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Multiparameter optimization for ground-state cooling of a mechanical mode using quantum dots
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Cooling a mechanical mode to its motional ground state opens up avenues for both scientific and technological
advancements in the field of quantum metrology and information processing. We propose a multiparameter
optimization scheme for ground-state cooling of a mechanical mode using quantum dots. Applying the master-
equation approach, we formulate the optimization scheme over a broad range of system parameters including
detunings, decay rates, pumping rates, and coupling strengths. We implement the optimization scheme on two
major types of semiconductor quantum-dot systems: colloidal and epitaxial quantum dots. These systems span a
broad range of mechanical-mode frequencies, coupling rates, and decay rates. Our optimization scheme lowers
the steady-state phonon number in all cases by several orders of magnitude and thereby the effective temperature
of the mechanical mode by more than an order of magnitude. We also calculate the net cooling rate by estimating
the phonon decay rate and show that the optimized system parameters also result in efficient cooling. The
proposed optimization scheme can be readily extended to other driven systems coupled to a mechanical mode.
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I. INTRODUCTION

Mechanical resonators have been an essential tool for pre-
cision metrology for a long time [1]. With the advancements in
nanofabrication techniques, efforts are now oriented towards
studying the quantum-mechanical aspects of the mechanical
resonators [1,2]. Cooling a mechanical resonator mode to
its motional ground state is of particular interest because of
wide-ranging applications in the fields of quantum metrology
[3–7], information processing [8–11], and testing of quantum-
classical boundary [12–15].

The coupling of a mechanical resonator mode to a thermal
bath, which is usually at a relatively high temperature, results
in heating. On the other hand, the coupling of a mechanical
resonator mode with a dissipative channel leads to cooling.
The competition between these heating and cooling processes
determine the extent of cooling of the mechanical resonator
mode [16]. Therefore, a general approach to cool the resonator
mode to its motional ground state is twofold: (a) Reduce
the heating rate by reducing the coupling of the mechanical
resonator mode with the thermal bath [17,18] and (b) in-
crease the cooling rate by engineering additional dissipative
channels with hybrid quantum-mechanical systems. Various
approaches utilizing solid-state systems such as cooling with
color centers [19–22], superconducting qubits [23–25], quan-
tum dots [26–29], and optomechanical systems [30–35] have
been proposed and studied. To achieve maximum and efficient
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cooling of the mechanical mode, system parameters that are
within experimental control need to be optimized. Many of
these parameters depend on the physical realization of the
dissipative channel and have been selectively studied in the
literature, for example, detuning between the energy levels of
the channel and the input laser [20,23,26,28,32–35], coherent
coupling strengths within the channel [19,29–35], and the
decay rates of the channel [22,28,29] (detailed comparison in
Appendix A). However, simultaneous optimization of multi-
ple system parameters is required to achieve maximum and
efficient cooling.

Here we propose a multiparameter optimization scheme
to cool a mechanical mode using a semiconductor quantum
dot. Semiconductor quantum dots are one of the most ma-
ture solid-state systems [36]. They exhibit tunable optical
properties and compatibility with complementary metal-oxide
semiconductor fabrication technology, allowing for seamless
integration into hybrid optomechanical systems at micro-
and nanoscales [37,38]. We formulate an optimization prob-
lem over various detunings, decay rates, pumping rates,
and coupling strengths of the system using the master-
equation formalism. We particularly show cooling of a
mechanical mode by coupling to two different types of
quantum-dot systems: colloidal and epitaxial quantum dots.
We show that multiparameter optimization lowers the steady-
state phonon number of the mechanical mode by several
orders of magnitude. We also calculate the effective temper-
ature of the mechanical mode at steady state and show a
reduction in temperature by factors of approximately 14 and
32 for the two quantum-dot systems. We further calculate
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FIG. 1. Schematic representing a quantum dot coupled to a mode
of a mechanical resonator.

the effective phonon decay rate and show that the optimized
system parameters simultaneously result in maximum and
efficient cooling.

II. DESCRIPTION OF THE SYSTEM

A. Hamiltonian and master equation

The two widely studied quantum-dot systems, i.e., a col-
loidal quantum dot and an epitaxial quantum dot strongly
coupled to an optical cavity, are routinely modeled as three-
level systems [39–42]. The three levels in the model for a
colloidal quantum dot represent the ground state, the dark ex-
citon, and the bright exciton [39,42]. Similarly, the three levels
in the model for an epitaxial quantum dot strongly coupled to
an optical cavity represent the ground state, the lower polari-
ton, and the upper polariton [40,41]. The energy differences
between the bright and the dark exciton of a colloidal quantum
dot and between the upper polariton and the lower polariton
in the strongly coupled epitaxial quantum-dot–cavity system
are in the regime of mechanical-mode energies. Therefore,
we model a quantum dot as a three-level system comprising
the ground state |0〉, the first excited state |1〉, and the second
excited state |2〉 (Fig. 1). The phonon mode of the mechanical
resonator is coupled to the two excited states of the three-
level quantum-dot system with strength g. We also include
a coherent pump of strength � at frequency ωp between the
states |0〉 and |1〉. The system Hamiltonian can thus be written
as (h̄ = 1)

Hsystem = ω1σ11 + ω2σ22 + ωmb†b + g(σ12b† + σ21b)

+ �(σ01eiωpt + σ10e−iωpt ), (1)

where ω1 and ω2 are frequencies of the states |1〉 and |2〉,
respectively, and ωm is the frequency of the phonon mode. The
operator σi j = |i〉〈 j| represents the population operator when
i = j and the dipole operator when i �= j. The annihilation
(creation) operator for the phonon mode is b (b†). We set
the energy of the ground state of the three-level system to
zero. To remove the time-dependent terms, we move to a
suitable rotated frame and obtain the rotated Hamiltonian (see

derivation in Appendix B)

Hrotated = �1σ11 + (�1 + �2)σ22 + �(σ01 + σ10)

+ g(σ12b† + σ21b), (2)

where �1 = ω1 − ωp and �2 = ω2 − ω1 − ωm. To analyze
the complete dynamics of the system, we use the Lindblad
master equation for the combined density operator ρ under
the Born-Markov approximation:

dρ

dt
= i[ρ, Hrotated] + γ1L[σ01]ρ + γ2L[σ02]ρ

+ γ (nth + 1)L[b]ρ + γ nthL[b†]ρ. (3)

Here L[O]ρ = OρO† − (O†Oρ + ρO†O)/2, γ1 and γ2 are
the decay rates of |1〉 and |2〉, respectively, γ is the de-
cay rate of the phonon mode, and nth = 1/(eβωm − 1) is the
phonon number in thermal equilibrium at inverse temperature
β = 1/kBT and frequency ωm. The second and third terms in
Eq. (3) represent the decay of the first and second excited
states to the ground state, respectively, by coupling to the
optical bath. The last two terms in Eq. (3) account for the
coupling of the mechanical mode with the bath held at a
constant temperature T (Fig. 1).

Our cooling scheme, which utilizes a quantum dot as the
dissipative channel to lower the average phonon number of
a mechanical mode, can be understood as follows. A coher-
ent pump drives the population between the states |0〉 and
|1〉. The population in the state |1〉 transitions to the state
|2〉 by absorbing a near-resonant phonon from the coupled
mechanical mode. The population in the state |2〉 then decays
to the ground state via the emission of a photon, leading to an
overall decrease in the number of phonons in the mechanical
mode. We will use Eq. (2) in the following section to set
up the optimization problem to achieve the minimum phonon
number in the mechanical mode in the steady state.

B. Deriving the optimization problem

We write the Heisenberg operator equations (Appendix C)
for the expectation value of the phonon-number operator b†b
and the population operator of the second excited state σ22:

d 〈b†b〉
dt

= ig 〈σ21b − σ12b†〉 + γ (nth − 〈b†b〉),

d 〈σ22〉
dt

= ig 〈σ12b† − σ21b〉 − γ2 〈σ22〉 .

(4)

Solving the above equations in steady state gives

〈b†b〉ss = nth − γ2

γ
〈σ22〉ss , (5)

where the subscript denotes the expectation values calculated
in the steady state. Equation (5) reveals the inherent optimiza-
tion problem present in the combined system. To minimize
the steady-state phonon number in the mechanical mode, we
need to maximize the term γ2 〈σ22〉ss. However, as we increase
γ2, the steady-state population of the state |2〉, represented
by 〈σ22〉ss, decreases and vice versa. Thus, an optimal value
of γ2 exists, which leads to the minimum phonon number.
The optimization also depends on the other parameters of
the system (decay rates, detunings, coupling strength, and
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FIG. 2. Variation of F = 〈b†b〉ss /nth with detunings �1 and �2.
The other parameters are g = 5 GHz, ω2 − ω1 = 120.9 GHz, γ2 =
� = g/2, γ1 = 10−1g, γ = 10−4g, an initial temperature of 50 K, and
the cutoff for the mechanical resonator Fock state basis N = 10.

pumping strength) that come into play via the expression of
〈σ22〉ss. Next we analyze the role of each of these parameters
in minimizing the steady-state phonon number.

Depending on the platform in which a mechanical mode
coupled to a quantum dot is realized, the coupling strengths
and the decay rates can range from megahertz to giga-
hertz [26,39]. For this section we set g = 5 GHz, ω2 − ω1 =
120.9 GHz, and an initial temperature of the combined system
to 50 K, as a generic set of parameters. We also define a
figure of merit for cooling of the mechanical mode as F =
〈b†b〉ss /nth, which needs to be minimized [22].

1. Effect of detunings

First we analyze the effect of the detunings �1 and �2 on
the figure of merit F . For this calculation, we set γ2 = � =
g/2, γ1 = 10−1g, and γ = 10−4g. Using Eqs. (2), (4), and (5)
and the quantum toolbox QUTIP [43], we calculate variation
of F with detunings �1 and �2 (Fig. 2). The cutoff for the
Fock state basis of the mechanical resonator mode in the
quantum toolbox simulations is set to N = 10 (Appendix D).
We vary �1 and �2 by varying the pump frequency ωp and
the phonon mode frequency ωm, respectively. As expected,
for far-off-resonant interactions, F ≈ 1, implying negligible
cooling. Minimization of the figure of merit is achieved along
the dashed lines �1 = 0, which represents resonance be-
tween the pump and the |0〉 - |1〉 transition, and �2 = −�1,
which represents resonance between the phonon mode and the
|1〉 - |2〉 transition assisted by the pump. Global minimization
of F happens when both �1 = 0 and �2 = 0. However, we
note that even when the phonon mode is off-resonant with
the |1〉 - |2〉 transition, i.e., �2 �= 0, a local minimization of
F can be achieved by tuning the frequency of the coherent
pump such that �1 = −�2. This offers a convenient way to
minimize the phonon number in the case of an off-resonant
phonon mode.

The optimal values of the detunings �1 and �2 are also
mandated by the relative strengths of g and �. When g and �

are not of the same order, the minimization of F happens for
nonzero detuning values (Appendix E 1). Since the pumping

FIG. 3. Variation of F with (a) phonon decay rate γ and decay
rate of the second excited state γ2 for γ1 = 10−1g and (b) decay rate
of the first excited state γ1 and the second excited state γ2 for γ =
10−4g. The horizontal black dashed line denotes γ1 = �. The other
parameters are g = 5 GHz, �1 = �2 = 0, ω2 − ω1 = 120.9 GHz,
� = g/2, an initial temperature of 50 K, and the cutoff for the
mechanical resonator Fock state basis N = 10.

strength � is a control parameter in experiments, we choose
it to be of the same order as g, � ≈ g, and set �1 = �2 =
0 in further calculations. We note that the optimal values of
the detunings are governed by the coherent interactions that
are fully accounted for by the system Hamiltonian Eq. (2).
Therefore, the optimal values of �1 and �2 are invariant to
the changes in decay rates.

2. Effect of decay rates

Next we analyze the effect of the decay rates on the fig-
ure of merit F . Figure 3(a) plots the variation of F as a
function of the phonon decay rate γ and the decay rate of the
second excited state γ2. We set � = g/2 and γ1 = 10−1g and
vary γ and γ2 over a large range of values spanning across four
orders of magnitude. We make the following observations.

(i) The F decreases as the phonon decay rate γ decreases.
A lower γ reduces the interaction of the mechanical mode
with the phonon bath, reducing the heating rate of the me-
chanical mode. For further calculations, we set γ � g.

(ii) There exists an optimal decay rate of the second excited
state γ2 that minimizes F . This observation is consistent with
our explanation presented in the beginning of this section us-
ing Eq. (5).

Figure 3(b) shows the variation of F with γ1 and γ2 for
� = g/2 and γ = 10−4g. The black dashed line represents the
condition γ1 = �. Consistent with Fig. 3(a), Fig. 3(b) exhibits
the same optimal γ2 when γ1 � �, which leads to a globally
minimized F . When γ1 � �, decoherence sets in between the
states |0〉 and |1〉, requiring a lower value for optimal γ2 and
increasing the minimum achievable value of F . When γ1 > �

and γ2 is greater than its optimal value, decoherence domi-
nates and leads to F ≈ 1, as depicted in the upper right region
of the plot. We note that when � �≈ g, F can be minimized
either by introducing nonzero detunings (Appendix E 1) or by
varying the decay rates (Appendix E 2), both of which lead to
an increase in the minimum achievable F .

The above discussion gives us a broad set of conditions
for the system parameters, which leads to minimization of the
figure of merit F : (i) � ≈ g with �1 = �2 = 0, (ii) γ � g,
(iii) γ1 � �, and (iv) an optimal value for γ2. To perform
further optimization, we identify the following two regimes
of decay rates exemplified by quantum-dot systems: γ1 � γ2

and γ1 = γ2. In the next section, we analytically formulate
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the cooling optimization problem for these two regimes and
discuss the outcomes for the relevant quantum-dot systems.

III. COOLING OPTIMIZATION
FOR DIFFERENT REGIMES

In this section we derive steady-state analytical models for
the two regimes of the decay rates by restricting the excita-
tions of the mechanical resonator phonon mode to one. The
approximation is valid because we characterize the mechani-
cal resonator mode in the steady state, which is achieved when
the phonon mode is cooled close to the ground state, and thus
the probability of higher excitations is negligible. We com-
pare the results of our approximated analytical model with
numerical simulations performed for a sufficiently large basis
of the phonon mode to ensure numerical stability. Through the
comparison, we show that the approximation is indeed valid
and later discuss its limitations. Along with the steady-state
behavior that is captured by both the analytical model and
the numerical simulations, the numerical simulations also cap-
ture the time dynamics of the system. Therefore, we calculate
the effective phonon decay rate and show that the parameters
that minimize the figure of merit also result in a high cooling
rate.

A. Regime γ1 � γ2

We derive the equations of motion for the density-matrix
elements of the combined system (Appendix F) and solve
them under the approximation γ1 � γ2 to obtain the expres-
sion for the steady-state phonon number [Eq. (F2)]. To set
values of the parameters for this regime, we consider a system
of a colloidal quantum dot, specifically a cadmium selenide
quantum dot coupled to its confined phonon mode via defor-
mation potential. For temperatures less than 20 K, a colloidal
quantum dot can be approximated as a three-level system with
the first and second excited states |1〉 and |2〉 being the dark
and bright states, respectively [39,42]. The dark state of the
colloidal quantum dot has a lifetime of approximately 1 ms
and the bright state has a lifetime of approximately 10 ns.
Therefore, this colloidal quantum-dot–phonon system exem-
plifies the regime of γ1 � γ2. To facilitate coherent pumping
to the dark state, a two-photon absorption technique can
be used [44]. Consistent with the literature [39], for further
calculations in this section we set the following values for
the system parameters: ωm = 241.8 GHz, g = 20 GHz, γ1 =
10−6 GHz, γ = 10−3 GHz, an initial temperature of 17 K, and
the cutoff for the Fock state N = 10.

We treat the strength of the coherent pumping � and the
decay rate of the bright state γ2 as the control parameters in
this system. The decay rate of the bright state can be altered
via Purcell enhancement by coupling to an optical cavity.
Purcell factors up to 104 have been achieved using appropriate
cavity geometry [45,46]. Therefore, we plot the figure of merit
F as a function of � and γ2 using the expression of 〈b†b〉ss
[Eq. (F2)] in Fig. 4(a). We also numerically calculate F by
solving the master Eq. (3) using the quantum toolbox with the
excitations of the mechanical mode set to N = 10 [Fig. 4(b)].
Both Figs. 4(a) and 4(b) suggest that F is minimized for cer-
tain values of � and γ2, which we next calculate analytically.

FIG. 4. Regime γ1 � γ2. The variation of F with pumping
strength � and decay rate of the second excited state γ2 is found us-
ing (a) the approximated analytical model Eq. (F2) and (b) the exact
simulation model. The white dot-dashed line and the black dashed
curve represent the optimal parameters �o and γ2o , respectively,
as derived in Eq. (6). The other parameters are ωm = 241.8 GHz,
g = 20 GHz, γ1 = 10−6 GHz, γ = 10−3 GHz, an initial temperature
of 17 K, and the cutoff for the mechanical resonator Fock state basis
N = 10.

Since γ2 � γ , we neglect the higher-order terms of γ in the
expression of 〈b†b〉ss [Eq. (F2)] and arrive at the following
expressions for optimal pumping strength �o and optimal
decay rate of the second excited state γ2o:

�o = g√
2
,

γ2o =
√

4�2 + g4

�2
.

(6)

We plot �o/g as a white dot-dashed line and γ2o/g as a black
dashed curve in Fig. 4. We observe that the optimal pumping
strength is a function of only the coupling strength, while the
optimal decay rate of the second excited state is a function
of both the pumping strength and the coupling strength. The
optimal pumping strength �o depends on only the coupling
strength because the decay rate of the first excited state γ1

is negligible compared to the other rates in this system. On
the other hand, γ2o depends on � and g because the two
coherent processes compete with the incoherent process for
population transfer to and from the second excited state. We
further include the effect of pure dephasing in our numerical
simulations by adding Lindblad terms terms γdL[σ11]ρ and
γdL[σ22]ρ to the master Eq. (3), where γd is the pure dephas-
ing rate (Appendix G). We observe that F and the optimal
values of the pumping strength and the decay rate of the
second excited state [Eq. (6)] show negligible variation with
the inclusion of pure dephasing rates observed in the literature
[39].

The analytical and simulation results are in good agree-
ment, which justifies that the higher-order phonon excitations
are sparsely populated and thus can be neglected. The agree-
ment and the proposed model break down when the rate of
bulk phonon decaying into the system (equal to γ nth) is com-
parable to the coupling strength g, which happens when either
nth, governed by the initial temperature, or γ , governed by the
quality factor of the mechanical mode, is large or both are
large. We note that the choice of physical system (quantum
dot here) dictates the initial value of nth and the frequency
of the mechanical mode. Our model can be readily extended
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FIG. 5. Regime γ1 � γ2. The distribution of Fock population
is plotted as a function of Fock state number for different pump-
ing strengths and decay rates of the second excited state (a) � =
0.1g, γ2 = 0.1g, (b) � = 1.0g, γ2 = 1.5g, and (c) � = 10.0g, γ2 =
10.0g. (d) Variation of effective temperature at steady state with
� and γ2. The white dot-dashed line and the black dashed curve
represent the optimal parameters �o and γ2o , respectively, as derived
in Eq. (6). The other parameters are ωm = 241.8 GHz, g = 20 GHz,
γ1 = 10−6 GHz, γ = 10−3 GHz, an initial temperature of 17 K, and
the cutoff for the mechanical resonator Fock state basis N = 10.

to any other physical system obeying the approximations laid
out up to now. In order to get a more intuitive estimate of
cooling of the mechanical mode, we next calculate an effective
temperature of the mechanical mode in the steady state.

Effective temperature. For a mechanical mode with fre-
quency ωm and in thermal equilibrium, the density matrix is
purely diagonal in the phonon Fock state basis. The diagonal
elements of the density matrix of this thermal state represent
the Fock state occupation probabilities given by the distribu-
tion [47]

Pβ (n) = e−nβωm/(1 − e−βωm ), (7)

where β = 1/kBT is the inverse temperature and n is the Fock
state number. For a thermal state, the probability distribu-
tion of Fock state occupation Eq. (7) is a single-exponential
function and hence a straight line on a semilogarithmic scale.
Also, for a thermal state, the average phonon number is given
by 〈b†b〉 = (eβωm − 1)−1, which enables calculation of the
temperature T of the mechanical mode in terms of the known
〈b†b〉.

For our system comprising a colloidal quantum dot coupled
to a mechanical mode, we calculate the Fock state occupation
probabilities by solving the master Eq. (3) in steady state
using the quantum toolbox and plot them on a semilogarithmic
scale [black markers in Figs. 5(a)–5(c)]. We observe that the
occupation probability plots are not necessarily straight lines,
which suggests that the probability distribution for the Fock
state occupation in the steady state is not a single-exponential
function. Therefore, we fit the calculated occupation

probabilities of Fock states to a multiexponential function
given by

P(n) =
k∑

i=1

ciPβi (n), (8)

where ci denotes the weight associated with each exponential
term such that

∑k
i=1 ci = 1 and Pβi (n) is given by Eq. (7)

[orange curve in Figs. 5(a)–5(c)]. More details on the fitting
routine are available in Appendix H.

While performing the multiexponential fits, we observe
that a maximum of three different exponential terms is suf-
ficient for a good fit (a maximum mean absolute percentage
error of less than 5% across � and γ2 ranges). Without loss
of generality, we assume that the inverse temperatures follow
β1 > β2 > β3. We also observe that the multiexponential dis-
tribution is dominated by the exponential term corresponding
to β1, i.e., c1 ∼ 1 (Appendix H). We note that even though
c2 and c3 are orders of magnitude smaller than c1, they are
essential to obtain a good fit on the logarithmic scale, i.e.,
simply setting c2 = c3 = 0 leads to quite a large fitting er-
ror. However, c2 and c3 have a negligible contribution in
statistical averages of measurable quantities of the system,
such as the average phonon number. Hence, we assign an
effective temperature T = 1/β1kB to the mechanical mode.
This effective temperature, obtained from the fitting routine,
dominates the initial slope of the Fock state occupation prob-
ability function. Using the already calculated steady-state
average phonon numbers [Fig. 4(b)], we also backcalculate
the temperature of the mechanical mode, assuming it to be in
a thermal state [probability distribution shown by blue dashed
lines in Figs. 5(a)–5(c)]. This calculated temperature matches
extremely well with the effective temperature estimated from
the multiexponential fitting. We also observe that the initial
slope (i.e., for the first few Fock states) of the multiexponen-
tial fit (orange curves) coincides with the slope of the blue
dashed line (Fig. 5). This observation further strengthens our
assumption of ignoring the higher Fock states in our analytical
calculations. We plot the effective temperature as a function of
� and γ2 in Fig. 5(d). At the optimal pumping strength �o and
optimal decay rate γ2o , the effective temperature reduces from
17 K to 1.2 K, showing cooling of the mechanical mode by a
factor of 14.1.

Cooling rate. With the optimization in place, we now
estimate the rate of the cooling process by calculating the
effective phonon decay rate γeff. As the decay of a general
mechanical state may involve simultaneous decay of multi-
ple phonon Fock states, it will be a multiexponential decay
process. In the literature, the two prominent models used for
multiexponential decay processes are the stretched exponen-
tial fit [48] and the log-normal fit [49]. Here we employ the
stretched exponential fit. Using the Monte Carlo solver in
QUTIP (Appendix D), we plot the variation of phonon number
with time [Figs. 6(a)–6(f)], using the quantum toolbox, and fit
it to a stretched exponential of the form

〈b†b〉 (t ) = (nth − 〈b†b〉ss )e−(γefft )β + 〈b†b〉ss , (9)

where 〈b†b〉ss is the steady-state phonon number and β ∈
(0, 1] is the stretch parameter with β = 1 representing
a single-exponential decay function. The effective phonon
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eff
eff

FIG. 6. Regime γ1 � γ2. Time-dependent decay of the average phonon number of the mechanical mode and the corresponding stretched-
exponential fit are shown for (a) � = 0.25g and γ2 = 2g, (b) � = 1g and γ2 = 2g, (c) � = 4g and γ2 = 2g, (d) � = 2g and γ2 = 0.25g, (e)
� = 2g and γ2 = 1g, and (f) � = 2g and γ2 = 4g. Also shown are (g) γeff/ωm and (h) (γeff/ωm )/F , over a range of values of � and γ2.
The other parameters are ωm = 241.8 GHz, g = 20 GHz, γ1 = 10−6 GHz, γ = 10−3 GHz, an initial temperature of 17 K, the cutoff for the
mechanical resonator Fock state basis N = 20, and 5000 Monte Carlo trajectories.

decay rate depends on the initial condition of the mechanical
mode. Here we assume that initially the quantum dot is in the
ground state and the mechanical mode is in the thermal state.
Repeating the procedure of fitting and extracting the effective
phonon decay rate γeff over a range of values of � and γ2,
we plot γeff/ωm in Fig. 6(g). From our simulations, we observe
that the phonon-decay process is indeed multiexponential be-
cause the extracted values of β for the fits are in [0.6, 1). The
mean absolute percentage error for all the fits is less than 5%.
We observe that the same ranges of � and γ2 maximize γeff

[Fig. 6(g)] and minimize F (Fig. 4). To demonstrate this point
clearly, we plot the ratio of γeff/ωm to F in Fig. 6(h). A large
value of this ratio within the optimized ranges of � and γ2

implies that our optimization process simultaneously ensures
maximum and efficient cooling of the mechanical mode.

B. Regime γ1 = γ2

For the γ1 = γ2 regime, we first consider an optical cavity
mode strongly coupled to an epitaxial quantum dot, which
is modeled as a two-level system (TLS), forming polaritons,
which in turn couple to a mode of a mechanical resonator. The
Hamiltonian for the system takes the form (Appendix I) [40]

Hsystem = ω1σ11 + ω2σ22 + ωmb†b − � sin θ (σ01eiωpt

+ σ10e−iωpt ) + g sin θ cos θ (σ12b + σ21b†), (10)

where |1〉 and |2〉 are the two polariton states of the cavity-
TLS system with frequencies ω1 and ω2, respectively, |0〉
is the ground state, g is the coupling strength between the

polariton states and the mechanical resonator mode, and
tan(2θ ) = 2G/�, with G and � the coupling strength and
detuning, respectively, between the TLS and the cavity mode.
We set the detuning between the TLS and cavity mode to zero
(θ = π/4), which results in the decay rates γ1 and γ2 of the
polariton states being equal [50]. The decay rates γ1 and γ2

are functions of both the quantum dot and the cavity decay
rates. We use γ2 to denote both decay rates of this system
in further discussion. With this simplification, the Hamilto-
nian in Eq. (10) is equivalent to the Hamiltonian in Eq. (1).
Therefore, the system follows the same optimization rules
on pumping strength, detunings, and phonon decay rate as
laid out in Sec. II B. For further optimization, we solve the
equations of motion for the density-matrix elements of the
combined system (Appendix F) to obtain the expression for
the steady-state phonon number under the condition γ1 = γ2

[Eq. (F3)].
To set the values of the parameters, we consider an InGaAs

quantum dot coupled to a GaAs microdisk cavity. It has been
demonstrated that microdisk cavities can support gigahertz-
frequency mechanical modes with mechanical quality factors
up to 109 [51], optical quality factors up to 6 × 106 [52], and
optomechanical coupling strengths in the kilohertz to mega-
hertz range [53]. The coupling strength between the quantum
dot and cavity ranges from a few gigahertz to 50 GHz at low
temperatures [54,55]. Here we set G = 5 GHz, g = 0.002G =
10 MHz, ωm = 2G, γ = ωm/Qm = 10−7 GHz, and an initial
temperature of 2.63 K corresponding to nth = 5. We choose
a small initial temperature to keep computational complexity,
associated with a large nth in quantum toolbox simulations,
manageable.
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FIG. 7. Regime γ1 = γ2. The variation of F with � and γ2 is
found using (a) the approximated analytical model Eq. (F3) and
(b) the exact simulation model. The parameters are G = 5 GHz,
g = 0.002G = 10 MHz, ωm = 2G, γ = ωm/Qm = 10−7 GHz, an ini-
tial temperature of 2.63 K corresponding to nth = 5, and the cutoff for
the phonon Fock state N = 10.

We treat the strength of the coherent pumping � and the
decay rate of the polariton states γ2 (=γ1) as the control
parameters. The decay rate γ2 can be enhanced or sup-
pressed by engineering the local density of optical states
[41,45,46,56]. Therefore, we plot the figure of merit F as
a function of � and γ2 in Fig. 7(a) using the analytically
derived expression Eq. (G1) and in Fig. 7(b) by numeri-
cally solving the master Eqs. (3) and (10) using the quantum
toolbox without the approximations made for the analytical
calculations. We observe that the optimal value of � (γ2) is a
function of the optomechanical coupling strength and γ2 (�).
Furthermore, the optimal values of � and γ2 are of the order
of the optomechanical coupling strength g, as also observed
in the colloidal quantum-dot case in Sec. III A, and we again
attribute this nature to the competing dynamics of the three
rates for population transfer to and from the upper polariton
state. Obtaining analytical expressions for optimal � and γ2 is
difficult because of the sheer complexity of the expression of
the steady-state phonon number Eq. (F3). However, they can
be obtained by fitting appropriate functions to the calculated
data.

While deriving the Hamiltonian Eq. (10), we limit the
excitations of the optical cavity to one which results in the
three-level system for the cavity–quantum-dot system. This
assumption can be justified as follows: The coherent pump is
resonant with the transition between the ground state |0〉 and
the lower polariton state |1〉 (Appendix I) and the pumping
to the higher polariton rungs is off-resonant and therefore
suppressed. For the values we consider, more than 99% of the
cavity–quantum-dot population is occupied by the polariton
states {|0〉, |1〉, |2〉}, thus justifying the assumption.

In the current state-of-the-art microdisk cavities, the decay
rate of the cavity mode is of the order of 100 MHz [52] and
the decay rate of the quantum dot is of the order of 10 MHz
[57]. Therefore, the decay rate of the polariton is dominated
by the decay rate of the cavity. For the polariton-coupled
mechanical resonator mode case, our optimization scheme
requires suppressing the decay rate γ2 because the optome-
chanical coupling strength is in the megahertz regime. Since
the minimum achievable γ2 is currently limited by the cavity
decay rate, further improvements in cavity design and fabrica-
tion can enable higher optical quality factors and thereby the
optimal value of γ2.

FIG. 8. Regime γ1 = γ2. The distribution of Fock population
is plotted as a function of Fock state number for different pump-
ing strengths and decay rates of the second excited state (a) � =
0.2g, γ2 = 0.1g, (b) � = 1.0g, γ2 = 1.0g, and (c) � = 10.0g, γ2 =
10.0g. (d) Variation of effective temperature at steady state with
� and γ2. The other parameters are G = 5 GHz, g = 0.002G =
10 MHz, ωm = 2G, γ = ωm/Qm = 10−7 GHz, an initial temperature
of 2.63 K corresponding to nth = 5, and the cutoff for the phonon
Fock state N = 10.

Similar to the preceding section, we also include the ef-
fect of pure dephasing observed in this quantum-dot system
[57] by adding the relevant terms to the master equation.
We notice that the additional decoherence reduces the net
achievable cooling and shifts the optimized parameter range
(Appendix J 1). As opposed to CdSe quantum dots (γ1 � γ2

regime), the dephasing rate for InGaAs quantum dots (γ1 = γ2

regime) reported in the literature is higher than the coupling
strength g. Therefore, the optimized parameter range shifts in
order to account for the additional decoherence. We further
include a small above-band incoherent pump to the polaritonic
states, consistent with experiments probing polaritons [58]
by adding the terms γpL[σ10]ρ and γpL[σ20]ρ to the master
Eq. (3), where γp is the incoherent pumping rate. Solving the
modified master equation in the steady state, we observe that
the optimal values of � and γ2 increase to compensate for the
effect of the above-band incoherent pumping (Appendix J 2).

Effective temperature. We calculate the effective temper-
ature for this regime following the same procedure as in
Sec. III A. We plot the simulated Fock state occupation
probabilities in steady state as black markers and the mul-
tiexponential fit Eq. (8) as orange curves in Figs. 8(a)–8(c).
Similar to the previous regime, the multiexponential fit re-
veals that there is one dominant exponential term, i.e., c1 ∼ 1.
Therefore, we assign an effective temperature to the mechani-
cal mode T = 1/β1kB and plot it as a function of the pumping
strength � and decay rate γ2 in Fig. 8(d). Using the already
calculated steady-state average phonon numbers [Fig. 7(b)],
we also backcalculate the temperature of the mechanical
mode, assuming it to be in a thermal state [probability dis-
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eff
eff

FIG. 9. Regime γ1 = γ2. Time-dependent decay of the average phonon number of the mechanical mode and the corresponding stretched-
exponential fit are shown for (a) � = 0.25g and γ2 = 2g, (b) � = 1g and γ2 = 2g, (c) � = 4g and γ2 = 2g, (d) � = 2g and γ2 = 0.25g, (e)
� = 2g and γ2 = 1g, and (f) � = 2g and γ2 = 4g. Also shown are (g) γeff/ωm and (h) (γeff/ωm )/F , over a range of values of � and γ2. The
other parameters are G = 5 GHz, g = 0.002G = 10 MHz, ωm = 2G, γ = ωm/Qm = 10−7 GHz, an initial temperature of 2.63 K corresponding
to nth = 5, the cutoff for the phonon Fock state N = 65, and 500 Monte Carlo trajectories.

tribution shown by blue dashed lines in Figs. 8(a)–8(c)]. The
calculated temperature and the effective temperature match
well for this regime too. At the optimal pumping strength
and optimal decay rate, the effective temperature reduces from
2.63 K to 0.08 K, showing cooling of the mechanical mode by
a factor of 32.8.

Cooling rate. With the optimization in place, we now pro-
ceed to calculate the effective decay rate for the mechanical
resonator mode. We choose the same fit function as in Eq. (9)
and similar initial conditions: a ground state for the polariton
system and a thermal state for the mechanical resonator mode.
Figures 9(a)–9(f) show variation of phonon number with time
for different values of � and γ2, and the associated fits. The
extracted value of β for the fits is in [0.7, 1), thus revealing
the presence of a multiexponential decay. The mean absolute
percentage error is less than 5% for all the fits. Figure 9(g)
shows the dependence of γeff/ωm over a range of values of �

and γ2. We also plot the ratio of γeff/ωm to F in Fig. 9(h).
Similar to the γ1 � γ2 regime, a large value of the ratio
simultaneously leads to a maximum and efficient cooling of
the mechanical mode.

Another system that satisfies the condition γ1 = γ2 is an
InAs/GaAs quantum dot doped with a single manganese
atom. At low temperatures (approximately 4 K), the excita-
tions of the higher-energy states can be neglected and the
system is approximated as a four-level system, comprising
two ground states and two excited states, in the absence of
a magnetic field [59,60]. In line with the cooling procedure
described in Sec. II, we assume that the two excited states
couple to a mechanical resonator mode and the first excited
state is pumped coherently from the lowest-energy ground

state. This leaves the higher-energy ground state decoupled
from the cooling process. We show that the four-level system
can be approximated as a three-level system for permitted
values of system parameters and therefore follows the opti-
mization method outlined in this section and cools the coupled
mechanical mode (Appendix K).

IV. CONCLUSION

We have proposed cooling of a mechanical resonator mode
using quantum dots. We formulated an optimization problem,
using the master-equation approach, over a broad range of
system parameters including detunings, decay rates, coupling
strengths, and pumping rates. Through particular examples of
two quantum-dot systems, i.e., colloidal and epitaxial quan-
tum dots, with mechanical-mode frequencies ranging from
megahertz to gigahertz, we showed that ground-state cooling
of the mechanical mode is achieved by optimizing the system
parameters. We also calculated the cooling rate by estimat-
ing the rate of phonon decay and showed that the optimized
system parameters simultaneously result in both maximum
and efficient cooling. We note that the cooling is robust to
small variations in the optimized system parameters because
of delocalized maxima observed in Figs. 6(h) and 9(h).

While some previous works have looked at selective
optimization of system parameters, our model provides op-
timization over a broad range of multiple parameters. For
example, our model is a generalization to the model presented
in [22], where the three-level system was effectively reduced
to a two-level system on application of a strong incoherent
pump to the first excited state. Replacing the coherent pump
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TABLE I. Comparison between our work and the existing literature. Here NV denotes nitrogen vacancy.

Reference Solid-state system Parameter(s) optimized

[19] color center in hBN membrane coupling strength
[20] NV center in diamond detuning
[22] two-level system (quantum dot, superconducting qubit, NV centers) decay rates
[23] superconducting flux qubit detuning
[26] quantum dot detuning
[28] quantum dots, superconducting qubits, electronic spin qubits detuning, decay rates
[29] quantum dots coupling strength, decay rates
[30] electromagnetic cavity coupling strength
[31] optomechanical cavity coupling strength
[32] optomechanical cavity detuning, coupling strength
[33] optomechanical cavity detuning, coupling strength
[34] optomechanical cavity detuning, coupling strength
[35] optomechanical cavity detuning, coupling strength
present work quantum dots detuning, coupling strength, decay rates, pumping strength

with an incoherent pump, our model reproduces the result
of [22] for the case of a single atom, giving the optimal
decay rate γ2o = 2g (Appendix L). Accounting for experimen-
tal limitations, our work provides a generalized framework
for optimizing ground-state cooling of a mechanical resonator
mode using a quantum dot.
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APPENDIX A: COMPARISON WITH EXISTING
LITERATURE

We tabulate the comparison of our work with the existing
literature in Table I.

APPENDIX B: CONVERSION OF THE HAMILTONIAN
TO A ROTATED FRAME

Using a unitary transformation, defined by U = e−iHot/h̄,
we transform our system Hamiltonian Hsystem to Hrotated =
U†HsystemU − Ho into a new rotating frame of Ref. [61].
We choose Ho = ασ11 + βσ22 + ζb†b and determine α = ωp,
β = ωp + ωm, and ζ = ωm such that the rotated Hamiltonian
takes the time-independent form Eq. (2).

APPENDIX C: HEISENBERG OPERATOR EQUATIONS

The master Eq. (3) can also be written in the Heisenberg
picture to calculate the time evolution of an operator A,

dA
dt

= −i[A, Hrotated] + γ1L′[σ01]A + γ2L′[σ02]A

+ γ (nth + 1)L′[b]A + γ nthL′[b†]A, (C1)

where L′[O]A = OAO† − (O†OA + AO†O)/2. Using this
equation, we calculate the rate equations for b†b and σ22

operators. Taking the expectation on both sides of the rate
equations, we obtain the rate Eqs. (4).

APPENDIX D: FOCK STATE CUTOFF

We observe that choosing a large cutoff is particularly
important for reliable evolution of the system dynamics. Since
the QUTIP solver mesolve is not reliable at large cutoffs (re-
sults in negative eigenvalues for the density matrix for several
parameter values), we use the Monte Carlo solver mcsolve.
The Monte Carlo solver evolves an ensemble of wave func-
tions rather than the density matrix [62,63] and therefore it
does not suffer from the problem of negative eigenvalues even
for large cutoff for the Fock state basis. To evolve the initial
thermal state of the system using the Monte Carlo method,
we adopt the following approach: Choose a Fock state |i〉 and
evolve it to get the corresponding density matrix. We then take
an average over the density matrix of all Fock states weighted
by the thermal state eigenvalues. This approach is possible
because the time-evolution superoperator [64] acts linearly on
the density matrix as

ρ(0) =
∑

i

e−nβωm

Z (β )
|i〉〈i| ⊗ (|0〉q〈0|q),

eL tρ(0) =
∑

i

e−nβωm

Z (β )
eL t (|i〉〈i| ⊗ |0〉q〈0|q),

ρ(t ) =
∑

i

e−nβωm

Z (β )
ρi(t ),

where L is the Liouvillian superoperator for time evolu-
tion i.e., ρ̇ = L ρ = i[ρ, H] + ∑

i γiL[Li]ρ, |0〉q denotes the
ground state of the quantum dot or polariton, ρi(t ) is the den-
sity matrix corresponding to the stochastic evolution of |i〉 ⊗
|0〉q, β is the inverse temperature, ωm is the mechanical res-
onator frequency, and Z (β ) = 1/(1 − e−βωm ). We choose an
appropriate number of trajectories and cutoff for the phonon
Fock state, i.e., N = 20 and 5000 trajectories for regime γ1 �
γ2 and N = 65 and 500 trajectories for regime γ1 = γ2, to
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FIG. 10. Variation of F = 〈b†b〉 /nth with detunings �1 and �2

for two different regimes: (a) � = 10g, where the black dashed
curves represent the analytically derived optimal detuning expres-
sion as in Eq. (E1), and (b) � = 10−1g, where the black dashed
curves represent the analytically derived optimal detuning expres-
sions as in Eq. (E2). The other parameters are g = 5 GHz, ω2 − ω1 =
120.9 GHz, γ2 = g/2, γ1 = 10−1g, γ = 10−4g, an initial temperature
of 50 K, and the cutoff for the mechanical resonator Fock state basis
N = 10.

ensure convergence and consistency of results across different
solvers.

We also observe that the steady-state calculations (parame-
ter optimization and effective temperature analysis) converge
to true values for a much smaller cutoff as compared to the
time-dynamic calculations. The reason for this behavior lies in
the fact that the steady-state phonon number 〈b†b〉ss is small
enough such that only a few Fock state basis are sufficient
for its convergence to its true value. Therefore, we choose
a lower cutoff (N = 10) where the master-equation solver
is reliable for all parameter ranges. Moreover, we ensure
the convergence of the steady-state phonon number 〈b†b〉ss

to its true value for the chosen cutoff. We would like to
point out that performing steady-state analysis using the
Monte Carlo solver is computationally very expensive and
results in the same phonon-number values as with the master-
equation solver with an N = 10 cutoff, where the master-
equation solver is reliable. Therefore, we instead choose the
master-equation solver for the steady-state calculations.

APPENDIX E: VARIATION OF F IN THE REGIME � �≈ g

Here we discuss the variation of F with detunings and de-
cay rates for two other cases: � � g and g � �. We assume

FIG. 11. Variation of F with (a) phonon decay rate γ and decay
rate of the second excited state γ2 for γ1 = 10−1g and (b) decay rate
of the first excited state γ1 and the second excited state γ2 for γ =
10−4g. The horizontal black dashed line denotes γ1 = �. The other
parameters are g = 5 GHz, �1 = �2 = 0, ω2 − ω1 = 120.9 GHz,
� = 10g, an initial temperature of 50 K, and the cutoff for the
mechanical resonator Fock state basis N = 10.

the relative order of magnitude of the detunings �1 and �2 to
be similar to the coherent interaction strengths g and �.

1. Detunings

In the regime � � g or g � �, we neglect the non-
dominant coherent process in the rotated Hamiltonian and
subsequently calculate the eigenenergies and the modified
detunings. To obtain the optimal detuning conditions, these
modified detunings should be set to zero for the resonant
interaction.

When � � g, the eigenenergies of the rotated Hamilto-
nian, neglecting the Jaynes-Cummings phonon coupling term,
are ω± = �1/2 ±

√
�2

1/4 + �2 and ω2 = �1 + �2. The sec-
ond excited state |2〉 now couples to both dressed states.
The modified detunings are �± = ω2 − ω± = �2 + �1/2 ∓√

�2
1/4 + �2. Setting them to zero gives the optimal detuning

condition

�2 = −�1/2 ±
√

�2
1/4 + �2. (E1)

For the case g � �, neglecting the pumping term and
calculating the eigenenergies gives ωo = 0 and ω± = �1 +
�2/2 ±

√
�2

2/4 + g2. The modified detunings �± = ω± −
ωo = �1 + �2/2 ±

√
�2

2/4 + g2, when set to zero, give the
optimal detuning condition

�1 = −�2/2 ±
√

�2
2/4 + g2. (E2)

Using the quantum toolbox, we simulate the variation in
the figure of merit F with �1 and �2 in Fig. 10, with
the parameters ω2 − ω1 = 120.9 GHz, g = 5 GHz, γ2 = g/2,
γ1 = 10−1g, γ = 10−4g, and an initial temperature of 50 K.
We also plot the analytically derived expressions of optimal
detuning as black dashed curves. For the � � g case we set
� = 10g and for the g � � case � = 10−1g. Both these cases
show that minimization of F is achievable in the nonresonant
system by tuning the pump frequency, which in turn changes
�1. We observe that the minimum achievable value of F in
the regime � �≈ g obtained by varying the detunings is greater
than that in the regime � ≈ g.

FIG. 12. Variation of F with (a) phonon decay rate γ and decay
rate of the second excited state γ2 for γ1 = 10−1g and (b) decay rate
of the first excited state γ1 and the second excited state γ2 for γ =
10−4g. The horizontal black dashed line denotes γ1 = �. The other
parameters are g = 5 GHz, �1 = �2 = 0, ω2 − ω1 = 120.9 GHz,
� = 0.1g, an initial temperature of 50 K, and the cutoff for the
mechanical resonator Fock state basis N = 10.
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FIG. 13. Combined states for the quantum-dot system and me-
chanical resonator mode of the form |i, j〉. where indices i and j
correspond to the quantum-dot system and the mechanical resonator
mode, respectively.

2. Decay rates

Using the quantum toolbox, we plot the variation of F
with decay rates for the regime � � g in Fig. 11 and g � �

in Fig. 12. Here �1 = �2 = 0. Since the optimal detuning
condition is modified in these regimes from �1 = �2 = 0 (as
discussed in the preceding section), the minimum achievable
F is greater than in the regime � ≈ g.

In both regimes � � g and g � �, the decay rates γ and
γ2 follow the same trend as in Fig. 3. However, in Fig. 11(b)
we observe that an optimal γ1 exists in the regime � � g.
This can be understood as follows.

(a) A larger value of � allows for a large γ1 before deco-
herence sets in.

(b) As discussed in the preceding section, the optimal
detuning condition in the regime � � g, which results in
resonant interactions, is modified from the current detuning
values (�1 = �2 = 0). To accommodate for the now non-
resonant interaction between the eigenstates, the eigenstates
require a large linewidth. The linewidth for the eigenstates is
proportional to the decay rates γ1 and γ2. Therefore, under the
condition � � γ1, γ1 can be varied to minimize F , leading to
an optimal γ1.

A similar trend is not observed in Fig. 12(b) since g � �,
which does not allow room for the tuning of γ1 to minimize F
without decoherence setting in.

APPENDIX F: EQUATIONS OF MOTION
FOR DENSITY-MATRIX ELEMENTS

We denote the combined states of the quantum-dot system
and the mechanical resonator mode by |i, j〉, where indices
i ∈ [0, 1, 2] and j ∈ [0, 1] correspond to the quantum-dot sys-
tem and the mechanical resonator, respectively (Fig. 13). For
brevity, we label the combined state basis as |a〉, |b〉, . . . , |e〉,
as depicted in Fig. 13 by the labels on the left.

Next we derive the equations of motion of various density-
matrix elements needed to characterize the dynamics of the
combined system completely:

dρbb

dt
= i�(ρbd − ρdb) + γ nthρaa − γ (nth + 1)ρbb + γ1ρdd ,

dρcc

dt
= i�(ρca − ρac) + γ (nth + 1)ρdd − γ nthρcc − γ1ρcc,

dρdd

dt
= ig(ρde − ρed ) + i�(ρdb − ρbd ) + γ nthρcc

− γ (nth + 1)ρdd − γ1ρdd ,

dρee

dt
= ig(ρed − ρde) − γ2ρee,

dρdb

dt
= −igρeb + i�(ρdd − ρbb) + γ nthρca − γ (nth + 1)ρdb

− γ1

2
ρdb,

dρeb

dt
= −igρdb + i�ρed − γ2 + γ (nth + 1)

2
ρeb,

dρca

dt
= i�(ρcc − ρaa) + γ (nth + 1)ρdb − γ1

2
ρca − γ nthρca,

dρed

dt
= ig(ρee − ρdd ) + i�ρeb − γ1 + γ2 + γ (nth + 1)

2
ρed .

(F1)

We calculate the expression for the steady-state phonon num-
ber 〈b†b〉ss = ρbb + ρdd under the following two conditions:
For γ1 � γ2,

〈b†b〉ss = γ nth
(
2γ2

(
γ 2

2 �2 + g4 + 4�4
) + γ

{
γ 2

2 [(g2 + 4�2)nth + 2(g2 + 2�2)] + 4g2(g2 + 2�2)(nth + 1)
})

2γ2
{
2γ2g2�2 + γ

[
(3g4 + 4g2�2 + 8�4)nth + 2(g4 + g2�2 + 2�4) + γ 2

2 �2(2nth + 1)
]} , (F2)

and for γ1 = γ2,

〈b†b〉 = x

y
,

x = γm
(
2γ2

[
γ 6

2 + 3g4�2 + γ 4
2 (2g2 + 9�2) + γ 2

2 (g4 + 2g2�2 + 24�4) + 16�6
] + γm

{
2γ 4

2 [(11g2 + 42�2)nth

+ 5g2 + 27�2] + 4g2�2(g2 + 4�2)(nth + 1) + γ 2
2 [g4 + 30g2�2 + (7g4 + 16g2�2 + 96�4)nth + 72�4]

+ 3γ 6
2 (5nth + 3)

})
,

y = 2γ2
[
2γ2g2�2

(
γ 2

2 + 4�2
) + γm

((
γ 2

2 + 4�2
)[

γ 4
2 + g4 + γ 2

2 (2g2 + 5�2) + g2�2 + 4�4
] + nth

{
7g4�2

+ 12g2�4 + γ 2
2

[
2g4 + 2γ 2

2

(
γ 2

2 + 2g2 + 9�2
) + 19g2�2 + 48�4

] + 32�6
})]

. (F3)
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FIG. 14. Regime γ1 � γ2. Variation of F with � and γ2 is shown for different pure dephasing rates γd : (a) γd = 0, (b) γd = 0.1g, and
(c) γd = 0.5g. The white dot-dashed line and the black dashed curve represent the optimal parameters �o and γ2o , respectively, as derived in
Eq. (6). The other system parameters are ωm = 241.8 GHz, g = 20 GHz, γ1 = 10−6 GHz, γ = 10−3 GHz, an initial temperature of 17 K, and
the cutoff for the mechanical resonator Fock state basis N = 10.

APPENDIX G: EFFECT OF PURE DEPHASING
IN THE REGIME γ1 � γ2

Here we try to discern the effect of pure dephasing on F in
the regime γ1 � γ2 using the quantum toolbox. To do so, we
modify the master Eq. (3) to include pure dephasing:

dρ

dt
= i[ρ, Hrotated] + γ1L[σ01]ρ + γ2L[σ02]ρ

+ γ (nth + 1)L[b]ρ + γ nthL[b†]ρ

+ γdL[σ11]ρ + γdL[σ22]ρ︸ ︷︷ ︸
pure dephasing

. (G1)

The last two terms account for the pure dephasing process in
the excited states |1〉 and |2〉, respectively. The Hamiltonian
for the system remains the same [Eq. (2)]. In Fig. 14 we plot
the variation of F with � and γ2, for different values of pure
dephasing rate γd using Eqs. (2) and (G1). The white dot-
dashed line and the black dashed curve represent the optimal
parameters �o and γ2o , respectively, as derived in Eq. (6). For
cadmium selenide colloidal quantum dots, the pure dephasing
rate γd ≈ 10 GHz = g/2 [39]. We observe that even with the
inclusion of the pure dephasing rate, the minimum achievable
value for F and the optimal values for the parameters � and
γ2 do not change significantly.

APPENDIX H: EFFECTIVE TEMPERATURE
CALCULATION

Since the Fock state occupation probability as a function
of Fock state number for the mechanical mode does not
necessarily follow an exponential (thermal) distribution, we
perform a multiexponential fit as described in Eq. (8). We use
the following reasoning: The Fock state occupation distribu-
tion plots [Figs. 5 and 8(a)–8(c)] show that when the Fock
state occupation distribution is not a straight line, it follows
a straight line for the initial few Fock states and also for the
final few Fock states albeit with different slopes. This suggests
that the Fock state occupation distribution is a sum of at least
two exponential terms in which the term with a larger slope

(i.e., inverse temperature) dominates initially and the term
with a smaller slope dominates for the higher Fock states.
We use the mean absolute percentage error on the logarithmic
scale as our measure of the error between the multiexponential
function Eq. (8) and the Fock state occupation probability
P(n) values obtained from the QUTIP master-equation solver.
The occupation probabilities are extremely small, and hence
choosing a logarithmic error helps to avoid floating point
errors.

We set the number of terms in the multiexponential func-
tion to three [k = 3 in Eq. (8)] since we observe it to be
sufficient for errors less than 5%. Before performing a mul-
tiexponential fit, however, we check if a single exponential
works, i.e., an error of less than 5%. This is because for such
cases where the plot is actually a straight line [e.g., Figs. 5(c)
and 16(c)], the optimizer obtains β1 ≈ β2 ≈ β3 since a single
β is sufficient to describe the distribution. Doing so also
helps us get an idea of � and γ2 where a multiexponential
fit is required and where a single exponential suffices. We
set the initial guess for the weights to be c1 = c2 = c3 = 1

3 .
The initial guess for the β is quite natural: For β1 it is the
initial slope of the Fock state occupation distribution i.e., slope
corresponding to the first two Fock states; for β3, it is the
final slope of the Fock state occupation distribution, i.e., slope
corresponding to the last two Fock states; for β2, the initial
guess we use is the arithmetic mean of the β1 and β3. Using
an optimization routine, we obtain the optimal values for the
inverse temperatures along with their weights. The weight and
temperature (equal to 1/βikB) maps can be seen in Fig. 15
for the γ1 � γ2 regime and in Fig. 16 for the γ1 = γ2 case.
The white regions represent the areas where a multiexpo-
nential fit was not necessary, i.e., a single exponential was a
good fit.

From Figs. 15 and 16(a)–16(c) we observe that the val-
ues of c2 and c3 obtained from the optimization routine are
many orders of magnitude smaller than c1, which is approx-
imately 1 for all values of � and γ2. This suggests that we
can ascribe an effective temperature of T1 to the mechanical
mode.
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FIG. 15. Regime γ1 � γ2. Shown is the variation, with � and γ2, of (a) weight c1 (note that c1 takes a value between 0.9 and 1 but the
variation is not visible on the logarithmic color scale), (b) weight c2 (c2 ∼ 10−5–10−1), (c) weight c3 (c3 ∼ 10−11–10−3), (d) temperature T1,
(e) temperature T2, and (f) temperature T3.

FIG. 16. Regime γ1 = γ2. Shown is the variation, with � and γ2, of (a) weight c1 (note that c1 takes a value between 0.85 and 1 but the
variation is not visible on the logarithmic color scale), (b) weight c2 (c2 ∼ 10−4–10−1), (c) weight c3 (c3 ∼ 10−8–10−1), (d) temperature T1, (e)
temperature T2, and (f) temperature T3.
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APPENDIX I: HAMILTONIAN OF A TLS COUPLED TO AN
OPTICAL CAVITY MODE AND A MECHANICAL

RESONATOR

The Hamiltonian for a single-mode cavity mode strongly
coupled to a two-level system, forming polaritons, which in
turn couple to a mode of a mechanical resonator, is given by

Hsystem = ωca†a + ωασαα + G(σβαa† + σαβa)︸ ︷︷ ︸
HJC

+ �(σαβe−iωpt + σβαeiωpt) + ωmb†b+ ga†a(b† + b),

(I1)

where |β〉 and |α〉 are the ground and excited states for the
two-level system with frequency separation ωα , a (b) is the
annihilation operator of the cavity (mechanical) mode with
frequency ωa (ωm), G is TLS–cavity-mode coupling strength,
� is the pumping strength to the TLS at frequency ωp, and g
is optomechanical coupling strength. Following the process as
described in Refs. [40,65], we write the system Hamiltonian

in the diagonalized basis of the TLS-cavity Hamiltonian HJC.
Restricting the number of photons in the cavity mode to one,
the Hamiltonian HJC can be readily diagonalized such that
HJC |±〉 = ω± |±〉, where

|0〉 = |β, 0〉 , (I2a)

|−〉 = − sin θ |α, 0〉 + cos θ |β, 1〉 , (I2b)

|+〉 = cos θ |α, 0〉 + sin θ |β, 1〉 , (I2c)

ω± = ωa + ωc

2
±

√
G2 + �2

4
. (I2d)

Here tan(2θ ) = 2G/� and � = ωα − ωa. The cavity an-
nihilation operator in the restricted polariton basis can be
written as a = sin θ |β, 0〉〈+| + cos θ |β, 0〉〈−| [50] and the
number operator as a†a = sin2 θ |+〉〈+| + cos2 θ |−〉〈−| +
sin θ cos θ (|+〉〈−| + |−〉〈+|). Substituting these relations in
Eq. (I1), the system Hamiltonian in the polariton basis be-
comes

Hsystem = ω−σ−− + ω+σ++ + ωmb†b + �[(cos θσ0+ − sin θσ0− + cos θ sin θσ++ + cos2 θσ−+ − sin2 θσ+−

− cos θ sin θσ−−)eiωpt + c.c.] + g(b + b†)[sin2 θσ++ + cos2 θσ−− + cos θ sin θ (σ+− + σ−+)].
(I3)

We assume that the applied pump is close to the frequency of the lower polariton (ωp − ω− ≈ 0) and that the mechanical
resonator frequency is close to the frequency difference between the upper and lower polaritons (ω+ − ω− − ωm ≈ 0). Because
of this, several terms in Eq. (I3) are off-resonant and can be dropped under the rotating-wave approximation. To elucidate
this fact, we move to an interaction picture by rotating the Hamiltonian in Eq. (I3) with respect to the Hamiltonian Ho =
ω−σ−− + ω+σ++ + ωmb†b to obtain

Hrotated = �[(cos θσ0+ei(ωp−ω+ )t − sin θσ0−ei(ωp−ω− )t + cos θ sin θσ++eiωpt + cos2 θσ−+ei(ω−−ω++ωp)t

− sin2 θσ+−ei(ω+−ω−+ωp)t − cos θ sin θσ−−eiωpt ) + c.c.] + g(be−iωmt + b†eiωmt )[sin2 θσ++ + cos2 θσ−−

+ cos θ sin θ (σ+−ei(ω+−ω− )t + σ−+ei(ω−−ω+ )t )].

(I4)

In this equation we keep only the slow rotating terms and drop
the fast rotating terms under the rotating-wave approximation.
Returning to the nonrotating frame, the combined system
Hamiltonian now becomes

Hsystem = ω−σ−− + ω+σ++ + ωmb†b − � sin θ (σ0−eiωpt

+ σ−0e−iωpt ) + g sin θ cos θ (σ−+b + σ+−b†).

(I5)

APPENDIX J: EFFECT OF INCOHERENT
PROCESSES IN THE REGIME γ1 = γ2

1. Pure dephasing

To account for pure dephasing, we use the same formalism
as in Appendix G. The dephasing rate for InGaAs quantum
dots is reported to be γd = 0.3 µeV = 72.54 MHz = 7.25g
[57]. Using the quantum toolbox, we plot the variation of F
with � and γ2, for different values of pure dephasing rate
γd in Fig. 17. The effect of pure dephasing is to increase
the optimal value of � and decrease the optimal value of

γ2 to account for the additional decoherence. This effect is
significant only when the dephasing rate γd is of the order of
the optomechanical coupling strength g.

2. Above-band pumping

To account for above-band or incoherent pumping, we
modify the original master equation to

dρ

dt
= i[ρ, Hrot] + γ1L[σ01]ρ + γ2L[σ02]ρ

+ γ (nth + 1)L[b]ρ + γ nthL[b†]ρ

+ γpL[σ10]ρ + γpL[σ20]ρ︸ ︷︷ ︸
incoherent pumping

. (J1)

The last two terms in this equation represent above-band
pumping to the excited states |1〉 and |2〉, respectively. The
Hamiltonian for the system remains the same [Eq. (2)]. We
plot the variation of F with � and γ2 using Eqs. (2) and (J1)
in Fig. 18 for γp = 0 [Fig. 18(a)] and γp = 0.01g [Fig. 18(b)].
Comparing Figs. 18(a) and 18(b), we observe that the above-
band pumping leads to an increase in the minimum value of
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FIG. 17. Regime γ1 = γ2. Variation of F with � and γ2 is shown for different pure dephasing rates γd : (a) γd = 0, (b) γd = 0.5g, and (c)
γd = 7.25g. The other system parameters are G = 5 GHz, g = 0.002G, ωm = 2G, γ = ωm/Qm = 10−7 GHz, an initial temperature of 2.63 K
corresponding to nth = 5, and the cutoff for the mechanical resonator Fock state basis N = 10.

F and heating (F > 1) for small �/g and γ2/g. Furthermore,
the optimal values for the parameters � and γ2 increase. To
explain this, we solve the Heisenberg operator equations, in-
cluding above-band pumping, to write the steady-state phonon
occupation

〈b†b〉ss = nth − γ2

γ
〈σ22〉ss + γp

γ
〈σ00〉ss . (J2)

Compared to Eq. (5), Eq. (J2) has an additional term that is
proportional to the above-band pumping rate γp. This addi-
tional term is responsible for an increase in the steady-state
phonon number 〈b†b〉ss and therefore F = 〈b†b〉ss /nth. The
minimization problem for F is modified, resulting in different
optimal parameter values for � and γ2. To minimize F , the
last two terms in Eq. (J2) need to be maximized and min-
imized simultaneously. Since the above-band pumping rate
γp is nonzero and fixed, the optimal value for � needs to
be increased to decrease 〈σ00〉ss in order to minimize the last
term. Subsequently, a larger γ2 is required to accommodate the
increased population transitioning to the state |2〉. This results
in increased optimal values for � and γ2 as compared to when
the above-band pumping is absent (γp = 0).

FIG. 18. Regime γ1 = γ2. Variation of F with � and γ2 is shown
for (a) γp = 0 and (b) γp = 0.01g. The other system parameters
are G = 5 GHz, g = 0.002G, ωm = 2G, γ = ωm/Qm = 10−7 GHz,
an initial temperature of 2.63 K corresponding to nth = 5, and the
cutoff for the mechanical resonator Fock state basis N = 10.

APPENDIX K: COOLING OF A MECHANICAL MODE
COUPLED TO A MANGANESE-DOPED QUANTUM DOT

Similar to Sec. II, we label the states |0〉, |1〉, |2〉, |3〉 as
shown in Fig. 19. Moving to a suitable rotated frame of refer-
ence, the system Hamiltonian can be simplified to

Hrotated = �1σ11 + (�1 + �2)σ22 + ω3σ33 + �(σ01 + σ10)

+ g(σ12b† + σ21b). (K1)

Here �1 = ω1 − ωp, �2 = ω2 − ω1 − ωm, g is the coupling
strength of the two excited states with the mechanical mode
of frequency ωm, and � is the coherent pumping strength
between the states |0〉 and |1〉 at frequency ωp. The excited
states |1〉 and |2〉 decay to both the ground states |0〉 and |3〉
with equal decay rate, which we denote by γ2. Furthermore,
the higher-energy ground state |3〉 also decays to the lower-
energy ground state |0〉 with rate γ3. The master equation for
the system, taking into account all the incoherent processes, is

dρ

dt
= i[ρ, Hrotated] + γ2(L[σ01]ρ + L[σ02]ρ + L[σ31]ρ

+ L[σ32]ρ) + γ3L[σ03]ρ + γ (nth + 1)L[b]ρ

+ γ nthL[b†]ρ + γdL[σ11]ρ + γdL[σ22]. (K2)

The last two terms in Eq. (K2) account for the pure dephas-
ing in the excited states. Consistent with Ref. [60], we set

FIG. 19. Schematic representing a manganese-doped quantum
dot coupled to a mode of a mechanical resonator.
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FIG. 20. Variation of F with � and γ2 as per (a) the four-level
Mn-doped quantum-dot model and (b) the γ1 = γ2 regime formu-
lation described in Sec. III B. The system parameters are ω3 =
170 GHz, g = 10 MHz, ωm = 35 GHz, γ3 = γd = 24.18 MHz, Qm =
107, an initial temperature of 5 K corresponding to nth = 2.52, and
the cutoff for the Fock states N = 10.

ω3 = 170 GHz, ωm = 35 GHz, and γ3 = γd = 24.18 MHz.
The system affords decay and dephasing rates of the or-
der of 10 MHz because of the highly delocalized nature of
the Mn dopant complex in the quantum dot. We further set
�1 = �2 = 0, g = 10 MHz, and the mechanical quality factor
Qm = ωm/γm = 107. Similar to our previous formulations, the
control parameters in this model are the pumping strength �

and the decay rate of the excited states γ2. The decay rate of
the excited states can be increased (decreased) simultaneously
via Purcell enhancement (suppression) by coupling to two
different modes of the same optical cavity. Using the quantum
toolbox, we solve the master Eq. (K2) and calculate F . In
Fig. 20(a) we plot the variation of F with � and γ2 for the
full four-level system model. In comparison, using the same
parameters, we plot F in the limit γ3 → ∞, thereby reducing
the four-level system to a three-level system, in Fig. 20(b).
This is equivalent to the formulation described in Sec. III B
(regime γ1 = γ2).

We observe that both models are in good agreement except
when �, γ2 > g. This can be understood as follows. The finite
steady-state population of the state |3〉 that is not involved in
the cooling dynamics leads to a disagreement between the two
models. For the figure of merit F to be equivalent in both
the models, the steady-state population of the higher-energy
ground state 〈σ33〉ss should be as small as possible. In the
limit γ3 → ∞, 〈σ33〉ss → 0 and the four-level system exactly
mimics a three-level system. As the value of γ3 is finite and
fixed, other system parameters need to be taken into account

FIG. 21. Variation of F with the decay rate of the second excited
state γ2 and phonon decay rate γ under strong incoherent pumping.
The black dashed line represents the optimal decay rate as obtained
from our model. The parameters are ωm = 200 MHz, nth ≈ 200,
g = 1 MHz, γp = 10g, γ1 = 10−5g, and the cutoff for the mechanical
resonator Fock state basis N = 300.

to determine the validity of the approximation. In the regime
� > g and γ2 > g, the first condition ensures that the state |0〉
is sparsely populated, thus pumping the population to the first
excited state |1〉. The second condition leads to an increased
population of the state |3〉 because of a strong decay from
the excited states. When both of these parameter regimes act
together, it leads to a disagreement between the two models,
as can be seen in the top right corners of Figs. 20(a) and
20(b). In all other ranges of values for � and γ2, the two
models are in good agreement, thus justifying the approx-
imation of reducing the four-level system to a three-level
system.

APPENDIX L: OPTIMIZING COOLING IN THE
PRESENCE OF STRONG INCOHERENT PUMPING

Following Ref. [22], we set ωm = 200 MHz, nth ≈ 200,
and g = 1 MHz and assume γ1 = 10−5g and γp = 10g. Using
the quantum toolbox, we plot the variation of F as a function
of the phonon decay rate γ and the decay rate of the second
excited state γ2 in Fig. 21. The black dashed line represents
the line γ2 = 2g, the optimal decay rate obtained from analyt-
ical calculations. The results are in good agreement with the
results obtained in [22] for the case of a single atom.
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