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Transition from inhomogeneous to homogeneous broadening at a lasing prethreshold
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The emission linewidth in active medium emerges due to homogeneous and inhomogeneous broadening.
We demonstrate that in lasers with inhomogeneous broadening there is a critical pump rate, above which the
special mode forms. This mode consists of locked-in oscillations of cavity mode and of the active atoms with
different transition frequencies. Below the critical value of the pump rate, the radiation spectrum of the laser has
a Gaussian profile, provided that inhomogeneous broadening is dominant. Above the critical value of pump rate,
the special mode mostly determines the laser radiation spectrum. As a result, the spectrum attains Lorentz shape
characteristic for homogeneous broadening. The formation of the special mode precedes lasing and that the
critical pump rate plays the role of lasing prethreshold. We suggest a system where such a transition could
be experimentally observed separately from lasing. We obtain expressions for the threshold and generation
frequency of a single-mode laser where both homogeneous and inhomogeneous broadening are present.
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I. INTRODUCTION

Width of emission spectrum of active medium greatly im-
pacts behavior of any system built on this medium. Linewidth
is determined by combination of two types of broadening:
homogeneous and inhomogeneous. Homogeneous broaden-
ing of emission spectrum occurs due to finite lifetime of
excited states of active atoms (or molecules, quantum dots,
etc.) [1–5]. This contribution is dominant when all atoms
of active medium are identical and therefore share transition
frequency.

In contrast, inhomogeneous broadening occurs due to dif-
ferent transition frequencies of atoms which results in the
collective spectrum being broader than the spectrum of in-
dividual atoms. This difference in frequencies can originate
from various sources. It can take place because atoms have
different properties, such as varying sizes of quantum dots
[6–10]. In addition, the difference in size can lead to a differ-
ence in the dipole moments of the quantum dots, which causes
variation of the coupling strength [11]. Other effects contribut-
ing to this type of broadening are a different environment near
individual atoms like inhomogeneous electromagnetic field or
lattice defects [12–15] and solute-solvent interaction [16–18].
Depending on the orientation and position of the active atoms
or molecules inside such systems, they have different coupling
strengths. Such a behavior can take place in random lasers
[19], in plasmonic lasers [20], etc. Finally, the inhomogeneous
broadening can be caused by Doppler effect originating from
the difference in atoms’ velocities [21–23].
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The presence of inhomogeneous broadening leads to an
emission spectrum with Gaussian shape [18,24,25]. This re-
sult can be explained by the central limit theorem [26], which
states that the sum of independent random variables has a
Gaussian distribution. In contrast, homogeneous broadening
results in a Lorentzian spectrum [25,27]. However, contri-
butions of the two types of broadening can be difficult to
distinguish by the emission spectrum alone. In some cases,
they are shown to behave similarly, which renders distinction
redundant [28,29].

Despite superficial similarity, the two types of broadening
display distinct behavior in a variety of systems. For example,
it was discovered that the shape of peaks of the vacuum-field
Rabi splitting in a strong coupling regime depends only on
the homogeneous broadening [30]. In turn, in [31] polaritonic
peaks’ coherence was found to depend crucially on the type
of broadening and on the shape of linewidth in general. This
result can be applied to various systems, for example, semi-
conductor emitters coupled to optical cavities or ensembles of
spins in circuit QED. In [32] materials with inhomogeneous
broadening were found to offer lower optical efficiencies than
homogeneous counterparts with Nd-doped active medium un-
der diode pumping. Additionally, time-resolved transmission
and reflection from an emitter displays oscillations over time
in the presence of inhomogeneous broadening [33].

In this paper, we study the influence of homogeneous and
inhomogeneous broadening on the lasing threshold and laser
emission spectrum. On an example of a single mode laser
with dominant inhomogeneous broadening we demonstrate
that there is a critical pump rate of the active medium, at which
a special mode forms. The special mode includes locked-in
oscillations of the electromagnetic field in the cavity and of
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the active atoms with different transition frequencies. The
rest of the eigenmodes consist of polarizations of individual
active atoms slightly modified by the interaction with the
cavity mode. Below the critical pump rate, all eigenmodes
give comparable contributions in the laser spectrum. There-
fore, the radiation spectrum has a Gaussian shape, resulting
in the inhomogeneous broadening. Above the critical value,
the special mode dominates in the laser spectrum and a single
line with a Lorentzian profile appears in the radiation spec-
trum. So, the inhomogeneous broadening no longer affects
the spectrum. At the same time, the lasing threshold and the
generation frequency are determined by the linewidth of the
inhomogeneous broadening. We show that the formation of
the special mode precedes lasing and the critical pump rate
plays the role of lasing prethreshold [34]. We believe our
findings aid design and study of systems based on an active
medium with inhomogeneous broadening.

II. MODEL OF LASER WITH INHOMOGENEOUS
BROADENING

We consider a laser based on a single mode cavity and
an active medium consisting of N active atoms with two
working levels. The role of active atoms can be played by, for
example, dye molecules [35], quantum dots [36–38], Sr atoms
in the magnetic trap [39,40], etc. We designate the resonant
frequency of the cavity mode as ωa. The transition frequen-
cies of active atoms ω

( j)
σ have a normal distribution with

the expectation value ωσ and the variance �ω (|ωσ − ωa| <

�ω), which is the case for many inhomogeneously broadened
media [18,24,25].

We use semiclassical Maxwell-Bloch equations [41–43]
for description of the laser

da/dt = (−γa − iωa)a − i
N∑

j=1

� jσ j, (1)

dσ j/dt = (−γσ − iω( j)
σ

)
σ j + i � j a Dj, (2)

dDj/dt = (γP − γD) − (γP + γD)Dj + 2i� j (aσ ∗
j + a∗σ j ).

(3)

Here a is the amplitude of electric field in the cavity; σ j and
Dj are the polarization and the population inversion of the jth
active atom, the transition frequency of which is ω

( j)
σ . � j is

the coupling strength between the cavity electric field and jth
active atom. γa is the relaxation rate of the electric field in the
cavity. γD is the relaxation rate of the population inversion of
active atoms. γP is the pump rate of the active atoms. γσ is the
dephasing rate of active atoms, which determines the width
of homogeneous broadening. The index j runs from 1 to N ,
where N is the total number of active atoms.

Maxwell-Bloch equations (1)–(3) are derived from op-
erator Heisenberg-Langevin equations within the mean-field
approximation (or semiclassical approximation) [42]. Within
this approximation, the averages from products of opera-
tors are replaced with the products of averages (〈â D̂ j〉 =
〈â〉〈D̂ j〉, 〈â σ̂

†
j 〉 = 〈â〉〈σ̂ j〉∗, and 〈â† σ̂ j〉 = 〈â〉∗〈σ̂ j〉) [42]. This

approach is applicable when the number of atoms is much
greater than unity [42]. The inhomogeneous broadening in

these equations is described by the variation of transition fre-
quencies of the active atoms and the variation of the coupling
strengths, � j [11,41].

Equations (1)–(3) can be used to model the effect of
temperature on the laser operation. It is known that thermal
fluctuations affect laser operation. For example, an increase
in temperature can lead to a change in the band structure of
semiconductors [44], which, in turn, changes the coupling
strength and transition frequency in the active medium (e.g.,
in quantum dots). In addition, the dephasing processes in the
active medium are, in particular, caused by the interaction
of atoms with phonons of the medium [11,45–47], so the
dephasing rate of the active atoms depends on temperature.
Influence of temperature can be taken into account by consid-
ering the respective parameters as functions of temperature
with specific dependencies either predicted theoretically or
measured experimentally [� j = � j (T ), ω

( j)
σ = ω

( j)
σ (T )]. The

temperature of active atoms can depend on the pumping that
leads to dependence of the variations of transition frequencies
and the coupling strengths on the pump rate. Such dependen-
cies can be taken into account in Eqs. (1)–(3) by replacement
ω

( j)
σ → ω

( j)
σ [T (γP )], etc. For the sake of simplicity, we will

neglect in our calculations the dependence of temperature on
the pump rate.

The thermal fluctuations in the active medium can also
affect the population of the excited state [48,49]. This influ-
ence is determined by the ratio kBT/h̄ωσ (kB is Boltzmann’s
constant; h̄ is Planck’s constant). In our work, we do not con-
sider the influence of thermal fluctuations on the population
of levels of the active medium, limiting ourselves to the case
when kBT/h̄ωσ << 1.

We emphasize that Maxwell-Bloch equations are suitable
for describing a broad class of systems. Depending on the
values of relaxation rates and coupling strengths, Maxwell-
Bloch equations can describe different types of lasers [50]
from plasmonic lasers [51,52] to random lasers [19]. Simi-
lar equations can also be used to describe the operation of
dressed-state lasers, in which emission originates from the
transitions between the neighboring dressed states [11]. In
these devices, the transition frequency is determined by the
Rabi splitting.

III. FORMATION OF SPECIAL MODE

It is known that Maxwell-Bloch equations predict the
existence of a threshold pump rate, above which the las-
ing takes place. Below the lasing threshold the stationary
solution of Eqs. (1)–(3) is given as a = σ j = 0 and D =
D0 = (γP − γD)/(γP + γD) [42,43]. We perform linear stabil-
ity analysis of the steady state below the lasing threshold. To
this end, we use the equations for small deviations δa and δσ j

from the zero stationary state (a = σ j = 0) [34,53,54]

d

dt

(
δa
δσ j

)
=

(−γa − iωa −i� j

i� jD0 −γσ − iω( j)
σ

)(
δa
δσ j

)
, (4)

where the index j runs from 1 to N . We calculate the eigen-
values λk and the eigenmodes ek = (a, σ1, . . . , σN )T of the
matrix in the right side of Eq. (4) for different values of D0

(i.e., for different pump rates) (Fig. 1).
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FIG. 1. (a) Trajectories of eigenfrequencies, ωk , in the complex plane for D0 ranging from −1 to 1. Here γa = 10−2ω0. (b), (c) Depen-
dencies of the imaginary parts of the eigenfrequencies with the greatest (the dashed red line) and the lowest (the solid blue line) relaxation
rate on D0 when γa = 10−2ω0 (b) and γa = 10−3ω0 (c). ω( j)

σ and � j are independent random variables. � j have a normal distribution with
the expectation value 〈�〉 and the variance �� = 0.05�. All other parameters are the same for three figures: N = 104. γσ = 3 × 10−3ω0,
〈�〉 = 3 × 10−4ωa, and �ω = 0.05ωσ .

Hereinafter, for convenience, we consider the eigenfre-
quencies ωk = iλk instead of the eigenvalues λk . We study the
behavior of eigenfrequencies and eigenmodes with changes in
the pump rate to determine the lasing threshold and changes
in the spectrum of the system.

Our calculations show that in both cases when the pump
rate γP tends to zero (D0 = −1) the relaxation rates of all
eigenmodes tend to γσ [Figs. 1(a) and 1(d)]. This is because
active atoms give the main contribution to all eigenmodes.
An increase in pump rate leads to a change of the relaxation
rates of eigenmodes (Im ωk). Notably, there are two critical
values of pump rates at which two special eigenmodes form
(Fig. 1). One of these eigenmodes has the greatest relaxation
rate among all eigenmodes and the other special eigenmode
has the lowest relaxation rate [Figs. 1(a) and 1(d)]. When
γa > γσ , the special mode with the greatest relaxation rate
forms at D0 < 0, whereas the other special mode forms at
D0 > 0 [Figs. 1(b) and 1(e)]. The opposite situation takes
place when γa < γσ [Figs. 1(c) and 1(f)].

When the pump rate exceeds both of these critical val-
ues, the special mode with the greatest relaxation rate has a
negligible effect on the system dynamics because of its fast
decay. Therefore, we do not consider this mode in further
discussion. At the same time, the relaxation rate of the special
mode with the lowest relaxation rates further decreases with
the pump rate increase, as its eigenfrequency moves up in the
complex plane (Fig. 1). As a result, this special mode exerts
more influence on the system spectrum. It is this mode which
determines behavior of the system above the critical pump
rates and so we will focus on it. To clarify the mechanism of
the special mode formation, we study changes in eigenmodes
occurring due to the increase in pump rate. Our calculations
show that, below both critical values of pump rate, each eigen-
mode is predominantly associated with oscillations of one
of the active atoms. That is, for each eigenmode, there is a
component which significantly exceeds all other components
in absolute value. Above the respective critical value of pump
rate, the special eigenmode with the lowest relaxation rate
forms. Unlike other modes, this mode has similar absolute
values of all components. Consequently, this eigenmode is
associated with collective oscillations of the electromagnetic
field in the cavity and of the active atoms with different
transition frequencies. The formation of this special eigen-
mode leads to phase matching of polarizations of different

active atoms. As a result, in the special eigenmode the total
polarization of all active atoms, |∑ j σ j |, sharply increases
with the increase in pump rate above the critical pump rate
[Fig. 2(a)]. Moreover, the energy flow from the active medium
to the cavity, which is proportional to Im(a∗ ∑

j σ j ) [55], also
increases [Fig. 2(b)]. This is accompanied by a fast decrease in
relaxation rate of the special mode (Fig. 1). At the same time,
for other eigenmodes the energy flow between the electric
field in cavity and the active medium decreases above the
critical pump rate [Fig. 2(b)]. Therefore, these eigenmodes do
not experience amplification associated with the interaction
between active atoms and the cavity mode; thus their relax-
ation rates remain close to the relaxation rate of free active
atoms, γσ .

Thus, above the critical value of pump rate, only the relax-
ation rate of the special eigenmode decreases with the pump
rate. When the relaxation rate of the special mode reaches zero
(Fig. 1), the lasing at the special eigenmode begins. At the
same time, all other eigenmodes have nonzero relaxation rates
(Fig. 1). As a result, above the lasing threshold, the special
mode dominates the laser spectrum. The formation of the
special mode always precedes lasing. Therefore, the critical
pump rate for the formation of a laser mode can be called the
lasing prethreshold [34].

Note that Figs. 1 and 2 are calculated for the case when
the transition frequencies and the coupling strengths are

FIG. 2. (a) Dependence of the modulus of the total polarization
value of all active atoms, |∑ j σ j |, on D0. The total polarization
value is normalized to the square root of the sum of the squares of
the polarization modules. (b) Dependence of the energy flow from
the active atoms to the electromagnetic field mode. The blue lines
describe the special mode; the red lines describe a typical nonspecial
eigenmode. Here γa = 10−2ω0. All other parameters are the same as
for Fig. 1(a).
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FIG. 3. Dependencies of the imaginary parts of the eigenfre-
quencies with the greatest (the dashed red line) and the lowest (the
solid blue line) relaxation rate on D0. 〈�〉 = 2 × 10−4ωa. All other
parameters are the same as for Fig. 1(b).

independent random variables. However, our calculations
show that the obtained results persist in the presence of
correlations between the random transition frequencies and
the random coupling strengths (we consider the cases when
� j ∼ ω

( j)
σ

α
, where α ranges from −3 to 3). The presence of

correlations leads to a change in the quantitative values for
the critical pump rates, but ultimately does not prevent the
formation of special modes.

IV. INFLUENCE OF THE SPECIAL MODE FORMATION
ON THE SHAPE OF THE LASER EMISSION SPECTRUM

Formation of the special mode leads to change in the
shape of the emission spectrum of the laser. Below the critical
value of the pump rate all modes contribute equally to the
system spectrum. Since these modes share frequencies with
free active atoms (only slightly modified by the interaction
with the cavity), their collective spectrum forms a Gaussian
shape characteristic for inhomogeneous broadening. In con-
trast, above the critical value of the pump rate, the special
mode dominates in the emission spectrum. Since the spectrum
of a single mode has a Lorentz profile, the prevalence of the
special mode in the laser spectrum leads to suppression of
the inhomogeneous broadening. As a result, above the critical
value of the pump rate, the laser spectrum acquires a Lorentz
profile. Thus the formation of the special mode leads to the
change in the shape of the spectrum.

However, the critical value of the pump rate in many sys-
tems is near the lasing threshold. Therefore, changes in the
shape of the spectrum may be obscured by the transition to the
lasing in experiment. To alleviate this challenge, we suggest
the system where the lasing threshold is not reached. This
situation can be achieved by decreasing the quality factors
of the cavity or decreasing the coupling strengths between
the cavity and atoms. In our calculations, we consider the
cavity-atoms system, in which a Q factor of cavity is about
100 and the gain coefficient in the active medium, G, at
D0 = 1 is about 1800 cm−1 [G = �2ND0/(γσ c) [56] and
h̄ωσ = 2 eV] (Fig. 3). Such parameters are typical, for ex-
ample, for plasmonic lasers with the active medium based
on InGaAs [57,58]. We believe that similar systems can be
a good basis for observing the transition from inhomogeneous
to homogeneous broadening.

FIG. 4. Dependence of the generation frequency of the laser, ωg,
on the ratio between homogeneous width, γσ , and inhomogeneous
width, �ω, when ωa �= ωσ . The generation frequency is calcu-
lated by using Eq. (A8). Here γa = 0.1ωσ , γσ + �ω = 0.1ωσ , and
ωa = 0.9ωσ .

V. INFLUENCE OF THE SPECIAL MODE FORMATION
ON THE LASING THRESHOLD AND THE GENERATION

FREQUENCY

To quantify the influence of the homogeneous and inho-
mogeneous broadening on the laser operation, we find the
lasing threshold and the generation frequency in a laser where
both homogeneous and inhomogeneous broadening exist
(see Appendix and Section Method in [59]). We consider the
case when ω

( j)
σ and � j are independent random variables.

In the resonant case, ωa = ωσ , the generation frequency,
ωg, is equal to ωa and the lasing threshold is given by the
following expression:

D0 = Dth = γa�ω

N�2

√
2

π

exp
(−γ 2

σ /2�ω2
)

erfc(γσ /
√

2�ω)
. (5)

Here erfc(x) = 1 − 2√
π

∫ x
0 exp(−t2)dt is the complementary

error function [60] and D0 is determined by the pump rate
as D0 = (γP − γD)/(γP + γD). �2 is the average value of
squared coupling strengths, �2

j .
Two notable limiting cases can be obtained from Eq. (5).

For γσ 	 �ω Eq. (5) reduces to the following equation:

Dth = γσγa

N �2
. (6)

Here we use the fact that, in the limit when x tends to infinity,
erfc(x) ≈ exp(−x2 )

x
√

π
[60]. Equation (6) coincides with the well-

known expression for the lasing threshold in the case where
only homogeneous broadening is present [42].

For γσ � �ω the complementary error function is close to
unity [60] and Eq. (5) reduces to

Dth = γa�ω

N�2

√
2

π
. (7)

In the nonresonant case, ωa �= ωσ , the generation fre-
quency, ωg, depends nonmonotonically on the ratio of
the width of the homogeneous broadening to the width
of the inhomogeneous broadening (Fig. 4) (see the Ap-
pendix for details of calculations). If we assume �ω 	 γσ

and �ω 	 |ωa − ωσ |, the generation frequency is found to be
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(see the Appendix)

ωg =
√

π
2 �ω ωa + γaωσ√

π
2 �ω + γa

. (8)

At the same time, in the leading order in γσ

�ω
, the lasing

threshold is still determined by Eq. (7) even in the nonresonant
case. This is because we assume �ω 	 |ωa − ωσ |, which
means that the active medium linewidth is much greater than
the detuning, and so the detuning becomes irrelevant for the
threshold condition.

In the opposite case, when �ω � γσ , the generation fre-
quency in a laser is given by the following expression:

ωg = γσωa + γaωσ

γσ + γa
. (9)

This expression coincides with the well-known formula
for the generation frequency in a laser with homogeneous
broadening [42].

Comparing Eq. (6) and Eq. (7), we find that the expressions
for the lasing thresholds are the same up to the replacement
of γσ by

√
2
π
�ω. Therefore, an active medium with domi-

nant inhomogeneous broadening has a slightly lower lasing
threshold than an active medium with the same spectral width,
but originating from homogeneous broadening. At the same
time, from Eq. (8) and Eq. (9) it is clear that within the given
assumptions the generation frequency is the same up to the
replacement of γσ by

√
π
2 �ω. Therefore, in an active medium

with dominant inhomogeneous broadening the generation fre-
quency is closer to the cavity frequency than in an active
medium with the same spectral width, but originating from
homogeneous broadening. Thus homogeneous and inhomoge-
neous broadening have slightly different effects on the lasing
threshold and the generation frequency. However, the same
expressions can be used with reasonable accuracy for systems
with dominant homogeneous broadening and dominant inho-
mogeneous broadening.

VI. CONCLUSION

We have studied the effect of inhomogeneous broadening
on the behavior of single mode lasers. We show that there
is a critical value of pump rate, at which a special mode
forms. This special mode consists of collective oscillations
of the electromagnetic field in the cavity mode and of the
active atoms with different transition frequencies. Despite
inhomogeneous broadening, in this mode the oscillations of
all active atoms occur at a single shared frequency. Further
increase in the pump rate leads to a decrease in the relaxation
rate of the special eigenmode, eventually resulting in lasing.
Above the lasing threshold, the special mode dominates the
laser spectrum. We demonstrate that due to the frequency
matching of contributions of active atom’s polarizations in
this eigenmode, the inhomogeneous broadening is effectively
replaced by a homogeneous broadening and a single mode
laser can be described in terms of a homogeneously broadened
medium. We suggest a system where this behavior can be
observed experimentally independent of lasing.

In terms of behavior, two key features have been identi-
fied. First, the inhomogeneously broadened emission slowly

transitions into a single homogeneously broadened mode with
a Lorentz spectrum as the laser approaches lasing threshold.
Therefore, above the threshold inhomogeneous and homoge-
neous broadening in the active medium are indistinguishable
in the spectrum of a single mode laser. Second, inhomo-
geneous broadening affects the lasing threshold and the
generation frequency in a similar way compared to homo-
geneous broadening, replacing the active atom homogeneous
linewidth in both formulas when the inhomogeneous broad-
ening is dominant. However, the lasing threshold for the
inhomogeneously broadened active medium is slightly lower
than the one for the homogeneously broadened medium. We
attribute this advantage to the fact that the Gaussian shape
decays faster away from the peak compared to the Lorentz
shape; therefore, for the two distributions with the same full
width at half maximum Gaussian distribution is effectively
narrower. This finding is valuable for design of low-threshold
lasers, where inhomogeneous broadening may result in a
lower threshold pump rate than expected.
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APPENDIX: DERIVATION OF THE EXPRESSIONS FOR
THE LASING THRESHOLD AND THE GENERATION

FREQUENCY

To derive an expression for the lasing threshold we find
a condition that enables a nontrivial stationary solution in
Eqs. (1) and (2) for constant population inversion, Dj =
Dth, j = 1, . . .. We assume that ωa = ωσ and look for a
solution in the form a = a0e−iωgt , σ j = σ0 je−iωgt , j = 1, . . .

(ωg is a yet unknown generation frequency). Substituting a0

from Eq. (1) into Eq. (2) we arrive at the condition

σ0 j = Dth� j
∑

k �kσ0k

[γa + i(ωa − ωg)]
(
γσ + i

(
ω

( j)
σ − ωg

)) , j = 1, . . . .

(A1)

We proceed to multiply Eq. (A1) by � j for each j and then
sum over j (over all active atoms). Existence of a nontrivial
solution then demands that

γa + i(ωa − ωg) = Dth

∑
j

�2
j(

γσ + i
(
ω

( j)
σ − ωg

)) . (A2)

The imaginary part of Eq. (A2) results in ωg = ωa for any
symmetrical distribution of ω

( j)
σ centered around ωa (as ex-

pected in the resonant case). The real part of Eq. (A2) yields

γa = γσ Dth

∑
j

�2
j

γ 2
σ + (

ω
( j)
σ − ωa

)2 . (A3)

For a sufficiently large number of active atoms with Gaus-
sian distribution (a typical case for an inhomogeneously
broadened medium [18,24,25]) and ωa 	 �ω, γσ , γa we
can transform the sum in Eq. (A3) into an integral over
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frequencies. We assume that random values � j and ω
( j)
σ are

independently distributed (see our assumptions in Sec. V),
which, for large numbers of atoms, results in expression

γa = �2γσ Dth

∫ +∞

−∞

N dx

�ω

1

γ 2
σ + x2

exp(−x2/2�ω2)√
2π

. (A4)

Here, �2 is the average value of squared coupling strengths,
�2

j .
The integral in Eq. (A4) can be obtained analytically [60],

which results in

Dth = γa�ω

N�2

√
2

π

exp
(−γ 2

σ /2�ω2
)

erfc(γσ /
√

2�ω)
, (A5)

where erfc(x) = 1 − 2√
π

∫ x
0 exp(−t2)dt is the complementary

error function [60].
Now we derive expressions for the nonresonant case. First,

we need to identify the generation frequency. We divide the
real part of Eq. (A2) by the imaginary part of Eq. (A2)
to exclude Dth and obtain the relation for the generation
frequency ωg:

γa

ωa − ωg
= −

∑
j

γσ

γ 2
σ + (ω( j)

σ −ωg)
2

∑
j

ω
( j)
σ −ωg

γ 2
σ + (ω( j)

σ −ωg)
2

. (A6)

These sums are then transformed into integrals in the same
way as the transition from Eq. (A5) to Eq. (A6):

γa

ωa − ωg
=

∫ ∞
−∞

γσ exp[−(x−ωσ )2/2�ω2]
γ 2

σ + (x−ωg)2 dx
∫ ∞
−∞

(ωg−x) exp[−(x−ωσ )2/2�ω2]
γ 2

σ + (x−ωg)2 dx
. (A7)

Note that ωσ is the center of ω
( j)
σ distribution. We will focus on

finding the right side of Eq. (A7). Integrals can be calculated
as [60]

γa

ωa − ωg

= i
erfc γσ −i(ωg−ωσ )√

2�ω
+ exp 2iγσ (ωg−ωσ )

�ω2 erfc γσ +i(ωg−ωσ )√
2�ω

erfc γσ −i(ωg−ωσ )√
2�ω

− exp 2iγσ (ωg−ωσ )
�ω2 erfc γσ +i(ωg−ωσ )√

2�ω

.

(A8)

In general, Eq. (A8) can be solved numerically to ob-
tain ωg; however, a useful limit can be obtained if we
assume that the inhomogeneous broadening is larger than the
homogeneous broadening, �ω 	 γσ , and the frequency de-
tuning, �ω 	 |ωg − ωσ | (the latter is satisfied if, e.g., �ω 	
|ωa − ωσ |, since the generation frequency ωg lies between ωa

and ωσ ). In this case, the complementary error functions and
exponents in Eq. (A8) are estimated as two leading orders of
their Taylor series, which results in

γa

ωa − ωg
=

√
π

2

�ω

ωg − ωσ

. (A9)

After trivial algebra we obtain

ωg =
√

π/2�ωωa + γaωσ√
π/2�ω + γa

. (A10)

Inserting Eq. (A10) into the real part of Eq. (A2) results in
the same threshold condition [see Eq. (7)]. The reason why
detuning between electromagnetic field and active medium
does not affect the threshold in our derivation is because we
assume �ω 	 |ωg − ωσ | to obtain Eq. (A10), i.e., the active
medium linewidth is much greater than the detuning, and thus
the latter does not play a notable role.
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