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The generation of entangled states that display negative values of the Wigner function in the quantum
phase space is a challenging task, particularly elusive for massive, and possibly macroscopic, systems such
as mechanical resonators. In this work, we propose two schemes based on reservoir engineering for generating
Wigner-negative entangled states unconditionally. We consider two noninteracting mechanical resonators that
are radiation-pressure coupled to either one or two common cavity fields; the optomechanical coupling with
the field(s) features both a linear and quadratic part in the mechanical displacement and the cavity is driven
at multiple frequencies. We show analytically that both schemes stabilize a Wigner-negative entangled state
that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity, which we dub
cubic-phase entangled (CPE) state. We then perform extensive numerical simulations to test the robustness
of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal
decoherence.

DOI: 10.1103/PhysRevA.109.033508

I. INTRODUCTION

The theoretical identification and experimental verification
of the specific traits that characterize quantum mechanics is
fundamental to refine our description of physical systems.
Two pivotal features that mark the departure of the quantum
model of physical reality with respect to its classical counter-
part are quantum entanglement and contextuality.

Entangled quantum systems [1] display correlations that
cannot be established by merely communicating classical
information between noninteracting but otherwise locally
controllable quantum systems. In fact, from an applicative
viewpoint, entanglement underpins the majority of quantum
communication protocols, for which it represents a rigorously
quantifiable resource [2–4].

Quantum contextuality [5] seeks to capture the nonexis-
tence of a classical probability distribution able to describe
the outcomes of the measurements on a quantum system.
More specifically, it is defined as the nonexistence of clas-
sical models reproducing quantum mechanical measurement
outcomes from predetermined assignments to observables,
independently of the specific measurement context. Contextu-
ality has been identified as an essential ingredient for quantum
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advantage in various tasks, including universal quantum
computing for certain models [6]. For continuous-variable
quantum systems [7–9], it has been recently shown [10,11]
that the notion of quantum contextuality, with respect to gen-
eralized position and momentum measurements, is equivalent
to the presence of negative values of the Wigner function
[12] associated to the system at hand when described in the
quantum phase space, or Wigner negativity for short.

Hereafter we will refer to the simultaneous presence
of these two hallmarks of quantum mechanics as Wigner-
negative entanglement. The generation and verification of
Wigner-negative entangled states in a macroscopic system
(involving a large number of constituents, such as pho-
tons, atoms, or ions) represents a remarkable task, especially
elusive if the system components are massive, such as for me-
chanical resonators. Optomechanical systems [13] represent
an especially promising candidate to tackle this challenge. At
the single-phonon level, the generation of a Wigner-negative
entangled state of two mechanical resonators has been demon-
strated, both probabilistically [14] and deterministically [15].
It has further been the subject of a number of theoretical
studies [16], mainly pointing towards conditional schemes
[17–22] or transient dynamics [23–25]. However, the intrinsic
single-phonon nature of such settings make them fragile to
environmental noise and call for more robust demonstrations.
In particular, unconditional Wigner-negative entanglement in-
volving many phonons of massive systems is desirable.

In this work we present a scheme to stabilize Wigner-
negative entanglement over continuous quantum degrees of
freedom of two massive mechanical modes. Our scheme does
not require engineering strong mechanical nonlinearity or
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FIG. 1. (a) Sketch of an optomechanical system made of two noninteracting mechanical oscillators, with modes b̂1 and b̂2, coupled to a
common cavity mode â. Both modes feature a coupling term proportional to the position q̂ j (solid black line) while only one mode, here b̂1,
features also a quadratic coupling proportional to q̂2

1 (dotted black line). The cavity, which is driven by a multitone drive and dissipates into
the vacuum at rate κ , provides an engineered reservoir that steers the mechanical modes toward the desired Wigner-negative entangled steady
state. (b) Sketch of a similar system (same graphical notation applies) where the two noninteracting mechanical oscillators are instead coupled
to two cavity modes â1 and â2. In the absence of thermal environments, both (a) and (b) stabilize the cubic-phase entangled (CPE) state in
Eq. (3), while the presence of thermal environments with occupation nth,1 and nth,2 determine a partial loss of fidelity (see main text). The
configuration (a), which we call Hamiltonian-switching scheme, requires two consecutive steps to stabilize the (approximate) target CPE state,
while configuration (b), which we call two-dissipator scheme, exploits an additional cavity mode to achieve the target state in a single step.
(c)–(d) Plots of the Wigner distribution of the ideal CPE state (see Appendix C for the full analytical expression) in terms of the EPR-like
variables (q1 + q2)/

√
2 and (p1 − p2)/

√
2, for fixed value of (q1 − q2) = 0 and, respectively, (p1 + p2) = 0 (c) and (p1 + p2) = √

2 (d).
Other parameters are γ = 0.3, s1 = 1/s2 = 2 (≈6 dB squeezing). The dashed circle represents the extent of vacuum fluctuations for each of
the two cuts.

direct interactions between resonators, but instead exploits
higher-than-linear optomechanical interactions between each
mechanical mode and a common auxiliary field. In particular,
it relies on a tunable optomechanical-like coupling featuring
both a linear and a quadratic part in the mechanical posi-
tion [26]. We present two variants of our scheme, where the
mechanical resonators interact with either a single mode or
two independent modes, as sketched in Figs. 1(a) and 1(b).
The main advantage of such protocols is that Wigner-negative
entanglement is generated unconditionally at the steady state
of a driven-dissipative dynamics. We first introduce the ideal
target state stabilized by our schemes, which we dub cubic-
phase entangled (CPE) state, and characterize it analytically.
We then perform extensive numerical simulations to test the
attainability of Wigner-negative entanglement by approximate
CPE states stabilized by a realistic protocol in the presence of
thermal decoherence.

For continuous position and momentum quantum vari-
ables, Gaussian [27–29] mechanical entangled states have
been unconditionally generated via reservoir engineering
in microwave optomechanics [30,31], following a theory
proposal to stabilize entanglement by means of a single en-
gineered reservoir [32]. A direct observation of two-mode
entanglement was also reported for two mechanical oscillators
driven by a microwave cavity [33]. The schemes we consider
in this work are also based on reservoir engineering [34]
but, crucially, we gain access to the Wigner-negative regime
by exploiting higher-than-linear optomechanical interactions.
Notice that, in contrast with the proposal for unconditional
generation put forward in Ref. [35], we do not require the
strong single-photon optomechanical regime. We build in fact

on recently proposed schemes for the generation of single-
oscillator Wigner-negative states [26,36] and non-Gaussian
gates for quantum computation [37].

The remainder of this paper is organized as follows. In
Sec. II, we introduce the model for the system under inves-
tigation. In Sec. III, we first define our target state, the CPE
state, and discuss its key characteristics. We then present two
generation schemes in Sec. III A and Sec. III B, respectively:
the Hamiltonian-switching scheme and the two-dissipator
scheme. In Sec. III C, we describe the numerical methods em-
ployed to obtain our results. In Sec. IV, we first establish the
key figures of merit used to characterize our results, and then
present them considering both the ideal and noisy case scenar-
ios. The experimental feasibility of these schemes in various
platforms is discussed in Sec. V. Finally, we conclude with
a summary of our findings and future directions in Sec. VI.
The Appendixes collect further details on the derivation of
the system Hamiltonian (Appendix A), the transformation of
the fields operators leading to the CPE state (Appendix B)
and its Wigner function (Appendix C), the effective dynamics
(Appendix D) used for our numerical simulations and some
details on the latter (Appendix E).

II. SYSTEM MODEL AND DYNAMICS

We consider an optomechanical system featuring two non-
interacting mechanical modes, with annihilation operator b̂1

and b̂2, radiation pressure coupled to either one or two or-
thogonal cavity modes, respectively denoted as â or â1,2,
see Fig. 1(a) and 1(b). We retain both the linear and the
quadratic contributions to the optomechanical coupling, i.e.,
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terms proportional to both q̂ j = 1√
2
(b̂ j + b̂†

j ) and q̂2
j , j = 1, 2,

and assume a multitone drive for the cavity mode(s). Under
the appropriate conditions (see Appendix A for details and
approximations) we can perform standard linearization and
cast the Hamiltonian of the system in the following form
(h̄ = 1):

Ĥ =
∑
�, j

â†
�

(
g( j)

�,1b̂ j + g( j)
�,2b̂†

j

+ g( j)
�,3b̂2

j + g( j)
�,4b̂†2

j + g( j)
�,5{b̂ j, b̂†

j}
) + H.c. (1)

We note that, following the linearization, â� and b̂ j describe
the cavity and mechanical fluctuations around their respective
steady-state values, and the complex parameters g( j)

�,k are the
drive-enhanced optomechanical couplings. The above expres-
sion of the Hamiltonian is valid when the system parameters
are set in a regime where the mechanical modes are individ-
ually addressed, which requires nonoverlapping mechanical
frequencies. Additionally, the linearization with respect to
the cavity modes requires strong driving fields but within a
weak coupling regime (see Appendix A for more details).
The implementation of the most general Hamiltonian shown
in Eq. (1) necessitates each cavity (a�) to be driven at both
red- and blue-detuned mechanical sidebands and second me-
chanical sidebands, in order to arbitrarily set all the effective
couplings (g(1)

�,1 . . . g(1)
�,5 and g(2)

�,1 . . . g(2)
�,5). This results in a total

of ten (twenty) transition frequencies to be driven, for a proto-
col utilizing one (two) cavity mode(s). However, for the cases
we will be interested in, the number of drives required may
be significantly reduced, as we will discuss in the subsequent
sections.

In order to address realistic settings, besides considering
that the cavity modes are coupled to vacuum reservoirs, we
impose that each mechanical oscillator is in contact with a
thermal bath. The dynamics of the open system therefore
obeys a master equation of the following form:

ρ̇ = −i[Ĥ, ρ] +
∑

�

κ�D[â�]ρ

+
∑

j

(γ j (nth, j + 1)D[b̂ j] + γ jnth, jD[b̂†
j]), (2)

with κ� and γ j are, respectively, the cavity and mechani-
cal dissipation rates, nth, j are the thermal phonon numbers
for mechanical mode j, and D[·] is the superoperator
defined for an operator ĉ and density operator ρ by
D[ĉ]ρ = ĉρĉ† − 1

2 ĉ†ĉρ − 1
2ρĉ†ĉ. Notice that we are employ-

ing a local master equation model. This is generally preferred
over a global master equation approach in the case of out of
equilibrium systems in which the single components are not
directly interacting (see, e.g., Ref. [32]). A thorough analysis
of the inequivalence between the local and global master equa-
tion approaches can be found, for example, in Refs. [38–40].

In Sec. V we will comment with some details on the ex-
perimental feasibility of the proposed model. Here, let us only
stress that the second-order terms in the operators b̂ j appear-
ing in Hamiltonian (1) are the key ingredients of the proposed
model, since they allow to access Wigner-negative entangle-
ment. In this sense, they are also a minimal extension to the

reservoir-engineering schemes implemented experimentally
in Refs. [30,31].

III. UNCONDITIONAL PREPARATION OF THE
CUBIC-PHASE ENTANGLED STATE

Our goal is to generate a robust non-Gaussian entangled
state of the two mechanical modes, capable of retaining
some Wigner negativity even for moderate thermal noise.
We begin our analysis by introducing the ideal target state
stabilized by our protocol in the absence of any noise term,
i.e., when the only dissipation channel is provided by the
engineered reservoir, and illustrating its properties. In this
limit, the mechanical steady state is pure and the requirement
of Wigner-negative entanglement reduces to the state being
entangled and non-Gaussian [41].

As already mentioned, we call CPE state the ideal target
state of our scheme. The CPE state is a two-mode pure non-
Gaussian state obtained by coupling two squeezed vacuum
modes via a beam-splitter interaction, and then a cubic-phase
gate is applied to one of the modes. We denote the CPE state
by

|s1, s2, λ, θ〉 = �̂1(λ)B̂BS(θ )Ŝ(s1, s2)|00〉 ≡ Û |00〉, (3)

where |00〉 is the vacuum state of the two mechanical modes,
Ŝ(s1, s2) = Ŝ1(s1) ⊗ Ŝ2(s2) is the product of two single-mode
squeezing operators

Ŝ j (s j ) = e
ln s j

2

(
b̂† 2

j −b̂2
j

)
, (4)

with j = 1, 2, corresponding to an amount of 20 log10 s j deci-
bel (dB) of squeezing, B̂BS is the beam-splitter operator

B̂BS(θ ) = eθ(b̂1b̂†
2−b̂†

1b̂2 ), (5)

and �̂(λ) is the cubic-phase gate with cubicity parameter λ

acting on mode b̂1, which is given by

�̂(λ) = eiλq̂3
1 . (6)

The cubic-phase gate is a well-known resource in continuous-
variable quantum computation [42], where it enables the
simulation of any Hamiltonian with arbitrary precision [43].
Its action on a single-mode momentum squeezed state results
in the so-called cubic phase state, which can be used to gen-
erate a non-Gaussian cluster state, e.g., to be employed for
universal measurement-based quantum computation [28,44].

In the remainder of the paper, we set the beam-splitter
coupling to θ = π

4 , the squeezing parameters to s1 = 1
s2

≡
s and denote the target state by |s, 1

s , λ, π
4 〉 ≡ |s, λ〉. Since

B̂BS(π/4)Ŝ(s, s−1)|00〉 acting on the vacuum returns a two-
mode squeezed vacuum state, the CPE state can be seen as
a minimal non-Gaussian extension of a two-mode squeezed
vacuum; minimal in the sense that a single local operator
is responsible for the non-Gaussian nature of the state. We
derived the analytical expression of the Wigner distribution
W (q1, p1; q2, p2) of the CPE state |s, λ〉 (the full expression
and the details of the derivation are reported in Appendix C).
In Fig. 1(c) and 1(d) we show two cuts of the Wigner dis-
tribution as a function of two EPR-like mechanical variables,
namely the mean position (q1 + q2)/

√
2 and the relative mo-

mentum (p1 − p2)/
√

2, the latter being the eigenvalues of
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the momentum operator p̂ j = i√
2
(b̂†

j − b̂ j ). From the plots we
can appreciate the two distinctive features of Wigner-negative
entanglement. First, most of the quasiprobability density is
concentrated in a region smaller than the zero point fluctuation
(marked by the dashed circle). The joint reduction of the
variances of both EPR-like variables below that of the vac-
uum marks the presence of entanglement, as, e.g., expressed
quantitatively by the Duan criterion [45]. Second, regions of
phase space with negative Wigner density are clearly visible.

From a theoretical point of view (irrespective of the spe-
cific implementation at hand) the CPE state represents an
instance of non-Gaussian entangled states of continuous vari-
ables, to be contrasted, e.g., with two-mode extensions of
Schrödinger’s cat states (also known as entangled coherent
states), which have been the subject of several theoretical
[46–49] and experimental [50] works.

In the following we propose two methods to generate the
CPE state. In one approach we consider two cavity modes,
while in the other one we consider only one cavity mode. We
also notice that, although we focus on the least demanding
case of local nonlinearity acting on mode b̂1, our analysis can
be readily extended to the case of two local cubic phase gates.

A. Single-dissipator approach: Hamiltonian switching

This approach, sketched in Fig. 1(a), involves only one
cavity mode but requires two consecutive steps to generate
the target CPE state. It represents an extension of the so-called
Hamiltonian-switching scheme [51,52] to a non-Gaussian tar-
get state. In the following, all subscripts corresponding to the
cavity mode are dropped, i.e., a1 ≡ a, κ1 ≡ κ and g( j)

1,k ≡ g( j)
k .

The Hamiltonian (1), with one cavity mode, may be put in
the form

Ĥ = â†
2∑

j=1

(
g( j)

1 b̂ j + g( j)
2 b̂†

j + g( j)
3 b̂2

j + g( j)
4 b̂† 2

j + g( j)
5 {b̂ j, b̂†

j}
)

+ H.c. (7)

Consider now the transformation of the mechanical modes
f̂ j = Û b̂ jÛ † induced by the target unitary in Eq. (3). The
explicit expression of these transformed modes, which we will
refer to as engineered modes in the following, is given by:

f̂ j = s+b̂1 + (−1) j s−b̂†
1 − 3iλ

4s(−1) j (b̂1 + b̂†
1)2

− (−1) j s+b̂2 − s−b̂†
2, (8)

where we set s± = 1
2
√

2
(s ± 1

s ). A full derivation of Eq. (8) is
provided in Appendix B, from which it is also clear that the
vacuum state corresponding to the field operators f̂1 and f̂2

(namely, the simultaneous ground state of both operators) is
the CPE state.

If we now set the coupling parameters appearing in Hamil-
tonian (7) to match the transformation f̂1, we obtain the
following relations:

g(1)
1 = g(2)

1 = s+g, (9)

g(1)
2 = g(2)

2 = −s−g, (10)

g(1)
3 = g(1)

4 = g(1)
5 = −3iλs

4
g, (11)

g(2)
3 = g(2)

4 = g(2)
5 = 0, (12)

where g is a positive real parameter playing the role of a unit
for all couplings; notice that the quadratic optomechanical
coupling is only present between the cavity and mode b̂1. The
equations above determine the squeezing and the cubicity pa-
rameters of the CPE state to be generated, which are in turn set
by the amplitudes of the driving fields and the single-photon
couplings (see Appendix A for details). The Hamiltonian then
becomes

Ĥ ≡ Ĥ1 = g(â† f̂1 + â f̂ †
1 ). (13)

Similarly, by suitably choosing the couplings to implement
the transformation f̂2, the Hamiltonian can be put in the form

Ĥ ≡ Ĥ2 = g(â† f̂2 + â f̂ †
2 ). (14)

Therefore, in this scheme the target CPE state |s, λ〉 is
obtained in two steps: in step (i) we set coupling parameters
such that Hamiltonian H1 is implemented. Including photon
losses but neglecting for the moment any form of mechanical
noise, the system evolves according to the master equation

ρ̇ = −i[Ĥ1, ρ] + κD[â]ρ. (15)

Crucially, this dynamics leads to a factorized steady state
where both the cavity mode â and the engineered mode f̂1

reach their respective vacuum states. In other words, the com-
bined action of cavity dissipation and excitation swapping
results in an entropy sink for the engineered mode f̂1, sim-
ilarly to the dissipation engineering schemes developed in
Refs. [26,32,36].

After the system reaches the steady state, we implement
step (ii) by switching the coupling parameters (via switching
the driving fields) to obtain Hamiltonian Ĥ2. The master equa-
tion becomes

ρ̇ = −i[Ĥ2, ρ] + κD[â]ρ. (16)

Again, the steady state is a factorized state, now of the vacua
for modes â and f̂2. Therefore, the steady state of the mechan-
ical modes after the second step is the simultaneous vacuum
of modes f̂1 and f̂2 [52], which, by construction, is our target
CPE state. It is important to highlight that when we mention
reaching the steady state in either steps, it is meant allowing
the system to evolve until its state is very near to the steady
state of that step. In other words, practically the system is
considered in a steady state if its state is unchanging with time
(up to the simulation’s accuracy).

An advantage of this approach is that it is less onerous in
terms of the number of frequencies that need to be driven; it
follows from Eqs. (9)–(12) that seven tones are required in
total at any instant of time: five to address the mechanical
oscillator featuring both the linear and the quadratic coupling
term (resonator 1), and two for the other oscillator.

We stress that the above result is valid when the two me-
chanical oscillators are decoupled from their respective baths,
i.e., there is no mechanical noise. Any interaction between
mechanical modes and their environment will negatively af-
fect the target state. An extensive numerical validation of our
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results in the presence of mechanical noise will be dealt with
in more detail in Sec. III D.

B. Two-dissipator approach

In contrast to the switching approach given above, where
two steps are needed to produce the target state, here the CPE
state is reached in one step only, but we need two cavity
modes. We set the coupling parameters in Hamiltonian (1)
such that it is written as

Ĥ = g(â†
1 f̂1 + â†

2 f̂2) + H.c., (17)

with f̂1 and f̂2 are defined in Eq. (8), and g is a unit for the
couplings, as explained previously. Again, when neglecting
thermal noise, the system’s state evolves according to the
master equation

ρ̇ = −i[Ĥ, ρ] +
∑

�

κ�D[â�]ρ. (18)

For the same reasons outlined in Sec. III A, the target CPE
state is obtained in the long-time limit, when both the en-
gineered modes f̂1 and f̂2 reach their common ground state.
Again, numerical validations of this result in the presence of
mechanical noise will be given in Sec. III D.

Compared to the switching scheme discussed earlier, the
two-dissipator approach requires a larger number of driving
fields since there are two cavity modes coupled to the me-
chanical oscillators. For each cavity mode seven transitions
need to be driven (as before, five fields for the linearly and
quadratically coupled oscillator, two fields for the linearly
coupled one), and hence fourteen drives are needed in total
to implement the two-dissipator approach.

C. Effective dynamics

The numerical simulations required to study the system
in the presence of mechanical noise are computationally ex-
pensive, given the relatively large Hilbert space needed to
accurately describe the full system. To address this issue,
we employ the adiabatic elimination technique outlined in
Ref. [53] to eliminate the cavity mode(s). The system un-
der consideration exhibits two distinct time scales: one for
the rapidly varying cavity modes and another for the slower
mechanical modes. By adiabatically eliminating the cavity
modes, we obtain a simplified set of dynamical equations that
depend solely on the mechanical modes. We refer to this
simplified dynamics as the effective dynamics. It is worth
noting that our state generation methods do not require this
step of adiabatic elimination. However, it proves beneficial in
reducing the computational cost and enabling the numerical
study of states with higher nonlinearity and squeezing, as
well as states with higher degree of entanglement and Wigner
negativity.

Starting with the Hamiltonian-switching scheme, Eqs. (15)
and (16), after adiabatically eliminating the cavity mode â
(see Appendix D for details), respectively lead to the effective
dynamics described with the master equation

ρ̇b = κ0D[ f̂ j]ρb, (19)

for step j ( j = 1, 2), where ρb is the density matrix that
describes the quantum state of the mechanical system alone.
Here the effective decay rate κ0 is given in terms of the
original cavity and mechanical decay rates as κ0 = 4g2

κ
,

where g and κ appear in Hamiltonians (13)–(14) and master
equations (15)–(16).

Similarly, in the two-dissipator approach we adiabatically
eliminate the two cavity modes with annihilation operators â1

and â2 from the dynamics described with Hamiltonian (17)
and master equation (18) and we obtain an effective master
equation of the form (again, see Appendix D for details)

ρ̇b = κ0(D[ f̂1]ρb + D[ f̂2]ρb), (20)

where again κ0 = 4g2

κ1,2
is the new effective decay rate with g

and κ� (� = 1, 2) are given in Hamiltonian (17) and master
equation (18). In the following, we will consider the case
κ1 = κ2. Notice that Eq. (20) clarifies the reason why we
referred to this approach as the two-dissipator method: in
fact, two collective dissipative channels are obtained via the
adiabatic elimination procedure.

Including standard mechanical noise for the two massive
oscillators with dissipation rates γ j and thermal phonon num-
bers nth, j , the effective master equations above become

ρ̇B = κ0D[ f̂�] ρ

+
2∑

j=1

(γ j (nth, j + 1)D[b̂ j]ρ + γ jnth, jD[b̂†
j]ρ) (21)

for the Hamiltonian-switching scheme, and

ρ̇B = κ0(D[ f̂1] ρ + D[ f̂2]ρ)

+
2∑

j=1

(γ j (nth, j + 1)D[b̂ j]ρ + γ jnth, jD[b̂†
j]ρ) (22)

for the two-dissipator approach. It is worth mentioning that
the mechanical noise terms appearing in these two master
equations in the current effective picture remain acting locally
to each mechanical oscillator, similar to the full picture dis-
cussed in previous sections. One may consult Ref. [32] for a
similar system and derivation of the effective dynamics while
keeping local action of mechanical thermal noise.

The following numerical simulations will be generated
from these effective master equations, although our methods
are still valid for the evolutions of the full system.

D. Numerical results in the presence of mechanical noise

Here we numerically analyze the effects of mechanical
noise on the results derived above. For the sake of providing
a relevant example, in the following we set the nonlinearity
of the target state to λ = 0.175 and the squeezing to s = 1.26
(2 dB). We numerically confirmed that the results presented
below remain valid for other values of the CPE state parame-
ters. We also set the evolution time per step to t f = 10

κ
, enough

to reach the steady state with good accuracy.
In the following we will use the fidelity [54] as a figure of

merit to assess the similarity between the state obtained dy-
namically with our two schemes and the target CPE state. The
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(a)

(b)

FIG. 2. Effect of mechanical thermal noise on the final fidelity
for (a) Hamiltonian-switching scheme and (b) the two-dissipator
scheme. The target state is set to λ = 0.175 and 20 log10 s j = 2 dB of
squeezing. Both mechanical oscillators are subject to a thermal envi-
ronment with dissipation rate γ and thermal phonon number nth. The
time evolution is terminated at 10

κ0
for each step of the Hamiltonian-

switching scheme and for the full evolution in the two-dissipator
case. We set nth = [0, 1, 2, 3] in the Hamiltonian-switching scheme
and nth = [0, 5, 10, 15] in the two-dissipator scheme. The mechani-
cal dissipation γ

κ0
ranges between 0 and 0.01 for both methods.

explicit expression of the fidelity between the mechanical sub-
system’s steady state ρss and the target state ρs,λ ≡ |s, λ〉〈s, λ|
is given by:

F = Tr
√√

ρs,λ ρss
√

ρs,λ =
√

〈s, λ|ρss|s, λ〉. (23)

The closer the fidelity is to one the more similar the states are.
Notice that F will denote the final fidelity, namely the fidelity
between the target state and the system’s steady state at second
step for the case of Hamiltonian-switching scheme and at the
end of the single step for the case of two-dissipator approach.

We plot the final fidelity as a function of the mechanical
decay rates γ1 and γ2 for different temperatures (given by
average thermal phonon numbers nth,1 and nth,2). As said, for
the sake of simplicity, we consider identical bath for both me-
chanical oscillators by setting γ1 = γ2 = γ and nth,1 = nth,2 =
nth. The cases of Hamiltonian-switching and two-dissipator
approach are shown in Figs. 2(a) and 2(b), respectively. As
expected, the system evolves to the target state in both ap-
proaches when it is completely decoupled from the thermal

(a)

(b)

FIG. 3. Effect of mechanical thermal noise on the purity of the
state produced in (a) the Hamiltonian-switching and (b) the two-
dissipator schemes. All the parameters are set as in Fig. 2.

bath (i.e., γ = 0). The detrimental effects of mechanical noise
become apparent for larger values of γ , even if the decay
is mainly linear in γ . In particular, we note that the two-
dissipator case is more robust than the Hamiltonian-switching
scheme to the effect of noise. This is related to the fact that
the time needed to the system to reach the steady state in the
Hamiltonian-switching approach is longer (in our simulation,
double) than what is needed for the two-dissipator scheme.
Therefore, the detrimental effects of thermal mechanical noise
act for a longer time causing, in turn, a larger loss of fidelity.
Notice that, due to this fact, the noise parameters are set
differently for the two schemes in Fig. 2.

In Fig. 2, as well as in the rest of the figures in this work, we
have included a trend line for each set of numerical results to
provide a visual guide. These lines are obtained by fitting the
numerical results with the function y = Ae−Bx + C, where the
parameters A, B, and C are determined through least-square
minimization. The sole purpose of these trend lines is to aid
in visualizing the data.

The purity of the steady state is a second key metric for
evaluating in general the robustness of generation schemes
against mechanical noise. As confirmed in Fig. 3, when γ = 0,
the steady state is a pure CPE state. However, as mechanical
thermal noise is introduced, the purity of the state is dimin-
ished, even at relatively low values of γ and nth. Despite this,
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the key properties of the CPE state that we are interested in are
not significantly affected, as we will demonstrate in the next
section.

IV. NON-GAUSSIAN ENTANGLEMENT

We will now concentrate on the two most important char-
acteristics of the CPE state that we are interested in, which are
entanglement and Wigner negativity. In particular, we evaluate
the entanglement of the generated states using the logarithmic
negativity of entanglement [55]. For a given bipartite quantum
state ρ, composed of two subsystems A and B, the latter is
defined as

EN (ρ) = log2(‖ ρ
A ‖1). (24)

Here 
A is the partial transpose with respect to subsystem A,
and ‖ · ‖1 denotes the trace norm. In our case, system A refers
to oscillator b1 and system B to oscillator b2.

For what concerns the Wigner negativity, let us first recall
that, while for pure states non-Gaussianity is equivalent to
Wigner negativity, this is no longer the case for mixed states.
In fact, Wigner negativity is a more stringent requirement
[56]. In order to confirm the presence of negative values of
the Wigner function, we report here the value of the most
negative point of the Wigner cross section corresponding
to the first mode’s momentum axis [specifically, Wmin(ρ) =
minp1W (0, p1, 0, 0)]. We choose the latter since it aligns with
the most negative point of the entire Wigner function of the
produced state, as it can be intuitively understood from the
known properties of the single-mode cubic-phase state.

Clearly, these two figures of merit EN (ρ) and Wmin(ρ) are
sufficient to confirm Wigner-negative entanglement even in
the presence of noise. For illustration purposes, we once again
set as target-state parameters λ = 0.175 and 2 dB of squeez-
ing. Due to the two-dissipator scheme being more robust to
noise compared to switching scheme, as shown in Sec. III D,
the noise parameters will be set differently in each case.

Our results are reported in Figs. 4(a) and 5(a), for what con-
cerns the Hamiltonian-switching scheme, and Figs. 4(b) and
5(b) for the two-dissipator approach. Crucially, one can ob-
serve that both schemes retain Wigner-negative entanglement
in realistic conditions, even in regimes where the purity of the
state is low (see Fig. 3). Notice that, also with respect to these
figures of merit, it is clear that the two-dissipator scheme is
more robust to noise than the Hamiltonian-switching scheme.
As already noted, this is due to the longer time needed to the
system to reach the steady state in the Hamiltonian-switching
approach. Notwithstanding this, experimental considerations
might still induce to prefer it with respect to the two-dissipator
scheme, since the latter is more demanding, in that it requires
to control an additional cavity mode.

Let us mention here that, in our numerical simulations, we
have initialized the mechanical system in the vacuum state.
This assumption has no practical consequences for the case
of the two-dissipator scheme, as the latter possesses a unique
steady state, independently of the initial state. However, that
is not true anymore for the Hamiltonian-switching scheme,
where small deviations from the vacuum initial state will
result in a slightly different steady state with respect to what
we report here. In this case, our assumption therefore requires

(a)

(b)

FIG. 4. Effect of mechanical thermal noise on the most negative
point of the first mode momentum Wigner cross section of the state
produced in (a) the Hamiltonian-switching and (b) the two-dissipator
scheme. All the parameters are set as in Fig. 2.

in practice a precooling stage, that cools the initial state of a
realistic setting to a state close to the vacuum. This point is
addressed in more details in Appendix E.

V. EXPERIMENTAL FEASIBILITY

In order to implement our protocol, a series of conditions
need to be met. First, achieving an optomechanical Hamilto-
nian in the form of Eq. (1) requires a first set of conditions. We
thoroughly address them in Appendix A, and here we provide
a summary. Equation (1) necessitates operating within the
sideband resolved regime, i.e., κ 	 �1,�2 and within weak
coupling; the latter condition [cf. Eq. (A16)] controls the time-
dependent part of the classical optomechanical equations of
motions, and is needed for handling the time-independent dy-
namics of cavity fluctuations. All combined, the requirement
reads g 	 κ 	 �1,�2. This is easily attained, as several op-
tomechanical platforms operate within this regime. Second,
the implementation of our ideas requires the ability to en-
gineer an optomechanical coupling with both a linear and a
quadratic term in the mechanical displacement and the ability
to couple a cavity field to two mechanical modes.

033508-7



MCCONNELL, HOUHOU, BRUNELLI, AND FERRARO PHYSICAL REVIEW A 109, 033508 (2024)

(a)

(b)

FIG. 5. Effect of mechanical thermal noise on the logarith-
mic negativity of entanglement of the state produced in (a) the
Hamiltonian-switching and (b) the two-dissipator scheme. All the
parameters are set as in Fig. 2.

Quadratic coupling in optomechanics has been intensively
investigated, especially in connection with quantum non-
demolition measurement of the phonon number. For this
purpose, optomechanical systems in the so-called membrane-
in-the-middle configuration are among the most promising
candidates [57]. There, an enhanced quadratic coupling can
arise due to the avoided crossing between two coupled optical
modes, each linearly coupled to the mechanical mode [58].
Experimental demonstrations of quadratic coupling have been
reported in membrane-in-the-middle related configurations,
featuring actual dielectric membrane resonators [57,59,60],
cold atoms [61], levitated nanoparticles [62], and photonic
crystal cavities [63,64]. Recently, the enhanced nonlinear op-
tomechanical measurement of mechanical motion has been
demonstrated in a photonic crystal device [65]. Other systems
where quadratic coupling can be engineered are microdisk
resonators [66] and paddle nanocavities [67], where quadratic
coupling emerges due to shared symmetries between the
optics and mechanical motion [68].

We stress that the requirements for implementing our
scheme are less stringent than those imposed by the still
elusive regime of nonlinear phonon number measurement.
Indeed, the latter requires a purely quadratic coupling and

is corrupted by parasitic linear coupling, which are known
to arise in membrane-in-the-middle setups, while in our
case the presence of a spurious linear coupling is not
detrimental. A detailed discussion on how to engineer tun-
able linear-and-quadratic optomechanical interactions in a
membrane-in-the-middle optomechanical systems, with spe-
cial focus on a design based on a photonic crystal cavity
with double slotted geometry [63,64], was provided by some
of the authors in Refs. [26,36]. In particular, Appendix C
of Ref. [26] contains a quantitative estimate of the relevant
quantities based on state-of-the-art parameters of Ref. [64].

Radiation-pressure coupling several mechanical reso-
nances to a common cavity mode is the main goal multimode
optomechanics. Focusing on the generation of mechanical en-
tanglement via reservoir engineering related schemes [32,69],
the preparation and verification of entanglement between the
center-of-mass motion of two micromechanical oscillators
via engineered dissipation has been recently demonstrated
in microwave optomechanics [30]. A direct observation of
two-mode entanglement was also reported for two mechanical
oscillators driven by a microwave cavity [33].

This illustrates that two key components of our proposal
can indeed be realized using existing optomechanical technol-
ogy. Yet, it is worth noting that, as of our current knowledge,
there has not been any demonstration of a single platform in-
tegrating both of these elements. The intricacies of combining
these elements, as well as a thorough quantitative analysis of
linear and quadratic terms along with the influence of non-
idealities and limitations, would necessitate the selection of a
particular platform. This goes beyond the scope of the present
study, and will be addressed in future works.

VI. CONCLUSIONS

In this work, we presented two methods for stabilizing
entangled states of two massive oscillators, which exhibit
negative values in their phase-space representation as captured
by the Wigner function. The nonlinearity required for this
purpose is of the minimal possible order (third order in the
canonical operators) and it is effectively achieved through
a driven-dissipative dynamics between the mechanical oscil-
lators of interest and auxiliary cavity modes. Furthermore,
this approach intrinsically endows the generated states with
robustness against common sources of noise, as we demon-
strated through numerical simulations.

The cubic-phase entangled (CPE) state stabilized by our
schemes can be utilized in various quantum information pro-
cessing tasks. In particular, incorporating CPE states into
a Gaussian cluster state allows for quantum computational
universality through gate teleportation [44,70]. More gen-
erally, there has been significant interest in accessing the
genuine quantum regime in massive systems for various ap-
plications [13], such as quantum nondemolition detection and
sensing, as well as for testing foundational principles of quan-
tum theory, such as collapse models [71] and macrorealism
[72,73]. The ability to access the Wigner-negative regime, as
proposed in this work, could further enhance the applicabil-
ity of these systems in such contexts. In fact, it is known
that non-Gaussian states can have larger metrological power
with respect to their Gaussian counterpart [74–76] and are
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especially sensitive to decoherence effects [77]. Possible ap-
plications of our findings along these directions are left for
future research.
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APPENDIX A: DERIVATION OF THE SYSTEM’S
HAMILTONIAN

Here we derive the Hamiltonian in Eq. (1). We consider an
optomechanical system with two mechanical oscillators with
distinct frequencies �1 and �2 represented by annihilation
operators b̂1 and b̂2. We further consider two cavity modes
with annihilation operator â1 and â2, and frequencies ω1 and
ω2. Each cavity is driven by an external time-dependent field,
ε1(t ) and ε2(t ), respectively. This system is described by the
Hamiltonian

H = ω1â†
1â1 + ω2â†

2â2 + �1b̂†
1b̂1 + �2b̂†

2b̂2

+ ε∗
1 (t )â1 + ε1(t )â†

1 + ε∗
2 (t )â2 + ε2(t )â†

2. (A1)

Both cavity frequencies are dependent on the mechanical
positions q̂1 and q̂2 due to radiation pressure interaction [13].
We then expand ω�, with � = 1, 2, in terms of these mechani-
cal positions up to second order, so that we obtain

ω� = ωc,� + g(1)
L,�q̂1 + g(1)

Q,�q̂2
1 + g(2)

L,�q̂2 + g(2)
Q,�q̂2

2 + . . . , (A2)

where g( j)
L,� = δω�

δq̂ j
, and g( j)

Q,� = 1
2

δ2ω�

δq̂2
j

and j = 1, 2 denoting

which mechanical oscillator it is associated to. These are the
position and position-squared couplings of each mechanical
oscillator with the cavity field; ωc,� is the unperturbed cavity
frequency. Now we consider the scenario in which we have
multitone drives,

ε�(t ) =
∑

k

ε�,ke−iω�,kt , (A3)

where ε�,k are the complex driving amplitudes and ω�,k are
the driving frequencies. We expand the standard linearization
procedure [13] for the two mechanical modes, the multitone
drive and position-squared coupling as follows. The system
is in contact with a vacuum reservoir for the cavity and a
thermal bath for the mechanical oscillators. This leads to the
Heisenberg-Langevin equations [78] for our system operators

˙̂q j (t ) = � j p̂ j, (A4)

˙̂p j (t ) = −� j q̂ j −
2∑

�=1

â†
� â�

(
g( j)

L,� + 2g( j)
Q,�q̂ j

) − 
 j p̂ j + ξ̂ j (t ),

(A5)

˙̂a�(t ) =
(
−κ�

2
− iωc,�

)
â� − iâ�

2∑
j=1

(
g( j)

L,�q̂ j + g( j)
Q,�q̂2

j

)
− iε�(t ) + √

κ�,0 â�,in, (A6)

where κ�,0 and 
 j are the damping rates of the �th cavity mode
and the jth oscillator. â�,in and ξ̂ j are the input noise opera-
tors for the cavities and mechanical oscillators respectively.

These input noise operators satisfy the following correlation
relations,

〈â†
�,in(t ) â�,in(t ′)〉 = 0, (A7)

〈â�,in(t ) â†
�,in(t ′)〉 = δ(t − t ′), (A8)

〈ξ̂ †
j (t ) ξ̂ j (t

′)〉 = n jδ(t − t ′), (A9)

〈ξ̂ j (t ) ξ̂
†
j (t ′)〉 = (n j + 1)δ(t − t ′), (A10)

where n j is the mean phonon number.
Due to our aim of deriving a Hamiltonian involving quan-

tum fluctuations around the classical fields steady states, we
replace the operators in Eqs. (A7)–(A10), with their respective
mean fields. These are 〈â�〉 ≡ α�, 〈q̂ j〉 ≡ Qj and 〈p̂ j〉 ≡ Pj .
The classical equations of motion are now given as

Q̇ j (t ) = � jPj, (A11)

Ṗj (t ) = −� jQ j −
2∑

�=1

|α�|2
(
g( j)

L,� + 2g( j)
Q,�Qj

) − 
 jPj,

(A12)

α̇�(t ) =
⎛
⎝−κ�

2
− iωc,� − i

∑
j

g( j)
L,�Qj + g( j)

Q,�Q2
j

⎞
⎠α� − iε�(t ).

(A13)

Consider the following ansatz for the intracavity fields

α� =
∑

k

α�,ke−iω�,kt , (A14)

where the constant coefficients α�,k are the complex ampli-
tudes of the cavity at the steady state. Putting (A14) into (A12)
we obtain

Ṗj (t ) = − � jQ j − 
 jPj

−
2∑

�=1

(
g( j)

L,� + 2g( j)
Q,�Qj

) ∑
k,k′

α∗
�,kα�,k′ei(ω�,k−ω�,k′ )t .

(A15)

We assume weak couplings such that for k �= k′∣∣g( j)
(L,�),(Q,�)α�,kα�,k′

∣∣ 	 � j, (A16)

thus we can neglect the time-dependent terms in (A15). De-
noting Q(0)

j and P(0)
j as the values of position and momentum

at the steady state we find

P(0)
j = 0, (A17)

Q(0)
j = −

∑2
�=1 g( j)

L,�

∑
k |α�,k|2

�k + ∑2
�=1

(
2g( j)

Q,�

∑
k |α�,k|2

) , (A18)

α�,k = −iε�,k

κ�

2 + i
[ − ��,k + ∑2

j=1

(
g( j)

L,�Q(0)
j + g( j)

Q,�Q(0)2

j

)] ,

(A19)

where ��,k ≡ ω�,k − ωc,� is the detuning of the kth drive with
respect to the �th cavity.

Since we have found the steady state for all fields, we
can derive a Hamiltonian of the system in terms of the
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quantum fluctuations around the steady-state values. We split
the operators into the their classical component and quantum
fluctuations. We denote the classical values as defined before
and the quantum fluctuations as their quantum operators. This
gives us

â� → a� +
∑

k

α�,ke−iω�,kt , (A20)

q̂ j → q j + Q(0)
j , (A21)

p̂ j → p j + P(0)
j . (A22)

One can then substitute (A20)–(A22) into (A4)–(A6). Assum-
ing strong drives, that is α�,k � 1, we have

˙̂q j = � j p̂ j, (A23)

˙̂p j ≈ −� j q̂ j − 
 j p̂ j + ξ̂ j (t ) −
2∑

�=1

(
â†

�

∑
k

α�,ke−iω�,kt + â�

∑
k

α∗
�,keiω�,kt

)(
g( j)

L,� + 2g( j)
Q,�Q(0)

j + 2g( j)
Q,�q̂ j

)
, (A24)

˙̂a� ≈
(−κ�

2
− iωc,�

)
â� −

∑
k

iα�,ke−iω�,kt
2∑
j

([
g( j)

L,� + 2g( j)
Q,�Q(0)2

j

]
q̂ j + g( j)

Q,�q̂2
j

) + √
κ�,0â�,in(t ). (A25)

These effective Heisenberg-Langevin equations correspond to the Hamiltonian

Ĥ =
2∑

�=1

(
ωc,�â†

� â� + ��b̂†
�b̂� +

∑
k

(α�,ke−iω�,kt â†
� + α∗

�,keiω�,kt â�)
(√

2G( j)
L,�q̂ j + 2G( j)

Q,�q̂2
j

))
, (A26)

where
√

2G( j)
L,� ≡ g( j)

L,� + 2g( j)
Q,�Q(0)

j
2

and 2G( j)
Q,� ≡ g( j)

Q,�.
To get rid of time dependence one can go to a frame rotating with the free terms of the system. This further changes our

Hamiltonian such that

Ĥ� =
2∑

j=1

∑
k

(α�,ke−i��,kt â†
� + α∗

�,kei��,kt â�)
[
G( j)

L,�(b̂ je
−i� j t + b̂†

je
i� j t ) + G( j)

Q,�(b̂ je
−i� j t + b̂†

je
i� j t )2

]
. (A27)

Then consider driving fields with detunings �
( j)
�,1 = −� j , �

( j)
�,2 = � j , �

( j)
�,3 = −2� j , �

( j)
�,4 = 2� j , and �

( j)
�,5 = 0. These have

amplitudes α
( j)
�,k for k = 1, . . . , 5. This gives five drives per mode per mechanical oscillator, i.e., 20 drives in total. Applying a

rotating wave approximation to (A27) eliminates all the counterrotating terms giving us our effective Hamiltonian,

Ĥ =
2∑

�, j=1

â†
�

(
g( j)

�,1b̂ j + g( j)
�,2b̂†

j + g( j)
�,3b̂2

j + g( j)
�,4b̂†2

j + g( j)
�,5{b̂ j, b̂†

j}
) + H.c. (A28)

Here g( j)
�,μ ≡ α

( j)
�,μG( j)

L,� and g( j)
�,ν ≡ α

( j)
�,νG( j)

Q,� (μ = 1, 2 and ν = 3, 4, 5) are the amplifications of the single phonon-photon
couplings, which are caused by the external driving. This rotating wave approximation holds if we are in the weak coupling
regime mentioned earlier [Eq. (A16)].

For the case of one cavity mode present in the system, the Hamiltonian is derived by passing through the same steps above.
Since we have only one cavity, we may omit the � subscripts in all the previous expressions and obtain the following Hamiltonian
of the system:

Ĥ = â†
2∑

j=1

(
g( j)

1 b̂ j + g( j)
2 b̂†

j + g( j)
3 b̂2

j + g( j)
4 b̂†2

j + g( j)
5 {b̂ j, b̂†

j}
)

+ H.c. (A29)

Notice that, in this case, ten tones are required to set indepen-
dently the effective couplings g( j)

�,μ.

APPENDIX B: UNITARY TRANSFORMATION
OF FIELD OPERATORS

We want in this Appendix to calculate the transformations
Û b̂ jÛ †, i.e., obtain the expressions of f̂1 and f̂2 given in (8),

f̂ j = Û b̂ jÛ
†, (B1)

where Û is the unitary transformation defined in (3),

Û = �̂1(λ)B̂BS(θ )Ŝ(s1, s2). (B2)

The mechanical modes b̂1 and b̂2 transform under the uni-
taries �̂1(λ), B̂BS(θ ) and Ŝ(s1, s2) according to the following:

Ŝb̂ j Ŝ
† = μ j b̂ j − ν j b̂

†
j, (B3)

B̂BSb̂ j B̂
†
BS = α j b̂1 + β j b̂2, (B4)

�̂1b̂ j�̂
†
1 = b̂ j − 3iλδ1 j

2
√

2
(b̂1 + b̂†

1)2, (B5)

where μ j = 1
2 (s j + 1

s j
), ν j = 1

2 (s j − 1
s j

), α1 = β2 = cos θ ,
α2 = −β1 = sin θ , and δ is the Kronecker delta.
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From the above we can then easily find

f̂ j = �̂1B̂BSŜ b̂ j Ŝ†B̂†
BS�̂

†
1,

= �̂1B̂BS(μ j b̂ j − ν j b̂
†
j )B̂

†
BS�̂

†
1,

= �̂1[μ j (α j b̂1 + β j b̂2) − ν j (α j b̂
†
1 + β j b̂

†
2)]�̂†

1,

= α jμ j b̂1 − α jν j b̂
†
1 − 3iα jλ(μ j + ν j )

2
√

2
(b̂1 + b̂†

1)2

+ β jμ j b̂2 − β jν j b̂
†
2. (B6)

Now we consider the values taken in the main text, θ =
π/4 and s1 = 1/s2 ≡ s. This leads to the following formulas:

α j = 1√
2
, β j = (−1) j+1

√
2

, μ j = 1

2

(
s + 1

s

)
,

ν j = (−1) j+1

2

(
s − 1

s

)
. (B7)

Therefore, the transformed operators f̂ j become

f̂ j = Û b̂ jÛ
†

= 1

2
√

2

(
s + 1

s

)
b̂1

+ (−1) j

2
√

2

(
s − 1

s

)
b̂†

1 − 3iλ

4s(−1) j (b̂1 + b̂†
1)2

− (−1) j

2
√

2

(
s + 1

s

)
b̂2 − 1

2
√

2

(
s − 1

s

)
b̂†

2. (B8)

APPENDIX C: WIGNER FUNCTION OF THE CPE STATE

In this section we analytically calculate the Wigner func-
tion of the CPE state,

|s1, s2, λ, θ〉 = �̂1(λ)B̂BS(θ )Ŝ(s1, s2)|00〉. (C1)

Taking the transformation of the field operators into account
[Eqs. (B3) and (B4)], it is easy to show that the above state
can be written in the form

|s1, s2, λ, θ〉 = B̂BS(θ )Ŝ(s1, s2)eiλ(μq̂1+νq̂2 )3 |00〉, (C2)

where μ = α1s1 and ν = −β1s2, with α1 and β1 are defined
in Appendix B.

The Wigner function of the CPE state |s1, s2, λ, θ〉 can
be obtained form that of the cubic state eiλ(μq̂1+νq̂2 )3 |00〉
by a proper transformation of the phase-space variables
under the action of the Gaussian operator B̂BS(θ )Ŝ(s1, s2).
Let Ws1,s2;θ ;λ(q1, p1; q2, p2) and W̃s1,s2;θ ;λ(q1, p1; q2, p2) be
the Wigner functions of the CPE state |s1, s2, λ, θ〉 and
the state eiλ(μq̂1+νq̂2 )3 |00〉, respectively, with q1 and p1 (q2

and p2) are the phase-space coordinates associated with
mode 1 (mode 2). Since the field operators q̂1, p̂1, q̂2,
and p̂2 transform under the unitary operation B̂BS(θ )Ŝ(s1, s2)

according to

B̂BS(θ )Ŝ(s1, s2)q̂1(B̂BS(θ )Ŝ(s1, s2))† = 1

s1
(α1q̂1 + β1q̂2),

(C3)

B̂BS(θ )Ŝ(s1, s2) p̂1(B̂BS(θ )Ŝ(s1, s2))† = s1(α1 p̂1 + β1 p̂2),
(C4)

B̂BS(θ )Ŝ(s1, s2)q̂2(B̂BS(θ )Ŝ(s1, s2))† = 1

s2
(α2q̂1 + β2q̂2),

(C5)

B̂BS(θ )Ŝ(s1, s2) p̂2(B̂BS(θ )Ŝ(s1, s2))† = s2(α2 p̂1 + β2 p̂2),
(C6)

then one can write the relation between the Wigner functions
W and W̃ as the following:

Ws1,s2;θ ;λ(q1, p1; q2, p2)

= W̃s1,s2;θ ;λ

(
1

s1
(α1q1 + β1q2), s1(α1 p1 + β1 p2);

× 1

s2
(α2q1 + β2q2), s2(α2 p1 + β2 p2)

)
. (C7)

Now, we find the expression of W̃s1,s2;θ ;λ(q1, p1; q2, p2).
If ψs1,s2;θ ;λ(q1, q2) is the wave function of the state
eiλ(μq̂1+νq̂2 )3 |00〉,

ψs1,s2;θ ;λ(q1, q2) = 1√
π

eiλ(μq1+νq2 )3− 1
2 q2

1− 1
2 q2

2 , (C8)

then the Wigner function writes

W̃s1,s2;θ ;λ(q1, p1; q2, p2) = 1

4π2

∫∫
R2

dxdy ei(xp1+yp2 )ψs1,s2;θ ;λ

×
(

q1 − 1

2
x, q2 − 1

2
y

)
ψ∗

s1,s2;θ ;λ

×
(

q1 + 1

2
x, q2 + 1

2
y

)
, (C9)

= e−q2
1−q2

2

4π3

∫∫
R2

dxdy e− iλ
4 (μx+νy)3

− 1
4 (x2 + y2) + i(xp1 + yp2)

−3iλ(μq1 + νq2)2(μx + νy).

(C10)

In order to simplify the calculation of the above integral, we
consider a linear transformation

X = μx + νy, (C11)

Y = μ′x + ν ′y, (C12)

with the conditions

μν ′ − μ′ν �= 0, (C13)

μμ′ + νν ′ = 0. (C14)

Therefore the above integral becomes

W̃s1,s2;θ ;λ(q1, p1; q2, p2) = e−q2
1−q2

2

4π3|μν ′ − μ′ν| I1I2, (C15)
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with integrals I1 and I2 are

I1 =
∫ ∞

−∞
dX e

− 1
4 λX 3− μ′2+ν′2

4(μν′−μ′ν)2
X 2+iX

(
−3λ(μq1+νq2 )2+ ν′ p1−μ′ p2

μν′−μ′ν
)
,

(C16)

I2 =
∫ ∞

−∞
dY e

− μ2+ν2

4(μν′−μ′ν)2
Y 2+iY −νp1+μp2

μν′−μ′ν . (C17)

The integral I2 is easy to calculate,

I2 = 2
∣∣μν ′ − μ′ν

∣∣√ π

μ2 + ν2
e
− (νp1+μp2 )2

μ2+ν2 . (C18)

Now we calculate the integral I1. We rewrite it as a Fourier
transform of a cubic exponential:

I1 = 2π

∣∣∣∣ 4

3λ

∣∣∣∣
1
3

e
(μ′2+ν′2 )3

54λ2 (μν′−μ′ν)6
+ μ′2+ν′2

(μν′−μ′ν)2
(μq1+νq2 )2− μ′2+ν′2

3λ(μν′−μ′ν)3
(ν ′ p1−μ′ p2 )

∫ ∞

−∞
dk e

i
3 (2πk)3+2π ik

(
(μ′2+ν′2 )2

(6λ)
4
3 (μν′−μ′ν)4

+(6λ)
2
3 (μq1+νq2 )2−( 4

3λ )
1
3 ν′ p1+μ′ p2

μν′−μ′ν

)
,

(C19)

where we have introduced the new integration variable k as

X =
(−4

3λ

) 1
3

(
2πk − i

(6λ)
2
3

μ′2 + ν ′2

(μν ′ − μ′ν)2

)
. (C20)

The integral is found to be related to the Airy function,

I1 = 2π

∣∣∣∣ 4

3λ

∣∣∣∣
1
3

e
(μ′2+ν′2 )3

54λ2 (μν′−μ′ν)6
+ μ′2+ν′2

(μν′−μ′ν)2
(μq1+νq2 )2− μ′2+ν′2

3λ(μν′−μ′ν)3
(ν ′ p1−μ′ p2 )Ai

×
(

(μ′2 + ν ′2)2

(6λ)
4
3 (μν ′ − μ′ν)4

+ (6λ)
2
3 (μq1 + νq2)2 −

(
4

3λ

) 1
3 ν ′ p1 + μ′ p2

μν ′ − μ′ν

)
. (C21)

The Wigner function W̃ is obtained by substituting formulas of I1 and I2 and after invoking condition (C14),

W̃s1,s2;θ ;λ(q1, p1; q2, p2) = 2e
1

54λ2 (μ2+ν2 )3

π
3
2

√
μ2 + ν2 |6λ| 1

3

e
−q2

1−q2
2+ 1

μ2+ν2 (μq1+νq2 )2− 1
μ2+ν2 (−νp1+μp2 )2− 1

3λ(μ2+ν2 )2
(μp1+νp2 )

× Ai

(
(6λ)

2
3 (μq1 + νq2)2 − 2

(6λ)
1
3 (μ2 + ν2)

(μp1 + νp2) + 1

(6λ)
4
3 (μ2 + ν2)2

)
. (C22)

Finally, the Wigner function of our CPE state writes

Ws1,s2;θ ;λ(q1, p1; q2, p2) = 2e
1

54λ2 (μ2+ν2 )3

π
3
2

√
μ2 + ν2 |6λ| 1

3

e
−
(

α2
1

s2
1

+ α2
2

s2
2

− 1
μ2+ν2

)
q2

1−
(

β2
1

s2
1

+ β2
2

s2
2

)
q2

2−2α1β1

(
1
s2
1
− 1

s2
2

)
q1q2− s2

1s2
2

μ2+ν2 p2
2− 1

3λ(μ2+ν2 )2

× ((
s2

1α
2
1 + s2

2α
2
2

)
p1 + α1β1

(
s2

1 − s2
2

)
p2

)
× Ai

(
(6λ)

2
3 x2 − 2

(6λ)
1
3 (μ2 + ν2)

((
s2

1α
2
1 + s2

2α
2
2

)
p1 + α1β1

(
s2

1 − s2
2

)
p2

) + 1

(6λ)
4
3 (μ2 + ν2)2

)
.

(C23)

APPENDIX D: ADIABATIC ELIMINATION OF CAVITY
MODES AND EFFECTIVE DYNAMICS

In this section, we show the derivation of the master equa-
tion for the effective dynamics where the cavity modes are
adiabatically eliminated. We follow the procedure given in
Ref [53].

We start by noting that Hamiltonian (A28) can be cast in
the following form:

Ĥ = g(â†
1 f̂1 + â1 f̂ †

1 + â†
2 f̂2 + â2 f̂ †

2 ), (D1)

where f̂� (� = 1, 2) are defined as

f̂� = 1

g

∑
j

g( j)
�,1b̂ j + g( j)

�,2b̂†
j + g( j)

�,3b̂2
j + g( j)

�,4b̂†2

j + g( j)
�,5{b̂ j, b̂†

j},

(D2)

and g is a unit for the couplings.
Consider the case where our system only has dissipation

through the cavity modes at rates κ�. In our case κ1 = κ2 ≡ κ .
This system will evolve according to a master equation in
terms of the density matrix ρ given by

ρ̇ = −i[Ĥ , ρ] +
∑

�

κ

(
â�ρâ†

� − 1

2
â†

� â�ρ − 1

2
ρâ†

� â�

)
.

(D3)

Now we assume the system has two timescales, the first is fast
for the cavity modes we want to eliminate, while the second is
slow for the mechanical oscillators. The master equation can
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be given in the following form:

ρ̇ =
∑

�

L�ρ + εL0ρ, (D4)

where L�ρ = κ (â�ρâ†
� − 1

2 â†
� â�ρ − 1

2 â†
� â�) and εL0ρ =

−i[Ĥ, ρ]. Due to our assumption that g 	 κ we can treat the
second term of (D4) as a perturbation with parameter ε.

The effective master equation of the mechanical oscillators
will have the following form:

ρ̇b = Lbρb, (D5)

where ρb is the density operator that describes the mechan-
ical state, and Lb is a Lindbladian. This Lindbladian can be
expressed as a power series in the perturbation parameter g

Lbρb =
∑
n�1

εnLb,nρb. (D6)

Truncating this series to second order we find the first two
Lindbladian terms, using second-order perturbation theory, to
be given by

Lb,1ρb = −i[Ĥb, ρb], (D7)

Lb,2ρb =
∑

l

(
B̂lρbB̂†

l − 1

2
B̂†

l B̂l ρ̂b − 1

2
ρ̂bB̂†

l B̂l

)
. (D8)

Here Ĥb = Ŝ†Ĥ Ŝ and B̂l = 2Ŝ†M̂l L̂(L̂†L̂)−1Ĥ1Ŝ with
L̂ ≡ √

κ â�. We define Ŝ and M̂l in the following manner;
when there is no perturbation (i.e., when ε = 0), the system
evolves towards the steady state |0〉a�

〈0| ⊗ Tra�
ρ(0). The set

of all steady states varies with the initial state ρ(0) and has
support |0〉a�

⊗ |l〉b(l = 0, 1, . . . ). Ŝ is thus defined as

Ŝ =
∑

l

(|0〉a�
⊗ |l〉b)b〈l|. (D9)

M̂l is obtained from the following equation:

|0〉a�
〈0| ⊗ Tra�

[ρ(0)] =
∑

l

M̂l ρ(0)M̂†
l , (D10)

with the condition
∑

l
M̂†

l M̂l = 1, where 1 is the identity op-

erator in the Hilbert space of the system. We thus can define
M̂l as

M̂l = |0〉a�
〈l| ⊗ 1b, (D11)

where 1b is the identity operator for the Hilbert space of the
mechanical oscillators. With these expressions we find for our
type of Hamiltonian that adiabatically eliminating the cavity
modes gives us Ĥb = 0, B̂1 = 2gδl,0√

κ
f̂1 and B̂2 = 2gδl,0√

κ
f̂2. This

leads to an effective master equation of the form

ρ̇b = κ0

2∑
j=1

(
f̂ jρb f̂ †

j − 1

2
f̂ †

j f̂ jρb − 1

2
ρb f̂ †

j f̂ j

)
, (D12)

where κ0 = 4g2

κ
is the effective decay rate of the mechanical

subsystem. In the presence of additional mechanical noise
with dissipation rate γ j and thermal phonon number nth, j , the

FIG. 6. Effects of different initial states and varying mechanical
decay rate on the fidelity between the CPE state and the produced
state by the two-dissipator scheme. The maximum evolution time is
set to 10/κ0. See the text for the other parameters.

effective master equation therefore becomes

ρ̇b =
2∑

j=1

(κ0D[ f̂ j]ρb + γ j (nth, j + 1)D

× [b̂ j]ρb + γ jnth, jD[b̂†
j]ρb) . (D13)

Notice that even if the above calculations refer to the case
of equal cavity decay rates, an analogous derivation is valid
for the more general case κ1 �= κ2 under the condition that
g 	 κ1, κ2.

APPENDIX E: DEPENDENCE ON THE INITIAL STATE

In this section we numerically study the effects of the
two-mode mechanical initial state on the quality of the CPE
state generated by the two schemes introduced in Sec. III.
More specifically, we consider three cases for the initial state:
a thermal state ρnth ⊗ ρnth , a precooled thermal state, and the
vacuum state |0〉 ⊗ |0〉. Here ρnth is the one-mode thermal
state with mean phonon number nth. Moreover, the mentioned

FIG. 7. Final fidelity as function of evolution time for the
Hamiltonian-switching scheme, for different initial states. See text
for the chosen parameters.
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precooled thermal state is obtained from the two-mode ther-
mal state ρnth ⊗ ρnth by sequentially cooling each mechanical
oscillator separately using a two-step Hamiltonian-switching
process (in which the Hamiltonians are set to be a simple
excitation swapping between a cavity mode and one oscillator
at a time), where the steady state of the first step is the starting
point for the second step. For all the three initial states, the
dynamics of the system is governed by master equations (19)
for the Hamiltonian-switching scheme, and (20) for the two-
dissipator approach.

For the two-dissipator scheme, we choose the following
parameters: cubicity λ = 0.1, 5 dB squeezing, and thermal
phonons nth = 5. We calculate the fidelity between the steady
state and the CPE state as function of mechanical decay rate
γ /κ0. The results of the simulation for the aforementioned
three initial states are shown in Fig. 6. As expected, the

produced state is the same for the different initial states, since
the dynamics of the system in this case has one and only one
steady state.

On the other hand, the switching scheme dynamics has
more than one attractor, i.e., the steady state depends on
the initial conditions [52]. This is clear from the results of
Fig. 7 where the final fidelity between the CPE state and
the produced state (steady state of the second step of the
switching scheme). Furthermore, we see that the final fideli-
ties corresponding to the vacuum and precooled initial states
are relatively close compared to that for the thermal initial
state. This is the case because that implementing a precooling
stage produces a state that is close to the vacuum, which con-
sequently leads to higher final fidelity. In our simulations we
have set λ = 0.1, 5 dB of squeezing, γ /κ0 = 10−4, nth1 = 10,
and nth2 = 1.
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