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Simultaneous cooling of degenerate mechanical modes in unresolved sideband regime
via optical and mechanical nonlinearities
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We propose a scheme to simultaneously cool multiple degenerate mechanical modes in optomechanical
systems beyond the resolved sideband regime. In general, one of the main obstacles for cooling degenerate
mechanical modes is the so-called dark-mode effect. The Duffing nonlinearities (mechanical nonlinearities)
can be used to overcome the dark-mode effect of degenerate mechanical modes. A second-order nonlinear
medium (optical nonlinearity) is introduced to accomplish the ground-state cooling of degenerate mechanical
modes beyond the resolved sideband regime. We find the dark mode of degenerate mechanical modes can be
broken when the mechanical nonlinearities of different mechanical modes are not very close. Our scheme paves
the way toward the implementation of simultaneous ground-state cooling of degenerate mechanical modes of
optomechanical systems beyond the resolved sideband regime in experiments.
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I. INTRODUCTION

In recent years, optomechanical systems have received a
lot of attention since they have many applications including
highly sensitive measurement of tiny displacement, creation
of nonclassical states of light or mechanical motion, and
quantum information processing [1–8]. Of particular interest
are multimode optomechanical systems with two or more
mechanical oscillators [9–23]. Multimode optomechanical
systems have a wide range of applications such as the gen-
eration of entanglement between two or more mechanical
oscillators, the study of quantum many-body effects, and
highly sensitive sensors [1–3]. In the applications of multi-
mode optomechanical systems, the simultaneous ground-state
cooling of multiple degenerate mechanical resonators is indis-
pensable [24].

Unfortunately, there are two main obstacles for the simulta-
neous ground-state cooling of several degenerate mechanical
modes in standard sideband cooling. One is the resolved
sideband condition, i.e., the decay rate of an optical cavity
must be smaller than the frequencies of mechanical modes
[3]. This condition typically requires that the finesse of the
optical cavity should be very high and limits the size of the
mechanical resonators to be cooled. This restriction can be
overcome with the help of an auxiliary mechanical mode [25]
or a coherent auxiliary cavity [26]. The other main obstacle is
the so-called dark-mode effect, which suppresses the ground-
state cooling of degenerate mechanical modes significantly.
This effect appears if two or more degenerate mechanical
modes couple to one common optical cavity mode [27–31].
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Physically, a dark mode formed by two degenerate mechanical
modes is decoupled from the cavity mode of the system com-
pletely. Thus it is very difficult to extract thermal excitations
of the dark mode through the cooling channel of the optical
mode. Later, the dark-mode effect was demonstrated experi-
mentally in [32]. Up to now, several schemes were proposed
for cooling multiple mechanical oscillators simultaneously
[33–38]. In Ref. [33], the authors have pointed out that the
ground-state cooling of several mechanical oscillators could
be accomplished in the resolved-sideband regime by intro-
ducing an optomechanical interface. It was shown that the
dark modes can be broken by introducing a phase-dependent
phonon-exchange interaction [35]. The quantum reservoir
engineering method was also used to realize ground-state
cooling of several mechanical resonators [36]. The authors of
Ref. [37] suggested the thermal energy from many mechanical
modes within a large frequency bandwidth can be extracted
with the help of a standard cold-damping technique. Very
recently, an auxiliary cavity mode was introduced to over-
come the dark-mode effect of multiple degenerate mechanical
modes [38,39]. Consequently, the simultaneous ground-state
cooling of degenerate mechanical modes can be realized in
multimode optomechanical systems in the resolved sideband
regime [38].

In the present work, we propose a scheme to cool sev-
eral degenerate mechanical oscillators simultaneously in the
unresolved sideband regime with the help of optical and
mechanical nonlinearities. In order to break the dark modes
formed by degenerate mechanical modes, we introduce the
Duffing nonlinearities (mechanical nonlinearities). Note that
the Duffing nonlinearities of different mechanical oscillators
should not be very close so that the dark modes can be bro-
ken efficiently. In addition, we use a second-order nonlinear
medium (optical nonlinearity) to cool degenerate mechanical
modes even in the unresolved sideband regime. It is worth
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noting that there are two differences between our work and
Ref. [38]. First, in our scheme, the dark modes of degenerate
mechanical modes are broken by the Duffing nonlinearities
of different mechanical modes. In Ref. [38], the dark modes
are broken by an auxiliary cavity mode. Second, the ground-
state cooling of all degenerate mechanical modes can be
accomplished simultaneously even in the unresolved sideband
regime in the present work. However, we note that it is difficult
to realize simultaneous ground-state cooling of all degenerate
mechanical oscillators in the unresolved sideband regime in
Ref. [38].

The organization of this paper is as follows. In Sec. II,
we introduce the model and derive an effective Hamiltonian.
In Sec. III, we derive the quantum Langevin equations of
the present model. In Sec. IV, we discuss the simultaneous
ground-state cooling of two degenerate mechanical resonators
in the unresolved sideband regime. In Sec. V, we investigate
the simultaneous ground-state cooling of three or four degen-
erate mechanical resonators. In Sec. VI, we summarize our
results.

II. MODEL AND HAMILTONIAN

In the present work, we consider an optomechanical system
formed by one optical cavity and n mechanical resonators.
A second-order nonlinear medium χ (2) is put into the Fabry-
Pérot cavity. There are two modes in the optical cavity. One
is the fundamental mode a1 with frequency ωc. The other is
a second-order optical mode a2 with frequencies 2ωc. The
decay rates of optical modes a1 and a2 are κ1 and κ2, re-
spectively. The mechanical oscillator j with frequency ω j and
decay rate γ j is denoted by b j . In addition, the fundamental
and second-order modes are driven by two fields with ampli-
tudes ε1 and ε2. The amplitude of the Duffing nonlinearity of
mode b j is η j . The schematic representation of our model can
be found in Fig. 1. The Hamiltonian of the system is (h̄ = 1)
[5,40–43]

H = H0 + Hdr + HI + HD + HN , (1)

H0 = ωca†
1a1 + 2ωca†

2a2 +
N∑

j=1

ω jb
†
jb j, (2)

Hdr = i(ε1e−iωLt a†
1 + ε2e−2iωLt a†

2 − H.c.), (3)

HI = −
N∑

j=1

g1 ja
†
1a1(b†

j + b j ) −
N∑

j=1

g2 ja
†
2a2(b†

j + b j ), (4)

H� =
N∑

j=1

η j

2
(b†

j + b j )
4, (5)

Hχ = iχ0

2

(
a†2

1 a2 − a2
1a†

2

)
, (6)

where H0 is the free Hamiltonian of the present system and
Hdr is the Hamiltonian for driving fields applied to the fun-
damental and second-order modes a1 and a2 with frequencies
ωL and 2ωL. HI denotes the interaction between the optical
and mechanical modes with coupling constants gi j . H� is
the Hamiltonian corresponding to the Duffing nonlinearities
of mechanical modes. We note that a nonlinear amplitude

FIG. 1. Schematic representation of our model. The fundamental
mode is represented by a1 and mechanical mode j is denoted by
bj . Here, the second-order optical mode a2 is not shown. A second-
order nonlinear medium is denoted by χ (2). The effective coupling
strength between a1 and bj is G1 j . � j is the Duffing nonlinearity
(mechanical nonlinearity) of bj . See Eqs. (1) and (14) for more
details.

of η j = 10−4ω j ( j = 1, 2, . . . , N) can be achieved by cou-
pling the mechanical mode to an auxiliary system [5]. The
Hamiltonian of a second-order nonlinear medium is denoted
by Hχ and χ0 is the interaction between the fundamental and
second-order optical modes. The amplitudes of driving fields
are ε1 = √

2κ1P1/ωL and ε2 = √
2κ2P2/(2ωL ) with P1 and

P2 being the powers of two driving lasers applied on optical
modes a1 and a2.

In a rotating frame defined by the unitary transformation
U (t ) = exp{−iωLt (a†

1a1 + 2a†
2a2)}, the above Hamiltonian

can be rewritten as

H = U †HU − iU †U̇

= �̄ca†
1a1 + 2�̄ca†

2a2 +
N∑

j=1

ω jb
†
jb j

+ i(ε1a†
1 − ε1a1 + ε2a†

2 − ε2a2)

−
N∑

j=1

(g1 ja
†
1a1 + g2 ja

†
2a2)(b†

j + b j )

+
N∑

j=1

η j

2
(b†

j + b j )
4 + iχ0

2

(
a†2

1 a2 − a2
1a†

2

)
, (7)

with �̄c = ωc − ωL.

III. QUANTUM LANGEVIN EQUATIONS

In this section, we first linearize the above Hamiltonian
by employing the following displacement transformations
ak → αk + δak and b j → β j + δb j with k = 1, 2 and j =
1, 2, . . . , N . After some algebra, we obtain the quantum
Langevin equations as follows:

α̇1 = −
(

i�c + κ1

2

)
α1 + χ0α

∗
1α2 + ε1, (8)
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α̇2 = −
(

i�′
c + κ2

2

)
α2 − χ0

2
α2

1 + ε2, (9)

β̇ j = −
(

iω j + γ j

2

)
β j + ig1 j |α1|2 + ig2 j |α2|2

− iη j
(
16|β j |3 cos3 ϕb j + 12|β j | cos ϕb j

)
, (10)

δȧ1 = −
(

i�c + κ1

2

)
δa1 + χ0α2δa†

1 + χ0α
∗
1δa2

+ i
N∑

j=1

G1 j (δb†
j + δb j ) + √

κ1a1,in, (11)

δȧ2 = −
(

i�′
c + κ2

2

)
δa2 − χ0α1δa1

+ i
N∑

j=1

G2 j (δb†
j + δb j ) + √

κ2a2,in, (12)

δḃ j = −
(

iω j + γ j

2

)
δb j + i(G1 jδa†

1 + G∗
1 jδa1)

+ i(G2 jδa†
2 + G∗

2 jδa2)

− 2i� j (δb†
j + δb j ) + √

γ jb j,in, (13)

where �c = �̄c − 2
∑N

j=1 g1 j |β j | cos ϕb j , �′
c = 2�̄c − 2∑N

j=1 g2 j |β j | cos ϕb j , � j = 3η j (4|β j |2 cos2 ϕb j + 1), and
Gk j = gk jαk (k = 1, 2 and j = 1, 2, . . . , N). We have
assumed β j = |β j |eiϕb j .

Note that the fluctuations of mode a2 can be neglected
in the limit of large κ2 and the adiabatic approximation is
valid [40,43]. Thus the quantum Langevin equations can be
rewritten as

δȧ1 = −
(

i�c + κ1

2

)
δa1 + i

N∑
j=1

G1 j (δb†
j + δb j )

+ χδa†
1 + √

κ1a1,in,

δḃ j = −
(

iω j + γ j

2

)
δb j + iG1 j (δa†

1 + δa1)

− 2i� j (δb†
j + δb j ) + √

γ jb j,in, (14)

where χ = χ0α2 = |χ |e2iϕ . Without loss of generality, Gk j

has been assumed to be real.
We define the quadrature operators XO=a1,b j = (δO† +

δO)/
√

2, YO=a1,b j = i(δO† − δO)/
√

2, and the noise quadra-
ture operators X in

O=a1,b j
= (O†

in + Oin )/
√

2 and Y in
O=a1,b j

=
i(O†

in − Oin )/
√

2. From the above quantum Langevin equa-
tions, we obtain

�̇f = A �f + �n, (15)

where �f = (Xa1 ,Ya1 , Xb1 ,Yb1 , . . . , XbN ,YbN )T and

�n = (√
κ1X in

a1
,
√

κ1Y
in

a1
,
√

γ1X in
b1

,
√

γ1Y
in

b1
, . . . ,

√
γN X in

bN
,
√

γNY in
bN

)T
, (16)

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|χ | cos (2φ) − κ1
2 |χ | sin (2φ) + �c 0 0 . . . 0 0

|χ | sin (2φ) − �c −|χ | cos (2φ) − κ1
2 2G11 0 . . . 2G1N 0

0 0 − γ1

2 ω1 . . . 0 0

2G11 0 −ω1 − 4�1 − γ1

2 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . − γN

2 ωN

2G1N 0 0 0 . . . −ωN − 4�N − γN

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

The dynamics of the system described by Eq. (15) can be
completely described by a 2(N + 1) × 2(N + 1) covariance
matrix V with Vj,k = 〈 f j fk + fk f j〉/2. Here, N is the number
of mechanical modes. We obtain the evolution of the covari-
ance matrix V as follows:

V̇ = AV + VAT + D, (18)

where D is the noise correlation defined by D =
diag[ κ1

2 , κ1
2 ,

γ1

2 (2nth + 1), γ1

2 (2nth + 1), . . . ,
γN

2 (2nth + 1),
γN

2 (2nth + 1)]. Here nth is the mean phonon number of the
mechanical resonators. According to the Routh-Hurwitz
criterion [44], the system described by Eq. (18) is stable only
if all the real parts of the eigenvalues of the matrix A are
negative. All the parameters used in the present work satisfy

the Routh-Hurwitz criterion. The steady-state mean phonon
numbers of mechanical modes b j are

n j = (V2 j+1,2 j+1 + V2 j+2,2 j+2 − 1)/2. (19)

Now, we discuss the strengths of the mechanical and
optical nonlinearities. In general, the natural Duffing nonlin-
earity (mechanical nonlinearity) is very small. For example,
in Ref. [5], the authors have shown that a nonlinear amplitude
of η j = 10−4ω j can be achieved by coupling the mechanical
mode to an auxiliary system. Here, ω j is the frequency of the
mechanical mode b j . Also, the optical nonlinearity strength is,
in general, small compared with the frequency of the mechan-
ical mode ω j . Note that the effective mechanical nonlinearity
� j and the effective optical nonlinearity χ in Eqs. (13) and
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FIG. 2. Steady-state amplitudes |α2| and |β j | are plotted as
functions of the driving power P with η = 10−4ω1 and |χ0| =
10−3ω1. We assume P1 = P2 = P in the present work. Other param-
eter values are ω1 = ω2 = · · · = ωN = 2π × 20 MHz, ωc = 2π ×
500 THz, G1 j = G2 j = 10−4ω1 ( j = 1, 2, . . . , N), κ1 = 100ω1, κ2 =
2000ω1, γ1 = γ2 = · · · = γN = 10−6ω1, ϕb j = 0, �c = 10ω1, and
�′

c = 20ω1.

(14) are defined by � j = 3η j (4|β j |2 cos2 ϕb j + 1) and χ =
χ0α2, respectively. It is clear to see the effective nonlinearities
� j and χ could be significantly enhanced by β j and α2. In
Fig. 2, we plot the steady-state amplitudes |α2| and |β j | as
functions of the driving power P using Eqs. (8)–(10). We
assume P1 = P2 = P, ω1 = ω2 = · · · = ωN , and γ1 = γ2 =
· · · = γN in this figure. From Fig. 2, one can see that |α2| ≈
400 and |β j | ≈ 13.7 if P = 4 μW. The natural Duffing non-
linearity strength is η j = 10−4ω1 and the optical nonlinearity
strength is χ0 = 10−3ω1. In the case of P = 4 μW and ϕb j =
0, we find � j = 3η j (4|β j |2 cos2 ϕb j + 1) ≈ 0.23ω1 and |χ | =
χ0|α2| ≈ 0.4ω1. In a word, the effective nonlinearities � j and
χ could be significantly enhanced in the present model.

IV. SIMULTANEOUS GROUND-STATE COOLING OF TWO
DEGENERATE MECHANICAL OSCILLATORS

In this section, we investigate the simultaneous ground-
state cooling of two degenerate mechanical resonators beyond
the resolved sideband regime with the help of optical and
mechanical nonlinearities. First, we derive the linearized
Hamiltonian under the rotating wave approximation (RWA) in
the absence of mechanical nonlinearities. Second, we recast
the linearized Hamiltonian based on two hybrid mechanical
modes B1 and B2. The dark mode effect can be seen clearly
from this Hamiltonian in the absence of mechanical nonlin-
earities. Third, we introduce the mechanical nonlinearities.
One can find that the dark mode formed by two degener-
ate mechanical resonators is destroyed by the mechanical
nonlinearities with different amplitudes. Finally, the optical
nonlinearity is used to cool degenerate mechanical resonators
simultaneously even in the unresolved sideband regime.

A. Dark mode of two degenerate mechanical oscillators

From Eqs. (14), we can write out the linearized Hamilto-
nian under the RWA explicitly as

H̃RWA = H̃0 + H̃I + H̃� + H̃χ ,

H̃0 = �cδa†
1δa1 + ω1δb†

1δb1 + ω2δb†
2δb2,

H̃I = −G11(δa†
1δb1 + δb†

1δa1)

− G12(δa†
1δb2 + δb†

2δa1),

H̃� = �1
(
δb†2

1 + δb2
1 + 2δb†

1δb1
)

+ �2
(
δb†2

2 + δb2
2 + 2δb†

2δb2
)
,

H̃χ = iχ

2

(
δa†2

1 − δa2
1

)
. (20)

We now introduce two hybrid mechanical modes B1 and B2 as
follows:

B1 = 1√
G2

11 + G2
12

(G11δb1 + G12δb2),

B2 = 1√
G2

11 + G2
12

(G12δb1 − G11δb2). (21)

Here, the new operators B1 and B2 satisfy the bosonic
commutation relations [B1, B1

†] = 1 and [B2, B2
†] = 1. The

Hamiltonian H̃RWA can be expressed as

H̃RWA = H̃ ′
0 + H̃ ′

I + H̃ ′
� + H̃ ′

χ ,

H̃ ′
0 = �cδa†

1δa1 + ω1,wB†
1B1 + ω2,wB†

2B2,

H̃ ′
I = G+(δa†

1B1 + δa1B1
†) + ξw(B1

†B2 + B2
†B2),

H̃ ′
� = ω1,�

(
B2

1 + B†
1

2 + 2B†
1B1

)
+ ω2,�

(
B2

2 + B†2
2 + 2B†

2B2
)

+ ξ�(B1B2 + B2B1 + B†
1B†

2 + B†
2B†

1

+ 2B†
1B2 + 2B†

2B1),

H̃ ′
χ = iχ

2

(
δa†2

1 − δa2
1

)
, (22)

with

ω1,w = ω1G2
11 + ω2G2

12

G2
11 + G2

12

,

ω2,w = ω1G2
12 + ω2G2

11

G2
11 + G2

12

,

ω1,� = �1G2
11 + �2G2

12

G2
11 + G2

12

,

ω2,� = �1G2
12 + �2G2

11

G2
11 + G2

12

,

G+ =
√

G2
11 + G2

12,

ξw = (ω1 − ω2)G11G12

G2
11 + G2

12

,

ξ� = (�1 − �2)G11G12

G2
11 + G2

12

. (23)
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Some remarks must be made now. First, if the frequencies
of two mechanical modes are equal (ω1 = ω2), then one can
easily find ξw = 0. Second, in the absence of mechanical non-
linearities (�1 = �2 = 0) or the mechanical nonlinearities are
equal (�1 = �2 > 0), the term ξ� = 0. Thus the hybrid mode
B2 is totally decoupled from B1 and δa1 simultaneously in the
case of ω1 = ω2 (ξw = 0) and �1 = �2 (ξ� = 0) as we can
see from Eqs. (22) and (23). The hybrid mode B2 is called
a dark mode [38,39] and cannot be cooled completely. In
other words, the mechanical system cannot be cooled if the
frequencies of two mechanical resonators are equal (ξw = 0)
and the mechanical nonlinearities are also equal (ξ� = 0).

The reason is as follows. The thermal excitations of B1

can be extracted through the cooling channel of the optical
modes δa1 since there is direct interaction between B1 and
δa1 as one can clearly see from the term G+(δa†

1B1 + δa1B1
†)

of Eq. (22). Unfortunately, the thermal energy of the dark
mode B2 cannot be extracted through the cooling channel if
ξw = 0 and ξ� = 0, and there is no direct interaction between
B2 and B1 or between B2 and δa1. Physically, the dark mode
formed by two degenerate mechanical modes can be destroyed
by introducing mechanical nonlinearities with different am-
plitudes, i.e., �1 �= �2 (ξ� �= 0). In this case, ξw = 0, while
ξ� �= 0. Therefore, there is direct interaction between B2 and
B1. The thermal excitations of B1 and B2 can be efficiently
extracted through the cooling channel of the optical mode
δa1. It is possible to realize simultaneous ground-state cooling
of degenerate mechanical modes with the help of mechanical
nonlinearities when the amplitudes are not very close.

B. Cooling beyond resolved sideband regime

In general, in the standard sideband cooling, one obstacle
for ground-state cooling of mechanical resonators is the re-
solved sideband condition, i.e., the decay rate of an optical
cavity must be smaller than the frequencies of mechanical
modes [3]. This restriction typically requests that the finesse
of an optical cavity should be very high, which limits the size
of mechanical resonators to be cooled. In the Hamiltonian H̃ ′

χ

of Eqs. (22), the optical nonlinearity χ is employed to cooled
mechanical resonators beyond the resolved sideband regime.

In Fig. 3, we plot the steady-state mean phonon numbers
of mechanical modes b1 and b2 as functions of parameters
ω2/ω1 and κ1/ω1 for different �1 and �2. From Fig. 3(a) and
Fig. 3(b), one can see that, in the absence of mechanical non-
linearities, the mean phonon numbers of the first and second
mechanical modes can be much larger than 1 if the frequency
of the second mechanical mode is close to the frequency of
the first mechanical mode, i.e., ω2 ≈ ω1. Clearly, this is a
natural consequence of the dark-mode effect, i.e., when the
frequencies of two mechanical modes are equal, they form a
hybrid dark mode B2 as we have pointed out previously. If
the mechanical nonlinearities with different amplitudes are
introduced, the steady-state mean phonon numbers of two
degenerate mechanical resonators can be cooled efficiently as
one can find in Fig. 3(c) and Fig. 3(d). This implies that the
mechanical nonlinearities with different amplitudes can break
the dark mode B2 since the parameter ξ� in Eq. (22) is not
zero and there is interaction between hybrid modes B1 and B2.
The thermal excitations of B2 can be extracted via the cooling
channel B2 ⇒ B1 ⇒ a1 as one can clearly see from Eq. (22).
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FIG. 3. Steady-state mean phonon numbers n1 and n2 versus
ω2/ω1 and κ1/ω1. The parameters are γ1 = γ2 = 10−6ω1, G11 =
G12 = 0.1ω1, φ = 0.5π, �c = ω1, |χ | = 0, and nth = 1000.

In Fig. 4, we plot the stationary-state mean phonon num-
bers n1 and n2 as functions of parameters �2/�1 and κ1/ω1

for different value of ω2. From Fig. 4(a) and Fig. 4(b), we find
that two degenerate mechanical resonators b1 and b2 cannot
be cooled if the amplitudes of two mechanical nonlinearities
are close. From Fig. 4(c) and Fig. 4(d), one can see the two
mechanical resonators can be cooled simultaneously if the
difference between their frequencies is not very small. This
is consistent with the results of [27,32].

Now, we turn to investigate the simultaneous ground-state
cooling of two degenerate mechanical resonators in the highly
unresolved sideband regime with the help of optical nonlinear-
ity. In Fig. 5, we plot the mean phonon numbers as functions
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FIG. 5. Steady-state mean phonon numbers n1 and n2 ver-
sus �2/�1 for different κ1 and |χ |. The parameters are
γ1 = γ2 = 10−6ω1, G11 = G12 = 0.1ω1, φ = 0.5π, �c = ω1, �1 =
0.1ω1, ω2 = ω1, and nth = 1000.

of �2/�1 for different values of κ1 and |χ |. In the absence of
optical nonlinearity, the mean phonon numbers n1 and n2 are
always lager than 10 when the decay rate of the optical mode
is much larger than ω1 [see the red solid lines of Fig. 5(a) and
Fig. 5(b)]. If the optical nonlinearity is introduced, then the
mean phonon numbers are reduced [see the green dashed lines
of Fig. 5(a) and Fig. 5(b)]. However, n1 and n2 are larger than
10 in the case of |χ | = 5ω1 and κ1 = 20ω1. Particularly, n1

and n2 can be smaller than 1 in the case of |χ | = 10ω1 and the
difference of two mechanical nonlinearities is not very close
[see the blue dotted lines of Fig. 5(a) and Fig. 5(b)].

V. SIMULTANEOUS GROUND-STATE COOLING OF
THREE OR FOUR DEGENERATE MECHANICAL

OSCILLATORS

In this section, we study the simultaneous ground-state
cooling of three or four degenerate mechanical modes in the

unresolved sideband regime using mechanical nonlinearities
with different amplitudes and optical nonlinearity.

A. Three degenerate mechanical oscillators

Similar to the previous section, we obtain the quantum
Langevin equations for the fundamental optical mode a1 and
three mechanical modes b1, b2, and b3 as

δȧ1 = −
(

i�c + κ1

2

)
δa1 + iG11(δb†

1 + δb1)

+ iG12(δb†
2 + δb2) + iG13(δb†

3 + δb3)

+ χδa†
1 + √

κ1a1,in,

δḃ j = −
(

iω j + γ j

2

)
δb j + iG1 j (δa†

1 + δa1)

− 2i� j (δb†
j + δb j ) + √

γ jb j,in, (24)

with j = 1, 2, 3. The quantum Langevin equations are
still given by Eq. (15) with �f = (Xa1 ,Ya1 , Xb1 ,Yb1 , Xb2 ,Yb2 ,

Xb3 ,Yb3 )T and

�n = (√
κ1X in

a1
,
√

κ1Y
in

a1
,
√

γ1X in
b1

,
√

γ1Y
in

b1
,

√
γ2X in

b2
,
√

γ2Y
in

b2
,
√

γ3X in
b3

,
√

γ3Y
in

b3

)T
. (25)

Similar to the previous section, the steady-state mean
phonon numbers of mechanical modes b1, b2, and b3 are

n1 = (V33 + V44 − 1)/2,

n2 = (V55 + V66 − 1)/2,

n3 = (V77 + V88 − 1)/2, (26)

and V is a 8 × 8 covariance matrix with Vjk = 〈 f j fk +
fk f j〉/2. The dynamics of the covariance matrix V is similar
to Eq. (18) with

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|χ | cos (2φ) − κ1
2 |χ | sin (2φ) + �c 0 0 0 0 0 0

|χ | sin (2φ) − �c −|χ | cos (2φ) − κ1
2 2G11 0 2G12 0 2G13 0

0 0 − γ1

2 ω1 0 0 0 0

2G11 0 −ω1 − 4�1 − γ1

2 0 0 0 0

0 0 0 0 − γ2

2 ω2 0 0

2G12 0 0 0 −ω2 − 4�2 − γ2

2 0 0

0 0 0 0 0 0 − γ3

2 ω3

2G13 0 0 0 0 0 −ω3 − 4�3 − γ3

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)

D = diag

[
κ1

2
,
κ1

2
,
γ1

2
(2nth + 1),

γ1

2
(2nth + 1),

γ2

2
(2nth + 1),

γ2

2
(2nth + 1),

γ3

2
(2nth + 1),

γ3

2
(2nth + 1)

]
. (28)
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FIG. 6. Steady-state mean phonon numbers of mechanical
modes n1 (red solid lines), n2 (green dashed lines), and n3 (blue
dash-dot lines) versus �3/�1 for different κ1 and |χ |. The param-
eters are γ1 = γ2 = γ3 = 10−6ω1, G11 = G12 = G13 = 0.3ω1, φ =
0.5π,�c = ω1, �1 = 0.1ω1, �2 = 0.8�1, ω1 = ω2 = ω3, and nth =
1000.

In Fig. 6, we plot steady-state mean phonon numbers n1,
n2, and n3 as functions of �3/�1 with �2 = 0.8�1 and ω1 =
ω2 = ω3. In other words, the frequencies of three mechanical
modes are the same. However, the mechanical nonlinearities
of b1 and b2 are not very close since �2 = 0.8�1. As a
result, the mechanical modes b1 and b2 cannot form a dark
mode since the dark mode can be destroyed by two me-
chanical nonlinearities with different amplitudes. Note that
�3 could be equal to �2 or �1 and it is still possible to
form a dark mode between b1 and b3 (�1 = �3) or b2 and
b3 (�2 = �3). In Fig. 6(a), we calculate the mean phonon
numbers in the resolved sideband regime with κ1 = 0.1ω1 and
the optical nonlinearity is assumed to be zero with |χ | = 0.
There are two peaks of n3 (blue dash-dot lines). One peak is
located at �3 = �2 = 0.8�1, which is a result of the dark
mode formed by b2 and b3. The first mechanical mode b1

can be cooled efficiently even in the presence of the dark
mode which is mixed by b2 and b3 in the resolved sideband
regime. The other peak is located at �3 = �1, which is a
result of the dark mode formed by b1 and b3. In this case,
b1 and b3 cannot be cooled, while n2 could be smaller than
1. In a word, if we want to achieve ground-state cooling of
all mechanical modes, the mechanical nonlinearities should
not be too close. If the optical decay rate is much larger
than the frequencies of mechanical modes, all the stationary-
state mean phonon numbers of mechanical modes are larger
than 1 when κ1 = 10ω1 and |χ | = 0 as one can clearly see
from Fig. 6(b). Therefore, we introduce the optical nonlin-
earity. In Fig. 6(c), we find all the degenerate mechanical
resonators can be cooled efficiently even in the unresolved
sideband regime with the help of optical nonlinearity with
|χ | = 5ω1.
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FIG. 7. Steady-state mean phonon numbers n1 (red solid lines),
n2 (green dashed lines), n3 (blue dash-dot lines), and n4 (cyan
solid lines) versus �4/�1 for different κ1 and |χ |. The parameters
are γ1 = γ2 = γ3 = 10−6ω1, G11 = G12 = G13 = G14 = 0.1ω1, φ =
0.5π, �c = ω1, �1 = 0.2ω1, �2 = 0.8�1, �3 = 0.9�1, ω1 = ω2 =
ω3 = ω4, and nth = 1000.

B. Four degenerate mechanical oscillators

Here, we investigate the ground-state cooling of four de-
generate mechanical modes. Similar to the case of two or three
mechanical modes, we can find the evolution of the covariance
matrix V for four mechanical modes. The expressions of A
and D are not written out explicitly here since they are too
long. So, we only show the numerical results here. In Fig. 7,
we plot the steady-state mean phonon numbers n1, n2, n3,
and n4 as functions of �4/�1 for different values of κ1 and
|χ | with ω1 = ω2 = ω3 = ω4. From Fig. 7(a), one can find
there are three peaks in the cyan solid lines (n4) which are
natural consequences of three possible dark modes formed by
mechanical modes. The first peak is located at �4 = 0.8�1

and the dark mode is mixed by b4 and b2 since ω4 = ω2 and
�4 = �2. In this case, b1 and b3 can be cooled efficiently. The
second peak is located at �4 = 0.9�1 and the dark mode is
formed by b4 and b3 due to ω4 = ω3 and �4 = �3. The third
peak is located at �4 = �1 and the dark mode is formed by b4

and b1. In the case of κ1 = 10ω1 and |χ | = 0, all mechanical
resonators cannot be cooled efficiently [see Fig. 7(b)]. Again,
we introduce the optical nonlinearity χ . As one can clearly see
from Fig. 7(c), the simultaneous ground-state cooling of all
degenerate mechanical modes can be realized even in the un-
resolved sideband regime with the help of optical nonlinearity
and mechanical nonlinearities with different amplitudes.

Finally, we discuss two competing effects of the optical
nonlinearity in the present model. First, the Stokes heating
processes can be significantly suppressed and the backac-
tion limit of standard sideband cooling can be surpassed
with the help of the optical nonlinearity as pointed out in
Ref. [40]. The first effect of the optical nonlinearity is help-
ful for ground-state cooling. Second, there is nonlinearity
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in the Hamiltonian Hχ = iχ0

2 (a†2
1 a2 − a2

1a†
2) of Eq. (6) when

the optical nonlinearity χ0 is introduced. This nonlinearity is
harmful for ground-state cooling since the photon number of
cavity a1 is increased. As a result, the influence of the optical
nonlinearity on the ground-state cooling of the mechanical
modes is a tradeoff between these two competing effects.
In the highly unresolved sideband regime with κ1 
 ω1, the
photons generated by the optical nonlinearity can decay very
quickly and the first effect which suppresses the Stokes heat-
ing processes is dominant. Thus the mechanical modes can
be cooled efficiently even in the highly unresolved sideband
regime. This is consistent with the results of our work. In
contrast, in the resolved sideband regime with κ1 � ω1, the
photons generated by the optical nonlinearity cannot decay
quickly. Although the Stokes heating processes can still be
suppressed by the optical nonlinearity in the resolved side-
band regime, these photons generated by the nonlinearity can
heat the mechanical modes significantly and are the dominant
effect in the resolved sideband regime. In fact, we observe that
the mean phonon numbers of mechanical modes in the case
of |χ | > 0 can be larger than that of |χ | = 0 in the resolved
sideband regime. The results are not shown here because we
focus on the ground-state cooling of mechanical modes in
the highly unresolved sideband regime in the present work.
Thus, if we want to cool several degenerate resonators in the
resolved sideband regime, the optical nonlinearity should not
be introduced. It is worth noting that one can overcome the
dark-mode effect in the resolved sideband regime using other
methods [33–39].

VI. CONCLUSION

In the present work, we have proposed a scheme to realize
simultaneous ground-state cooling of degenerate mechanical
oscillators in the unresolved sideband regime with the help of
optical and mechanical nonlinearities. One main obstacle for
ground-state cooling of degenerate mechanical oscillators is
the dark-mode effect. This kind of effect emerges if several
degenerate mechanical modes couple to a common optical
mode. In this case the ground-state cooling of mechanical
modes is suppressed significantly. Here, we introduced the
Duffing nonlinearities (mechanical nonlinearities) to break
the dark mode formed by degenerate mechanical modes. Our
results show that the dark mode can be completely destroyed
by mechanical nonlinearities when their amplitudes are not
very close.

In the absence of the second-order nonlinearity medium,
the degenerate mechanical resonators cannot be cooled effi-
ciently in the unresolved sideband regime. However, if we put
the second-order nonlinearity (optical nonlinearity) into the
system, the simultaneous ground-state cooling of two or more
degenerate mechanical modes can be accomplished even in
the unresolved sideband regime.
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