition of modes with the asymmet-
ric conversions {�F, �H} → �H through WGA which is active in
the forward direction (z : 0 → l; associated with the CW dynamical
EP encirclement process). (b) Schematic nonreciprocal response of
WGA (which allows light to pass in the forward direction, however,
blocks in the backward directions) along with outputs (O/P) at z = l
(for the allowed path z : 0 → l) and z = 0 (for the blocked path
z : l → 0. (c) Nonreciprocal transition of modes with the asymmetric
conversions {�F, �H} → �F through WGT which is active in the
backward direction (z : l → 0; associated with the CW dynamical
encirclement of the EP*). (d) Schematic nonreciprocal response of
WGT (which allows light to pass in the backward direction, however,
blocks in the forward directions) along with outputs (O/P) at z = 0
(for the allowed path z : l → 0) and z = l (for the blocked path
z : 0 → l). For both WGA and WGT, the self-normalized outputs are
shown for their active directions, whereas relative outputs are shown
in their blocked directions. w and l (= lm × 103) are considered in
units of λ.

specific encirclement condition allow the asymmetric con-
versions {�F, �H} → �H, which results in delivery of the
dominating �H at z = l of WGA. Meanwhile, for the consider-
ation of the dynamical EP encirclement in the CCW direction,
we also observe that almost no light is transmitted from z = l
to z = 0, which is shown in Fig. 6(b) via a relative inten-
sity difference. Figure 6(b) schematically shows the prototype
isolation scheme achieved using WGA along with one of the
output (O/P) field intensities at both z = l and z = 0 (i.e., for
the forward and backward transmissions, respectively, with
the inputs as already shown in Fig. 1(b); as both modes are
converted into a particular dominating mode for propagation
in a specific direction, we obtain almost similar output in-
tensities at a particular output-end, and hence we show only
one of two output field-intensities for each of the propagation
directions). Here, the dotted blue curve represents the normal-
ized output field intensity (�H) at z = l , while considering the
forward propagation (z : 0 → l). However, during the back-
ward propagation (z : l → 0), the dotted red curve shows the
output field intensity (�H) at z = 0, which is relative with
respect to the output at z = l obtained during the forward
propagation (the relative output is considered to indicate the
intensity difference while considering the propagation in two
opposite directions). Here, output intensity at z = 0 decreases
almost 98.6% (during the backward propagation) in compar-
ison to the output at z = l (during the forward propagation).
Two outputs at z = 0 and z = l perfectly imply the prototype
isolation scheme of WGA, which passes �H in the forward
direction and blocks �F in the backward direction.

In Fig. 6(c), we investigate a prototype isolation scheme
based on WGT in the presence of Kerr-type nonlinearity with
Nl = 6.75% (same as considered for WGA). Here, we observe
that the waveguide is surprisingly active in the backward
direction (z : l → 0) which is associated with the CW dy-
namical encirclement scheme around the EP*. The waveguide
passes the dominating �F [based on the corresponding nona-
diabatic correction factors from Eq. (6)] with the asymmetric
conversions {�F, �H} → �F, as can be observed via the asso-
ciated beam propagation results. The light becomes blocked in
the forward direction, which is associated with the CCW dy-
namical encirclement process around the EP*. The prototype
isolation scheme along with the output (O/P) field intensities
for WGT are shown in Fig. 6(d). From the normalized output
intensity at z = 0 (�F; during the backward propagation) and
relative output intensity at z = l (�H; during the forward
propagation; relative with respect to the output �F at z = 0), it
is clearly evident that the intensity decreases ≈93.3% during
the forward propagation through WGT. Hence, WGT allows
�F to pass in the backward direction, however, blocks �H in
the forward direction.

Hence, at a particular nonlinearity level, both T -symmetric
waveguide variants behave as isolators, which allow the
nonreciprocal transmission of two different selective modes
in opposite directions. For a particular variant, a break-
down of the inversion symmetry in the length-depended
gain-loss variation occurs in two opposite directions, where
the tailored nonlinearity induces nonreciprocity. Hence, the
intensity of the incoming waves becomes completely attenu-
ated in a particular direction, despite being transmitted fully
in the opposite direction. Here, a correlation between the
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nonreciprocal transmissions to two different allowed modes
in two waveguide variants is dictated by the nonadiabatic cor-
rections around EP and EP*. It is crucial to emphasize that the
influence of dynamic nonreciprocity, primarily arising from
the reciprocity relations associated with small-amplitude addi-
tional waves in the presence of Kerr or Kerr-like nonlinearities
[49], can effectively be disregarded in our proposed approach.
This is attributable to the chosen configuration and operating
conditions specifically tailored for a single frequency. Here,
both variants of the waveguide block any backward noise at
the selected operating frequency.

Now, we quantify maximum nonreciprocity in terms of an
IR for both the waveguide variants. For a particular two-port
waveguide device, the IR can be defined as a quantitative mea-
surement (in dB) of the difference between the transmissions
in the active and inactive directions

IR (dB) = 10 log10

[
Tactive

Tinactive

]
= 10 log10

∣∣∣∣Smn

Snm

∣∣∣∣2

. (9)

Taking into account two transitions permitted by the adiabatic
and nonadiabatic relations around the EP/EP* [as shown in
Fig. 6; governed by Eq. (6)], we present the higher value
of IR (maximum nonreciprocity) achieved for a particular
waveguide variant and consider the respective Smn from the
associated S matrix. The higher value of IR is consistently
observed during adiabatic transitions for both waveguide vari-
ants. However, for a specific variant, it is noteworthy that
the IR values associated with both the allowed transitions
are closely situated. We determine the maximum nonre-
ciprocity for WGA as 18.6 dB using IR = 10 log10 |S41/S14|2.
Whereas, the maximum nonreciprocity for WGT is estimated
at 11.75 dB via IR = 10 log10 |S14/S41|2.

Such an exclusive nonreciprocal transmission of selec-
tive modes mainly relies on the interplay between dynamical
gain-loss variation (active components) and the tailored lo-
cal nonlinearity in the spatial index distribution (passive
components). During the propagation of light around an EP
in the presence of nonlinearity, the complex β values of
the supported modes become affected significantly. The EP-
induced interactions are led by the variations of both Re(β)
(modal confinement) and Im(β) (decay rates), where the
incorporation of nonlinearity directly influences Re(β). Now,
the mode confinement factors enhance with an increasing
amount of nonlinearity, which results in the simultaneous
reduction of the associated decay rates. Hence, the onset of
nonlinearity modifies the gain-loss parameter space concern-
ing the location of the EP (or EP*), and accordingly the
relative-gain factor [�γ ad

F,H; associated with Eq. (6)] between
the interacting modes is affected significantly during the evo-
lution of modes following the dynamical EP-encirclement
scheme. Based on such an interplay, the relative intensity
difference at two opposite output-ends varies for different
nonlinearity amounts, which can be understood from the vari-
ation of the IR concerning the nonlinearity level (Nl ), as
shown in Fig. 7(a).

The IR initially increases with an increasing Kerr-type
nonlinearity level and takes a maximum value of 18.6 dB
for WGA and 11.75 dB for WGT at a certain threshold
nonlinearity-level of Nl = 6.75% [as shown in Fig. 7(a)].
Here, the difference in the IR for two waveguide variants at a

FIG. 7. Dependence of the isolation ratio (IR) on the local non-
linearity level (Nl ), while considering (a) Kerr-type nonlinearity and
(b) saturable nonlinearity, separately. Red square and blue circular
markers show such a variation of IR for WGA and WGT, respectively.
The green arrows in both (a) and (b) indicate the largest values of the
IRs, as achieved at the same Nl .

particular Nl can be observed, which occurs due to a different
gain-loss profile (exactly opposite; based on T symmetry) as
can be seen in Fig. 3(b). The operation of WGA is mainly
dominated by loss, whereas WGT operates with an overall
higher amount of gain. Hence, WGA is able to induce a
comparably higher output intensity difference for the light
propagation in two opposite directions. An additional gain-
amplification in WGT might reduce such intensity difference
between two outputs, which results in achieving a lower IR
for WGT in comparison to WGA at a particular Nl . However,
we interestingly observe that both waveguide variants achieve
their highest IR at a specific Nl = 6.75%, which affirms their
operational correlation based on the chiral behavior of two
conjugate EPs. It is further noticeable that while increasing
Nl more than 6.75%, the IR decreases gradually [as shown
in Fig. 7(a)] for both variants. Such a decrease of the IR
after a certain threshold is mainly due to the abrupt effect of
nonlinearity on the encirclement loop that affects the location
of the EP significantly (i.e., the EP might come closer to the
boundary of the modified loop in the parameter space due to
a higher amount of nonlinearity). Here, judicious care should
be taken to optimize the Nl , as a higher nonlinearity after a
certain limit may exclude the EP from the parametric loop, for
which the overall observation might be intangible. However,
there is a sufficient scope of scalability to investigate the
device operation for different amounts of nonlinearities within
a broad range. The characteristic curve shown in Fig. 7(a)
essentially defines the process to choose an optimized nonlin-
earity amount, from where we set Nl = 6.75% to obtain the
beam propagation results in Fig. 6.

Then, instead of local Kerr-type nonlinearity, we introduce
saturable nonlinearity in the spatial index distribution to in-
vestigate the nonreciprocal transmission through WGA and
WGT. The saturable nonlinearity is considered with a chosen
saturating intensity [Is; as per Eq. (8b)] based on the materials
of the background waveguide. For Kerr-type nonlinearity, a
nonlinear interaction of light in the optical medium gradually
increases with an increasing signal intensity, which might
ensemble instability in the output signals after a certain limit.
In this context, the consideration of the saturable intensity in
the associated nonlinear interactions can potentially stabilize
the output signals, where we can observe a higher intensity
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difference at two output ends for propagation in the opposite
directions. Hence, we optimize the saturable nonlinearity level
at 7.5% from the characteristic dependence of the IR on Nl ,
as shown in Fig. 7(b). Here, we observe an exactly similar
nonreciprocal response of both WGA and WGT, as we have
seen for the choice of Kerr-type nonlinearity in Fig. 6. WGA

allows the nonreciprocal transmission of �H in the forward
direction, whereas isolates �F in the backward direction. The
field intensity decreases ≈99.96% during the backward prop-
agation, where we achieve a maximum of the IR of 34.6 dB.
On the other hand, we achieve a maximum of 18.6 dB IR
for WGT, which allows �F to transmit along the backward
direction and isolates �H in the forward direction with almost
98.7% reduction of the signal intensity.

III. SUMMARY

In summary, a significant stride in understanding and utiliz-
ing the concept of conjugate EPs has been made in the context
of a correlative nonreciprocal light transmission process.
Based on the hosting of two dynamically encircled conjugate
EPs in two T -symmetric variants of a planar gain-loss assisted
waveguide, a comprehensive all-optical scheme has been es-
tablished with the introduction of local nonlinearity, where we
revealed a specific chiral correlation between the nonrecip-
rocal responses of two underlying waveguide variants. Here,
two T -symmetric waveguide variants, hosting two conjugate
EPs, are characterized by their ability to behave as isolators
enabling nonreciprocal transmission of selective modes in
opposite directions. They allow active transmission of two dif-
ferent dominant modes in opposite directions, whereas block
light from passing in their respective reverse directions. We
investigated the effect of both Kerr-type and saturable non-
linearities on achieving nonreciprocity, where we observed
that the onset of saturable nonlinearity can induce a compa-
rably higher nonreciprocal effect. The intricate interplay of
the dynamical gain-loss parameter space around the conju-
gate EPs in the presence of different types of nonlinearities
were discussed in detail to understand such unconventional
chiral nonreciprocal light dynamics. The isolation ratio for
both waveguide variants has been precisely evaluated across
varying nonlinearity levels, where we achieved a huge iso-
lation ratio, even up to 34.6 dB, under a specific operating
condition. This notable outcome underscores the efficacy of
our approach. Moreover, there exists a considerable potential
to enhance the device’s performance further by strategically
scaling geometrical parameters, optimizing gain-loss config-
urations, and adjusting nonlinearity. Based on the proposed
scheme, a nonreciprocal mode-selective four-port circulatory
operation can be explored by using an appropriate coupled
optical system designed with two underlying T -symmetric
nonlinear waveguides. The insights and implementations of
our approach harnessing the fascinating features of conjugate
EPs in nonlinear optical systems would unlock a new avenue
with exciting possibilities for boosting the development of
various nonreciprocal components, such as optical isolators
and circulators, for integrated (on-chip) photonic applications
in next-generation communication networks and quantum
information processing.
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APPENDIX: AN ANALYTICAL APPROACH TOWARD
HOSTING CONJUGATE EXCEPTIONAL POINTS

The occurrence of conjugate EPs in any physical system
can be understood as a mathematical problem by constructing
an analogous 2 × 2 non-Hermitian Hamiltonian given by

H(λ) = H0 + λHp =
(

β1 0
0 β2

)
+ λ

(
κ1 γ1

γ2 κ2

)
. (A1)

Here, a passive Hamiltonian H0, consisting of two passive
eigenvalues β j ( j = 1, 2), is subjected by a perturbation Hp,
which is dependent on some coupling parameters κ j and
γ j ( j = 1, 2) with a perturbation strength λ.

A trivial case can be considered with real-valued β j , κ j ,
and λ along with γ j = 0, for which the effective Hamiltonian
H behaves as a Hermitian system and possesses two distinct
eigenvalues: E j (λ) = β j + λ κ j ( j = 1, 2). Here, a conven-
tional degeneracy occurs at λ = −(β1 − β2)/(κ1 − κ2). Now,
to ensure the system to be non-Hermitian, all the elements
in Hp might be chosen as nonzero with a complex λ, where
[H0, Hp] 
= 0. The operation of our designed dual mode
waveguide based optical system can be understood based on
such a non-Hermitian Hamiltonian. Here, β1 and β2 repre-
sent two real propagation constants. The complex λ defines
the overall non-Hermitian elements based on gain-loss pa-
rameters κ j and γ j ( j = 1, 2), where κ j can be appeared as
individual modal decay rates, whereas γ j can be considered
as introduced gain-loss elements.

The eigenvalues of H can generically be written as

E1,2(λ) = β1 + β2 + λ(κ1 + κ2)

2
± R, (A2)

where

R =
[(

β1 − β2

2

)2

+ λ2

{(
κ1 − κ2

2

)2

+ γ1γ2

}

+λ

2
(β1 − β2)(κ1 − κ2)

]1/2

. (A3)

Owing to the coupling invoked by finite γ j ( j = 1, 2), two lev-
els E1 and E2 exhibit avoided resonance crossing (ARC; i.e.,
two levels do not cross but avoid each other) type interactions
with a continuous variation of λ. While exhibiting ARCs, the
two levels coalesce at two critical values of λ, which represent
a complex conjugate pair of EPs in the complex λ-plane.
These two singularities can be obtained in the complex λ-
plane by setting R = 0, which are given by

λ±
s = − (β1 − β2)

(κ1 − κ2) ∓ 2i
√

γ1γ2
. (A4)
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The connection between two conjugate EPs can be understood
by rewriting R in terms of λ+

s and λ−
s as

R =
√√√√(

λ − λ+
s

2

){(
κ1 − κ2

2

)2

+ γ1γ2

}(
λ − λ−

s

2

)
.

(A5)

Hence, the coupled levels are specified by the value of√
λ − λ+

s and
√

λ − λ−
s on two different Riemann surfaces.

The critical eigenvalues at two conjugate EPs (i.e., at λ+
s and

λ−
s ) are given by

Es(λ
±
s ) = (κ1β2 − κ2β1) ∓ i

√
γ1γ2(β1 + β2)

(κ1 − κ2) ∓ 2i
√

γ1γ2
. (A6)

Now, an EP is associated with the occurrence of only
one independent eigenvector, unlike two orthogonal eigen-
vectors at a trivial Hermitian degeneracy. Thus, using the
biorthogonal norm for a non-Hermitian Hamiltonian, two
right-hand eigenvectors at two conjugate EPs (one for each

of the EPs) can be written as (approximated up to a
factor)

|�+
s 〉 =

⎛⎝ +iγ1√
γ1γ2

1

⎞⎠ for λ = λ+
s , (A7a)

|�−
s 〉 =

⎛⎝ −iγ1√
γ1γ2

1

⎞⎠ for λs = λ−
s , (A7b)

with the associated left-hand eigenvectors

〈�̃+
s | =

( +iγ2√
γ1γ2

1
)

for λ = λ+
s , (A8a)

〈�̃−
s | =

( −iγ2√
γ1γ2

1
)

for λ = λ−
s . (A8b)

From Eqs. (A1) and (A2), it is evident that

〈�̃+
s |�+

s 〉 = 0 and 〈�̃−
s |�−

s 〉 = 0. (A9)

These conditions are referred to as the self-orthogonality that
holds at both the conjugate EPs. The existence of only one
self-orthogonal eigenvector reflects the fact that the Hamilto-
nian H(λ) becomes nondiagonalizable for both λ = λ+

s or λ−
s ,

i.e., at the two conjugate EPs.
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