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We investigate the dynamics of a spatial discrete soliton and the radiation families emitted by it inside a
parity-time (PT )-symmetric waveguide array with alternate gain-loss channels. A strong spatial soliton that
evolves inside the waveguide array due to the balance between discrete diffraction and Kerr nonlinearity excites
linear waves in the form of diffractive radiation when launched with an angle. The PT -symmetric nature of the
waveguide leads to additional radiations in Fourier space that have not been explored. In our paper, we mainly
focus on the origin of these radiations and try to understand how to control them. Under strong PT symmetry,
a discrete soliton launched normally to the waveguide array produces strong side lobes, which can lead to a
population of the field at ±π/2 in momentum space. In addition, a strong soliton with initial phase gradient
radiates a unique PT -symmetry-assisted linear wave. We establish a phase-matching condition to locate such
radiation in momentum space. The periodic arrangement of the gain-loss channel also leads to radiations due
to reflection and backscattering, which is prominent for a weak soliton. A linear Hamiltonian analysis for such
a waveguide array is provided to identify the PT -phase-transition regime and to optimize the parameters for
stable discrete soliton dynamics. We thoroughly investigate the origin of all the radiations that emerge in the
PT -symmetric waveguide array and put forward the background theory, which is in good agreement with the
full numerical results.
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I. INTRODUCTION

A linear waveguide array (WA) is a periodic photonic
structure where a propagating optical wave experiencing spa-
tially periodic refractive index distribution behaves like an
electron traveling through a semiconductor crystal. The one-
dimensional homogeneous WAs that are evanescently coupled
to each other allow the light beam to propagate in a trans-
verse direction, resulting in a phenomenon called discrete
diffraction. The optical Kerr nonlinearity counterbalances the
discrete diffraction and exhibits localized structure in the form
of a discrete soliton (DS). The dynamics of the DS is governed
by the discrete nonlinear Schrödinger equation (DNLSE).
These spatially localized structures manifest properties that
are intriguing and forbidden in the case of their continuous
counterparts. A few examples are Anderson localization [1,2],
photonic Bloch oscillations, localized Wannier-Stark states
[3,4], and Bloch-Zener oscillation and photonic Zener tunnel-
ing [5,6].

Diffractive resonant radiation (DifRR), which is the spatial
or (wave-number) analog of the dispersive resonant radi-
ation in the time (frequency) domain, has primarily been
investigated in uniform WAs supporting DSs as a theoretical
perspective [7]. This concept is further extended in super-
continuum generation in both frequency and wave-number
domains [8]. Unlike temporal dispersive radiations, which
are controlled by zero-dispersion wavelengths and span any
frequency range [9], the DifRR is strictly confined within the
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first Brillouin boundary (±π ) in wave-number space. Any
electric field that encounters this Brillouin boundary results
in 2π phase shift and appears from the opposite wave-number
boundary, a phenomenon termed as anomalous recoil [7]. In
uniform WAs, the generation of DifRR requires an initial
nonzero wave number of the DS, while its manipulation and
control can be achieved through the soliton power and cou-
pling. However, with the introduction of chirp in WAs [10],
there is an additional degree of freedom (chirp) other than
the wave number that tailors the generation of DifRR. In this
scheme, it is even possible to generate dual DifRR with the
introduction of a symmetrically chirped WA.

Moving forward with the WAs, in recent years, the
non-Hermitian Hamiltonian with PT symmetry or broadly
speaking non-Hermitian quantum physics has emerged as a
fascinating topic in both theoretical and experimental physics
after Bender and Boettcher put forward the mathematical idea
in 1998 [11]. A non-Hermitian Hamiltonian Ĥ is considered
to be PT symmetric if [Ĥ,PT ] = 0, where P and T respec-
tively denote the parity (space reflection) and time-reversal
(i = √−1 flips sign) operators. One notable aspect of such
Hamiltonians is the breaking of PT symmetry, in which the
eigenspectra transition from completely real (unbroken PT
regime) to complex values (broken PT regime) across a PT -
phase-transition point called the exceptional point (EP), where
at least two eigenvalues and corresponding eigenvectors co-
alesce and become degenerate [12,13]. The concept of PT
symmetry is most appreciated in the field of optics, which
offers a suitable platform to practically demonstrate unique
non-Hermitian features such as unidirectional light propaga-
tion or optical nonreciprocity [14], loss-induced transparency
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[15], optical solitons [16], and enhanced light-matter interac-
tions [17,18].

PT -symmetric WAs with balanced loss-gain offer new
possibilities in shaping light beams, which have been used
in various contexts [19–21]. In this paper, we explore the
generation of different kinds of radiations in momentum space
(k space) of WAs with alternate gain and loss channels sup-
porting DSs. With the introduction of PT -symmetric WAs,
we observe two families of radiation assisted solely by the PT
symmetry. The locations of these radiations can be controlled
further by changing the gain-loss coefficient that opens up
possibilities in designing novel photonic devices and control-
ling the flow of light at the nanoscale level.

We organize the paper as follows. In Sec. II, we describe
the setup and establish the governing equation for a discrete
soliton excited in a PT -symmetric WA. We also provide a
background theory of DifRR and develop a linear Hamiltonian
analysis for N -channel PT -symmetric WA. In Sec. III, we
carefully analyze different radiations emitted by the DS in k
space due to the PT -symmetric nature of the WA. Finally, in
Sec. IV we summarize our results and conclude.

II. SYSTEM SETUP AND THEORETICAL FRAMEWORK

In our investigation, we consider a PT -symmetric WA
that consists of alternative gain-loss channels having a neutral
waveguide at the center (n = 0). This neutral waveguide acts
like a defect. The proposed waveguide array is schematically
shown in Fig. 1(a). We use a minimalistic and simple design
here by keeping the spacing between two adjacent waveguides
constant over the entire array. Assuming that the couplings
between gain-loss, gain-neutral, and neutral-loss channels are
all identical, the mode evolution in the nth waveguide En can
be described by the following normalized equation:

i
dψn

dξ
+ c[ψn+1 + ψn−1] + |ψn|2ψn = sgn(n)(−1)ni�ψn,

(1)

where ψn = En/
√

P0, with P0 being the peak power of the
input field. Range of the index n is considered within −N �
n � N , thereby defining the total number of waveguides to
be N = (2N + 1). The propagation distance (z) and coupling
coefficient (C) between adjacent waveguides are rescaled as
ξ → z/LNL and c → CLNL, where nonlinear length is defined
by LNL = (P0γ )−1 and γ is the nonlinear parameter in units of
W−1m−1. The gain-loss parameter g having the unit of m−1 is
rescaled as � = gLNL. The axis ξ , along with the parameters c
and �, are therefore normalized and dimensionless. Since this
paper aims to investigate the formation and control of DifRRs
in PT -symmetric WAs, first we study the dynamics of DSs in
the simplest PT -symmetric WAs as described in Fig. 1(a). We
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FIG. 1. (a) Schematic diagram of the PT -symmetric waveguide
array consisting of alternative gain and loss channels with a neutral
central waveguide. (b) The variation of real (solid) and imaginary
(dotted) components of the eigenvalues of a seven channel PT -
symmetric WA as a function of �. Here, the circle represents the
exceptional point (�c). (c) Variation of the critical point (exceptional
point) �c as a function of the total number of waveguides N (in
natural log scale). (d) A discrete soliton in a waveguide array, with
(e) the mode distribution along with the refractive index profile.

excite DSs in the unbroken PT regime since the broken PT
regime causes instability [16]. To identify the unbroken PT
regime, we implement a Hamiltonian analysis and determine
the parameter space (relation between the coupling and gain-
loss coefficients) for stable DS excitation.

A. Hamiltonian analysis

The dynamics of the electric field inside the N -
channel PT -symmetric WA with central defect as
neutral channel [see Fig. 1(a)] is modeled by Eq. (1).
This governing equation [Eq. (1)] can be rearranged
in a matrix form [22], idξ� = Ĥ�, where � =
[ψ−N ; ψ−(N−1); . . . ; ψ−1; ψ0; ψ1; . . . ; ψ(N−1); ψN ] is the
column vector formed by the N elements in the array.
The PT -symmetric Hamiltonian Ĥ for such system which
satisfies [Ĥ,PT ] = 0 can be constructed with unitary
coupling (c = 1) and balanced gain and loss � as

Ĥ ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(−1)N i� −1 0 . . . 0
. . . . . . .

0 . i� −1 0 . 0
0 . −1 0 −1 . 0
0 . 0 −1 −i� . 0
. . . . . . . .

0 . . . 0 −1 (−1)N i�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×N

. (2)
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The N eigenvalues of the system can be obtained by
diagonalizing the Hamiltonian matrix. Considering a three-
channel gain-neutral-loss waveguides system for simplic-
ity, the [3×3] Hamiltonian can be written as Ĥ3 ≡
[i�, −1, 0; −1, 0, −1; 0, −1, −i�], which results in the
eigenvalues 0 and ±√

2 − �2. Here, � = �c = √
2 acts as

the critical value at which the eigenvalues transit from real
to imaginary with the real components collapsing to zero at
this point [18,22]. This critical point is termed as the excep-
tional point, where the PT symmetry breaking takes place (a
third-order EP in this case). For a higher number of waveg-
uide channels, the eigenvalues take more complex forms and
need to be evaluated numerically. Such a set of eigenvalues
is obtained numerically for a system of seven channels and
plotted in Fig. 1(b). Note, that the lowest value of �c depends
on the number of waveguide channels. To establish the em-
pirical relation between waveguide channel (N ) and �c we
numerically calculate the set of eigenvalues from the [N×N ]
Hamiltonian as given in Eq. (2). In Fig. 1(c), we plot �c as
a function of N in the logarithmic scale showing a linear de-
pendency as ln(�c) ≈ A ln(N ) + B, where A = −0.954 and
B = 1.606. This empirical relation allows us to determine the
threshold value for the unbroken PT regime to excite the
stable DS.

B. Discrete soliton and diffractive radiation

In absence of any PT -symmetric potential (� = 0) the
propagation equation becomes

i
dψn

dξ
+ c[ψn+1 + ψn−1] + |ψn|2ψn = 0, (3)

which is the standard form of the DNLSE. In absence of non-
linearity (γ = 0) Eq. (3) reduces to an analytically integrable
equation whose solution ψn(ξ ) = ψn(0)inJn(2cξ ) exhibits
discrete diffraction. Now exploiting the discrete plane-wave
solution ψn(ξ ) = ψ0[i(nkxd + βξ )] of Eq. (3), one can obtain
the standard dispersion relation between the longitudinal wave
vector β and kx asβ(κ ) = 2c cos(κ ) + |ψ0|2, where d is the
separation between two adjacent waveguides, kx is the trans-
verse wave vector, and κ ≡ kxd is the dimensionless Bloch
momentum defined as the phase difference between two adja-
cent waveguides [19]. The Taylor expansion of β(κ ) about the
incident wave number (κ0) results in the diffraction relation

β(κ ) = β(κ0) +
∑
m�1

Dm

m!

κm, (4)

where Dm ≡ (dmβ/dκm)|κ0 and 
κ = κ − κ0. The parameter
D1 represents the transverse velocity. Performing a Fourier
transformation to change the domain as κ → n by replac-
ing 
κ ≡ −i∂n, where n is defined as a continuous variable
of an amplitude function �(n, ξ ) = ψn,ξ exp(−iκ0n), we ob-
tain an approximate standard nonlinear Schrödinger equation
(NLSE) [7]:⎡

⎣i∂ξ +
∑
m�2

Dm

m!
(−i∂n)m + |ψ (n, ξ )|2

⎤
⎦ψ (n, ξ ) = 0. (5)

One can eliminate the first and second term of the
Taylor expansion by making a transformation ψ (n, ξ ) →
ψ (n, ξ ) exp[iβ(κ0)n] and considering the comoving frame

n → (n + D1ξ ). For Dm�3 = 0 one can have the exact so-
lution of Eq. (5) as ψsol = ψ0sech( nψ0√|D2| ) exp(iksolξ ), where

ksol ≡ ψ2
0 /2 is the longitudinal wave number of the soliton.

Note that a bright soliton exists only when the condi-
tion |κ0| < π/2 or 2c cos(κ0) > 0 is satisfied. Figure 1(d)
describes the formation of such soliton that propagates
in a nonlinear uniform WA for an input beam ψsol =
ψ0sech(nψ0/

√|D2|). In Fig. 1(e) the spatial distribution of the
DS is illustrated in the background of the periodic refractive
index grid offered by the typical WA. Note, here the evolv-
ing soliton encompasses several waveguides, which justifies
the continuous variable approximation of n. The plane-wave
solution exp[i(klinξ + 
κn)] of the linearized Eq. (5) leads
to the dispersion relationklin(
κ ) = β(κ ) − β(κ0) − D1
κ .
A soliton with initial transverse wave number (κ0) is described
by

ψsol = ψ0sech[nψ0/
√

|D2|] exp[iκ0n]. (6)

To solve the DNLSE [see Eq. (3)] numerically, we consider
the input as Eq. (6), which is the solution of Eq. (5), the
continuous form of NLSE. This soliton emits radiation in
κ space by transferring energy to the linear wave when the
condition ksol = klin(
κ ) is satisfied for a specific 
k. The
phase-matching (PM) condition for generating DifRR [7] can
be written as

[cos(κ ) − cos(κ0) + sin(κ0)
κ] = ψ̃0
2

(7)

where ψ̃0 = ψ0/2
√

c. The solution of Eq. (7) gives the wave
number of the generated DifRR (κRR = κ0 + 
κ) as a func-
tion of the initial soliton wave number κ0 which is related to
the incident angle of the beam.

In Fig. 2(a), formation of the DifRR in n space is demon-
strated when the DS of amplitude ψ0 = 0.8 is launched with
an inclination of κ0 = 0.7. The signature of DifRR (around
−2.8) is prominent in κ space as illustrated in Fig. 2(b). In
Fig. 2(c), we plot the spectrogram, which is mathematically
defined as S (n, κ, ξ ) = | ∫ ∞

−∞ ψ (n′, ξ )ψw(n − n′)eiκn′
dn′|2,

where ψw is a reference window function (normally taken
as input). This plotting scheme allows us to represent the
output in n-κ space, where we clearly observe the forma-
tion of DifRR and DS. We calculate the spatial delay line
δs = D1ξ at output, which is analogous to the temporal delay
usually calculated for the supercontinuum generation process
in photonic crystal fibers. This delay line indicates the relative
locations of different components (soliton and radiations) in
n-κ space. Note, in the reduced scheme, the formation of
DifRR is restricted within the first Brillouin zone (κRR < |π |)
and undergoes a shift (formally knows as anomalous recoil)
in its wave number by ±2π when they form outside these
limits. In the top inset of Fig. 2(c), we plot the PM expression
[Eq. (7)] whose solution predicts the Bloch momentum (κRR)
of DifRR. The formation of DifRR is found to be sensitive to
the relative values of κ0 and ψ0. In Fig. 2(d), we provide a
phase plot in κ0-ψ0 space showing a forbidden region (gray
region) for DifRR to generate. That means DifRRs are sup-
pressed for the set of (κ0, ψ0) values falling on the gray region.
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(c) (d)
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FIG. 2. (a) Formation of the weak linear wave corresponding to
DifRR in n space when a tilted DS is launched. (b) A prominent
signature of DifRR in κ space around the value κ = −2.8 and (c) the
corresponding XFROG spectrogram at the output (marked by the
arrow). The dotted line represents the spatial delay line defined as
δs = D1ξ . In the inset, we plot the PM expression [Eq. (7)] whose so-
lution predicts the Bloch momentum (κRR) of DifRR. (d) Phase plot
showing the regime of (ψ0, κ0) values to generate the DifRR. The
gray region is forbidden for DifRR to generate. The point indicates
(ψ0, κ0) values in the phase plot for which the DifRR generation is
shown in (a)–(c).

III. DIFFRACTIVE RADIATION IN A PT -SYMMETRIC
WAVEGUIDE ARRAY

In this section, we investigate the dynamics of a DS in
a semi-infinite PT -symmetric waveguide array with a neu-
tral central waveguide. The schematic diagram of the WA
is depicted in Fig. 1(a), where asymmetric gain-loss chan-
nels are arranged on either side of the central waveguide
(n = 0). For a large number of waveguides (N ), the EP ap-
proximately obeys the relation ln(�c) ≈ A ln(N ) + B. For a
linear PT -symmetric WA with N = 501, the EP reduces to
as small as �c ≈ 0.013. In Fig. 3, we compare the dynamics
of the DS for unbroken and broken symmetry regimes by
taking two different � values. In Figs. 3(a)–3(c), we demon-
strate the evolution of a DS launched at the neutral waveguide
(n = 0) for � = 0.01 (which is in unbroken symmetry
regime � < �c). In this limit, we observe the propagation of a
stable soliton which spreads over a few waveguide channels.
The field is also localized in the Fourier domain [κ domain,
see Fig. 3(b)]. The spectrogram in Fig. 3(c) clearly indicates
the formation of a localized field at output. Dramatic change
is observed when we increase the PT parameter to � = 0.08
(> �c) which corresponds to the broken-symmetry regime. In
this limit, the soliton which was initially extended to a few
waveguides squeezes to a single waveguide (preferably the
waveguide channel with gain) as shown in Fig. 3(d). This
tight confinement of the soliton in the n domain results in an

(a) (b) (c)

(d) (e) (f)

(g)

(h) (i)

I II

I

II

I

II

FIG. 3. Spatial soliton formation in (a) n space and (b) κ space
with (c) spectrogram at the output ξ = 80. Here soliton amplitude
ψ0 = 0.8 and � of 0.01 (< �c). Dynamics of DS in (d) n space and
(e) κ space with (f) spectrogram at the output ξ = 80 for � = 0.08
(> �c) in PT -symmetry-breaking regime. (g) Tight confinement of
soliton for � beyond EP exhibiting strong side lobes represented
as I and II. (h) Individual representation of the side lobes (I, top;
II, bottom) and (i) their Fourier transform showing radiations at
κ = ±π/2.

outburst in the Fourier space (κ domain) showing a continuous
band [see Figs. 3(e) and 3(f)]. Side lobes are formed in n chan-
nels as the energy flows through the assistance of alternative
gain channels of the WA. This field distribution of side lobes
results in two peaks in the Fourier domain (κ space) at precise
location ±π/2 evident in Fig. 3(f). The side wings I and II
in Fig. 3(g) independently contribute to the peaks. A Fourier
transform of the two side lobes I and II [Fig. 3(h)] results in
two distinct peaks at ±π/2 [Fig. 3(i)]. These are the signature
peaks for a PT -symmetric waveguide array when a soliton is
excited beyond the EP.

A. Dynamics of a strong DS (for κ0 �= 0)
in a PT -symmetric WA

In this subsection, we concentrate on the dynamics of a
strong DS inside a PT -symmetric WA and try to investi-
gate the background mechanism of radiations emitted by this
strong soliton. It is already demonstrated that DifRRs emerge
over a threshold value of the pair (ψ0, κ0). Generally, for
strong solitons (with high ψ0) the formation of DifRR is
evident. Here, a strong soliton (ψ0 = 0.6) is launched with
a phase gradient (nonzero κ0 value) as shown in Fig. 4(a).
This propagation dynamics leads to four distinct radiation
peaks in κ space marked by 1©– 4© in Fig. 4(b). The radia-
tion marked as 1© is distinctly identified as DifRR. However,
the origin of the other three radiations is solely due to the
PT -symmetric characteristics of WA because they are absent
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FIG. 4. (a) Soliton propagation with initial amplitude ψ0 = 0.6
and wave number κ0 = 0.6 for � = 0.04. In the inset, we mag-
nify the localization of the PT -symmetry-assisted pedestal field.
(b) Emissions of different radiations in κ space marked as 1©– 4©.
(c) Spectrogram at the output. In the inset, we plot the phase-
matching (PM) relation for both the standard DifRR 1© and a
PT -symmetry-assisted radiation 3©. (d) Variation of DifRR 1© and
PT -symmetry-assisted radiation 3© as a function of κ0, where
numerical results (solid dots) are compared with proposed PM equa-
tions (solid lines). Radiations 2© and 4© indicate the characteristic
radiation at ±π/2 (black dashed lines) independent of κ0.

when the PT symmetry is switched off. Radiations 2© and
4© represent the characteristic radiations at ±π/2 generated

due to the PT -symmetry-assisted side-lobe propagation. It
is worth noting that for a weak � value these radiations are
suppressed. Therefore, in the simulation, we consider a value
of � above the threshold EP value of the system such that
soliton collapse does not happen up to a reasonable distance
and at the same time the ±π/2 radiations are prominent. In the
inset of Fig. 4(a), we magnify the pedestal part of the moving
soliton, showing how the side lobes are confined preferably
in alternative gain channels, resulting in a periodic localized
distribution in n space. A simple spatial Fourier transform of
this periodic distribution of the pedestal field leads to the dis-
tinct radiation at ±π/2 in κ space. Interestingly, in the Fourier
space, we observe another radiation marked as 3© whose origin
needs to be addressed. To understand the complete picture,
we plot the spectrogram in Fig. 4(c), where all the radiations
appear as stains in n-κ space over spatial delay line δs (dotted
curve). It is observed that the radiations 3© and 2© are closely
spaced in κ space and spread over the n domain. Unlike 2© and
4©, the location of the radiation 3© is found to be sensitive to

the initial launching angle (κ0 value) of the DS. In Fig. 4(d),
we track down all the radiations as a function of κ0 rang-
ing from −1 to +1. Note that for |κ0| < 0.25 the radiations

1© and 3© are suppressed. However, as expected, the character-
istic radiations 2© and 4© located at ±π/2 remain unaffected
by the variation of κ0. While the phase-matching equa-
tion Eq. (7) (solid line) predicts the location of DifRR
(radiation 1©), the exact reason for the generation of radiation
3© is still unknown.

Pertaining to the origin of radiation 3©, in our system,
we consider a WA with an alternative gain-loss arrangement
having a neutral waveguide channel at the center (n = 0).
We obtain the dispersion relation for this system by analyz-
ing the array as a diatomic lattice or two-level system [23],
βPT (κ ) =

√
4c2 cos2 κ − �2, where the edge of the Brillouin

zone is defined at κ = ±π/2. Adopting the PM condition
similar to Eq. (7), we can expect a PT -symmetry-assisted
radiation when

βPT (κ ) − βPT (κ0) − D1
κ = ψ2
0 /2, (8)

where D1 = ∂κβPT (κ )|κ=κ0 . The solutions to Eq. (8) are
subjected to the boundary condition |κ| = π/2 due to the
resulting Brillouin zone where a shift of ±π in the wave
number is required for anomalous recoiling. The proposed PM
relation Eq. (8) accurately predicts the PT -symmetry-assisted
resonant radiation in κ space as demonstrated in Fig. 4(c). We
generalize the theory for a range of κ0 (violet solid lines) and
find an excellent agreement with full numerical results (violet
solid dots) as shown in Fig. 4(d).

B. Dynamics of a weak DS (for κ0 �= 0) in a PT -symmetric WA

In this subsection, we investigate the dynamics of a weak
soliton inside a PT -symmetric WA. Here we mainly show
how the radiations emitted by a weak soliton are charac-
teristically different from the radiation emitted by a strong
DS. Based on the phase plot [see Fig. 2(d) in Sec. II B], the
soliton parameters are chosen in such a way that both DifRR
and PT -symmetry-assisted radiations are suppressed. Note,
the spatial width of the DS is inversely proportional to its
amplitude, and hence, a weak soliton encompasses a large
number of waveguide channels and also experience a smaller
amount of Peierls-Nabarro potential [24] during transverse
propagation. This increases the interaction possibility of the
soliton with periodic gain-loss channels. To understand the
interaction between a weak soliton and defect, we first con-
sider a uniform WA having a gain-loss channel (or a coupler)
located at sites n = 30, 31. This coupler embedded within the
uniform neutral WA should act as a defect center for light
scattering. In Fig. 5(a), we demonstrate the propagation of the
weak DS, which experiences the defect created by the pair of
PT -symmetric gain-loss channels. Note that due to the low
amplitude and initial momentum, the DS does not produce the
regular DifRR in κ space; the only radiation it produces is due
to the reflection from the defect boundary, which is evident
in Fig. 5(b). The spectrogram plot in Fig. 5(c) showcases
the formation of radiation (highlighted by an arrow) due to
the scattering from the defect boundary. A simple momentum
conservation predicts the location of this radiation in κ space
as κR = −κ0 and demonstrated in Fig. 5(d) where solid dots
represent the κR value obtained numerically. Note that, as
expected, in this system the characteristic ±π/2 side lobes
are absent due to the absence of PT -symmetric periodicity.
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(a) (b)

(c) (d)

FIG. 5. Interaction of a low amplitude soliton of (ψ0 = 0.2)
with a single PT -symmetric element. (a) Soliton movement in n
space where a low amplitude reflection takes place from the defect
boundary. (b) The reflected component emerges as a radiation at
κ = −κ0 = 0.6 in the κ domain. (c) The spectrogram at the output
shows that both the soliton and reflected components follow the delay
line. (d) Locations of the reflected component in κ space obtained
numerically (solid dots) for different initial κ0. The numerical results
are consistent with the reflection condition of κ = −κ0 shown by the
solid blue line.

In our original setup of the PT -symmetric WA, the gain-
loss channels are arranged alternatively with a neutral channel
placed at the center (n = 0) that acts as a defect. When we
extend our investigation in such a system for a weak DS, a
few more interesting aspects emerge which were obscured in
the dynamics of a strong soliton. Here the weak soliton (ψ0 =
0.2) with initial phase gradient radiates four distinct radiations
[see Figs. 6(a) and 6(b)]. Radiation 6© can be identified as
the reflection from the central defect in the PT -symmetric
WA, similar to what we have observed in Fig. 5 as it follows
the same κR = −κ0 relationship. The localization of the fields
2© and 4© at ±π/2 in κ space is also observed for the weak

DS. However, the formation of the radiation 5© is surprising
and one can confuse it with the DifRR. Radiation 5© must
be different from DifRR since the formation of DifRR is
suppressed for the given parameters of the soliton. We observe
that a forward propagating weak soliton (which covers more
waveguide channels) experiences a significant backscattering
due to the periodic PT -symmetric elements and produces
an additional radiation (in κ space). Notably, the radiation
5© originates almost from ξ = 0 point which supports the

backscattering theory. In the spectrogram plot [Fig. 6(c)] also
the signature of backscattering 5© is evident as it is located at
the same spatial location (n coordinate) as that of the soliton
but on the reverse delay curve. The phase of the backscattered
wave is detuned by π and under the folded Brillouin zone
scheme one can calculate its momentum as κBS = (κ0 − π ).
In Fig. 6(d), we plot the momentum of all four radiations
(including 5©) as a function of input soliton wave number κ0
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FIG. 6. (a) Propagation of a low amplitude (ψ0 = 0.2, κ0 = 0.6)
soliton in a PT -symmetric WA with where DifRR is suppressed.
(b) Different radiations on κ space marked as 2©, 4©, 5©, and 6©.
(c) Spectrogram at output with delay curves. (d) Variation of different
radiations as a function of κ0. The solid dots are numerical results,
whereas the lines correspond to the theory.

and find a satisfactory matching between simulation data with
the theory that we proposed.

IV. CONCLUSIONS

In this paper, we explain the origin of a few unique ra-
diations that take place when a discrete soliton is excited
inside a PT -symmetric waveguide array. The concept of PT
symmetry is optically realized by constructing a waveguide
array with alternative gain-loss channels. We perform a linear
Hamiltonian analysis to obtain the operational regime in a
PT -symmetric system. The dynamics of a spatial soliton are
investigated under such a system where several distinctive
radiations emerge in the momentum space due to the PT
symmetry. A strong discrete soliton when launched with an
inclination emits diffractive resonance radiation. The PT -
symmetric nature of the waveguide array, however, excites
several other radiations that have not been explored. We make
an attempt to investigate the physical origin of all these radi-
ations and put forward a background theory. It is found that
under the limit of broken PT symmetry when the optical
field is launched normally to the central neutral channel, it
squeezes to the adjacent gain waveguide with a pedestal ex-
tending over n space. This leads to the population of the field
at ±π/2 in momentum space (κ space) and is identified as
characteristic radiation of a PT -symmetric waveguide array.
Distinctive PT -symmetry-assisted radiation also emerges for
a strong soliton due to the diatomic arrangement of lattices.
We establish a modified phase-matching relation that pre-
dicts the location of this radiation in momentum space. A
weak soliton also emits a few distinct radiations which are
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characteristically different. For example, a weak tilted soli-
ton interacts with the central defect in the PT -symmetric
WA resulting in a radiation in the form of reflection. In
such systems, a backscattering is also observed which is
prominent for a weak soliton propagating through a full
PT -symmetric system and leads to a different kind of radi-
ation. We characterized all these radiations and established
a background theory which is found to be in good agree-
ment with full numerical simulation. Our results might be

useful for next generation light shaping and optical switching
applications.
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