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Generalized Haldane model in a magneto-optical honeycomb lattice
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A two-dimensional honeycomb lattice composed of gyrotropic rods is studied. Beginning with Maxwell’s
equations, a perturbed Wannier method is used to derive a tight-binding model with nearest and next-nearest
neighbors. The resulting discrete model leads to a generalized (photonic) Haldane model that supports topolog-
ically protected modes with nonzero Chern numbers. Varying the radii of the rods breaks inversion symmetry
and can change the topology of the system. This model analytically describes experimental results associated
with topological waves in magneto-optical honeycomb lattices. This method can also be applied to more general
Chern insulator lattices. When on-site Kerr-type nonlinear effects are considered, coherent soliton-like modes
are found to propagate robustly through boundary defects.
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I. INTRODUCTION

The study of topological insulators is an area of research
currently receiving significant interest. These types of systems
can be experimentally realized in numerous fields including
ultracold fermionic systems [1], semiconductors [2,3], mag-
netic media [4], equatorial waves [5], and electromagnetic
systems [6–8]. Underlying these works are topologically pro-
tected states that are robust to defects.

This work focuses on topological insulators that are distin-
guished by bulk eigenmodes with a nontrivial Chern number.
In this case, the bulk-edge correspondence implies the exis-
tence of topologically protected modes. Indeed, these systems
can support edge states that propagate unidirectionally around
the boundary with or without material defects.

A standard approach for describing topological insulator
lattice systems is a tight-binding model. Typically, tight-
binding models consist of a set of discrete equations that
reduce the complexity of the governing equations, yet still
capture the essential behavior. Moreover, it is common in
experiments for the dielectric contrast in photonic waveguides
to naturally reside in the deep lattice regime, which is central
in the tight-binding approximation [9,10].

One of the most well-known and heavily studied topolog-
ical insulator systems is the Haldane model [11], associated
with honeycomb lattices. This relatively simple model, which
includes nearest- and next-nearest-neighbor interactions, is
able to capture the essence of Chern insulator systems. The
model illustrates that breaking of time-reversal symmetry is
necessary for realizing bulk modes with nontrivial Chern
topological invariants. Moreover, when inversion symmetry
is broken in an appropriate manner exceeding that of time-
reversal symmetry, a topological transition to a trivial Chern
system can take place.

While Ref. [11] offers no derivation for the model, it ef-
fectively describes the behavior of the quantum Hall effect
in honeycomb lattices. Indeed, many authors have applied
the Haldane model to describe systems with nonzero Chern

numbers. For instance, electron gases with an electrostatic
honeycomb potential behave as a massless Dirac system near
the Dirac points [12]. Applying an external magnetic field
is capable of gapping the system, which can then be de-
scribed by the Haldane model [13]. Haldane models have also
been used to describe electromagnetic systems with pseudo-
Tellegen effects [14]. In addition, periodically driven ultracold
fermionic systems or photonic honeycomb lattices can also
yield Haldane-type models in a high-frequency limit [1,15].
In the latter cases, the periodic driving creates an effective
magnetic field.

This work provides a direct derivation of a generalized Hal-
dane model from Maxwell’s equations in a magneto-optical
(MO) system. The physical system considered here is that of
transverse magnetic (TM) waves in a ferrimagnetic photonic
crystal with an applied external magnetic field, which is a pho-
tonic analog of the quantum Hall effect. To our knowledge,
this is the first time a tight-binding model has been formulated
for this system. These TM systems have been realized in both
square [16–19] and honeycomb [20–23] lattices and found
to support topologically protected edge modes. Topologically
protected modes in EM systems were originally proposed by
Haldane and Raghu [24,25] and their existence studied in
Ref. [26]. Our work shows a direct derivation of a Haldane-
type model from gyrotropic systems.

The key to our approach is the use of a suitable Wannier
basis in which to expand the EM field [27]. Unfortunately,
a direct Wannier expansion is ineffective due to nontrivial
topology, which is the result of a discontinuity in the spectral
phase of the associated Bloch function [15,28]. As a result,
the corresponding Wannier-Fourier coefficients do not decay
rapidly. Seeking a tight-binding model in a basis of these
slowly decaying Wannier modes would require many inter-
actions, well beyond nearest neighbor, to accurately describe
the problem. Consequently, this would cease to be an effective
reduction of the original problem.

By considering nearest- and next-nearest-neighbor inter-
actions, a Haldane model is derived from the original MO
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FIG. 1. Planar honeycomb array of ferrite rods. The lattice a
sites (b sites) are gray (white) disks with radius Ra (Rb). A constant
magnetic field H0̂z is applied. The indices (m, n) denote integer shifts
in the v1 and v2 directions, respectively. The displacement between
two rods in the same cell is d with ||d||2 = �.

honeycomb lattice. With physically relevant parameters, an
analytical study of the system topology is conducted. The
topological transition points are identified and found to agree
well with numerical approximations. Nontrivial Chern num-
bers are found to correspond to unidirectional chiral modes.

The Wannier basis method we use was applied to a square
MO lattice in Ref. [27]. The results in this paper show that
the method is effective, again. This approach can be applied
to other systems, e.g., different lattices, governed by the TM
equation with gyrotropic lattices. We expect this method to be
effective in other Chern insulator systems as well.

We also examine the effect of nonlinearity on edge
mode propagation. Edge solitons, unidirectional nonlinear en-
velopes that balance nonlinearity and dispersion, have been
explored in Floquet Chern insulator systems [29,30,31]. The
work of Ref. [32] showed that significant amounts of radia-
tion are emitted from the solitary wave for highly localized
(nonlinear) envelopes.

The nonlinear system we consider is a Haldane model
that includes on-site Kerr nonlinearity. A similar system has
also been derived from a nonlinear Floquet system in a high-
frequency driving limit [15]. Different nonlinear Haldane
models with saturable nonlinearity [33] and mass terms [34]
have previously been explored. Slowly varying and balanced
envelopes are observed to propagate coherently and robustly
around lattice boundaries. Due to their ability to balance
nonlinear and dispersive effects, while localized along the
boundary, we call these edge solitons.

II. MAGNETO-OPTICAL SYSTEM

The setup we consider is a planar array r = (x, y)T of
ferrimagnetic, e.g., yttrium iron garnet (YIG), rods arranged in
a honeycomb lattice pattern (see Fig. 1). Similar designs were
implemented in Refs. [16,17] and [20,22]. The parallelogram
unit cell contains an a site and b site with radii of Ra and
Rb, respectively. All other cells are integer translations of the
lattice vectors

v1 = �

(
3
2√
3

2

)
, v2 = �

(
3
2

−
√

3
2

)

from the unit cell, where � is the distance between
nearest-neighbor rods. The notation (m, n) indicates a rod
that is displaced mv1 + nv2 away from the unit cell,
where m, n ∈ Z.

A constant external magnetic field is applied in the per-
pendicular (out of the page) direction, H0̂z, and induces a
saturated magnetic response. For time-harmonic fields with
angular frequency ω, the ferrite rods induce the gyrotropic
permeability tensor [35]

[μ] =

⎛⎜⎝ μ iκ 0

−iκ μ 0

0 0 μ0

⎞⎟⎠, (1)

where μ = μ0(1 + ω0ωm

ω2
0−ω2 ) and κ = μ0

ωωm

ω2
0−ω2 . The coefficients

are defined in terms of ω0 = μ0γ H0 and ωm = μ0γ 4πMs,
where μ0 is the vacuum permeability, γ is the gyromag-
netic ratio, and Ms is the magnetization saturation of the
material.

For rods with permittivity ε(r), the governing TM wave
equation for a time-harmonic field is

−∇2E + M · ∇E = ω2εμ̃E ,

M(r) = ∇ ln μ̃ − iμ̃(̂z × ∇η), (2)

where E , plus its complex conjugate, is the z component of
the electric field, μ̃ = μ2−κ2

μ
, and η = − κ

μ2−κ2 . Here, we take
a nondispersive approximation and fix the values of μ and
κ: ω is fixed to eventual band-gap frequencies. For a typical
YIG rod at frequency f = 7.7 GHz ( f = ω/2π ) with satu-
ration magnetization 4πMs = 1750 G and magnetizing field
H0 = 500 Oe, the constitutive relations are approximately
μ = 0.88μ0, κ = −0.66μ0, and ε = 15ε0. The equation is
nondimensionalized via r → �r, μ → μ0μ, κ → μ0κ, ε →
ε0ε, ω → cω/�, where c is the speed of light and ε0 =
(c2μ0)−1 is the vacuum permittivity.

The coefficients in (2) share the translation symmetry
of the honeycomb lattice: ε(r + mv1 + nv2) = ε(r), μ̃(r +
mv1 + nv2) = μ̃(r), and η(r + mv1 + nv2) = η(r), where
m, n ∈ Z. Bloch theory motivates bulk wave solutions of
the form E (r; k) = eik·ru(r; k), with u(r + mv1 + nv2; k) =
u(r; k) for quasimomentum k, where the reciprocal lattice
vectors are given by

k1 = 2π

�

(
1
3
1√
3

)
, k2 = 2π

�

(
1
3− 1√

3

)
.

The second term in M(r) is induced by the external
magnetic field and is responsible for breaking time-reversal
symmetry. Moreover, this term is directly proportional to the
associated vector potential [16]

A(r) = μ̃

2
(ẑ × ∇η), (3)

which corresponds to the effective or induced magnetic flux
density B(r) = ∇ × A(r) = ẑ

2 (∇μ̃ · ∇η + μ̃∇2η). From the
point of view of the Schrödinger equation with a magnetic
field, B plays the role of a “photonic” magnetic field. That is,
it is different from the actual (physical) magnetic field given
by B = [μ]H. When deriving our generalized Haldane model
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FIG. 2. The region indicated by the colorbar is the effective
magnetic flux density B(r) · ẑ for ferrite rods with Ra = Rb = 0.3�.
Superimposed on top is the vector potential A(r) in (3). The vector
potential (indicated by red arrows) circulates clockwise near the
ferrite-air boundary.

below, the induced magnetic field is the more useful quantity;
we will refer to it as the effective magnetic field.

A typical magnetic potential and effective magnetic field
are shown in Fig. 2. Similar to the original Haldane model
[11], here the magnetic flux through the unit cell is ob-
served to be zero, that is,

∫∫
UC B(r) · ẑ dS = 0; this was

verified numerically. The vector potential consists of local-
ized circulations along the boundary of the rods, due to the
gradient term in (3). The circulations have a clockwise ori-
entation about rod centers and appear to only have angular
motion (no radial component). As such, the magnetic flux
A(l) · dl, where l is a radially oriented path from the cen-
ter of one rod to the center of the next-nearest neighbor,
is identically zero, unlike the original Haldane model [11].
Nonetheless, the topological nature of the discrete model
derived below is related to the magnetic potential shown
in Fig. 2.

Solving the resulting equation for [u(r; k), ω(k)], via
spectral methods along the 	MK	 path in k-space (see
Appendix A), we obtain the two lowest spectral bands shown
in Fig. 3. The location of Dirac points (up to integer transla-
tions of the reciprocal lattice vectors) are

K ′ =
(

0
4π

3
√

3�

)
, K =

(
0

− 4π

3
√

3�

)
.

In Fig. 3(a), no external magnetic field is applied and a con-
ical Dirac point is observed at the K point. When a magnetic
field is applied, then M is nonzero, time-reversal symmetry
is broken, and a band gap opens [see Fig. 3(b)]. Moreover,
there is an associated set of nonzero Chern numbers. Note
that the first (lowest) band is denoted by “–” subscript, while
the second band is denoted by “+” subscript. In Fig. 3 we
also compare with the discrete-tight binding approximation
discussed below.

M K
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FIG. 3. Normalized frequency bands obtained by solving (2)
for u(r; k) = e−ik·rE (r; k) for values of k along the path 	MK	

with Ra = Rb = 0.3�. Shown are the first two bands (ascending or-
der) for (a) nonmagnetized (M = 0, μ̃ = μ0) and (b) magnetized
(M �= 0, μ̃ �= μ0) systems. Solid lines indicate numerically com-
puted curves. Dashed lines denote the tight-binding approximation.
Chern numbers are the same for both.

III. A PERTURBED WANNIER APPROACH

A strong dielectric contrast between the rods and back-
ground motivates a tight-binding approximation, whereby a
variable coefficient partial differential equation (PDE) with
a periodic lattice potential, i.e., (2), can be reduced to a
constant coefficient system of ordinary differential equations
(ODEs) [9]. Bloch wave solutions of (2) are periodic with
respect to the quasimomentum k: E (r; k + mk1 + nk2) =
E (r; k), where the reciprocal lattice vectors k1,2 satisfy vi ·
k j = 2πδi j . As such, the Bloch wave can be expanded in a
Fourier in k series

E (r; k) =
∑

p

∑
m,n

W p
mn(r)eik·(mv1+nv2 ), (4)

where W p
mn denotes the Wannier function corresponding to the

(m, n) spatial cell and pth spectral band.
Due to the properties of Fourier coefficients, the decay of

W p
mn(r) depends on the smoothness of E (r; k) in k. Chern

insulators possess an essential phase discontinuity that can-
not be removed via gauge transformation [28]. As a result,
a direct Wannier expansion is not useful. A closely related
set of exponentially localized Wannier functions, which come
from a problem with time-reversal symmetry [27], can be used
perturbatively.

Consider (2) with M = 0, but μ̃ �= μ0—the so-called
“perturbed problem.” The maximally localized Wannier
(MLWF) functions, found using well-known methods [36],
corresponding to the first two Wannier functions, called
W̃ a

mn(r) and W̃ b
mn(r), are shown in Fig. 4 and are centered at
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FIG. 4. Maximally localized Wannier functions (a) W̃ a
00(r) and

(b) W̃ b
00(r), obtained from (2) when M = 0, μ̃ �= μ0, and Ra = Rb =

0.3�.

the a sites (d + mv1 + nv2) and b sites (2d + mv1 + nv2),
respectively. These Wannier functions are related to those
in (4) (when M = 0) by a unitary transformation chosen
to minimize the spread (see Appendix C). Note that these
functions are real, exponentially localized, and approximately
exhibit the mirror symmetry about the x = 3�/2 axis; i.e.,
W̃ a

00(−(r − 3�̂x/2)) = W̃ b
00(r − 3�̂x/2).

The Bloch wave is expanded in terms of this new basis,

E (r; k) =
∑
m,n

[
amnW̃

a
mn(r) + bmnW̃

b
mn(r)

]
, (5)

where all phases have been absorbed in the coefficients.
Properly normalized Wannier modes exhibit the orthogonality
property 〈W p

mn,W p′
m′n′ 〉R2 = δmm′δnn′δpp′ for the weighted inner

product 〈 f , g〉R2 = ∫∫
R2 f (r)∗g(r)ε(r)μ̃(r)dr.

Substituting (5) into (2) with M �= 0, multiplying by
W̃ j

mn(r), j = a, b, and integrating over R2 yields a system of
algebraic equations whose coefficients depend on integrals
over perturbed Wannier functions. Once the MLWFs are ob-
tained, these integrals are numerically approximated. Since
this is a deep lattice, only nearby interactions are kept since
the others are small. We keep terms up to the next-nearest-
neighboring sites.

IV. A HALDANE-TYPE MODEL

A tight-binding model is obtained by substituting the
Wannier expansion (5) into the governing equation (2) and
then numerically approximating the relevant overlap integrals
(see Ref. [27] for more details on the method). The precise
coefficient definitions are given in Appendix B. Inspection
of the numerically computed tight-binding coefficients (see
Appendix A) reveals an effective discrete approximation that
is a generalization of the well-known Haldane model [11].
Namely, replacing ω by id/dt , we obtain the key equations of
this work,

d2amn

dt2
+ Pamn + t1(δ−bmn)

+ t2eiφ (�1amn) + t2e−iφ (�2amn) = 0, (6)

d2bmn

dt2
+ P̃bmn + t1(δ+amn)

+ t̃2e−iφ (�1bmn) + t̃2eiφ (�2bmn) = 0, (7)

FIG. 5. Illustration of why Im{P} = Im{P̃} = 0 and Im{t1} = 0.

(a) Im{̂x · M}, (b) ∂W̃ b
00/∂x, (c) Im{W̃b

00 (̂x · M)
∂W̃b

00
∂x } [product of

Fig. 4(b) and panels (a) and (b)], and (d) Im{W̃a
00 (̂x · M)

∂W̃b
00

∂x } [prod-
uct of Fig. 4(a) and panels (a) and (b)]. A similar study shows that the
y-component counterparts of (c) and (d) are also odd. The imaginary
part of P and t1 is obtained by integrating (c) and (d), respectively
(and their y counterparts), revealing a null imaginary part. Note that
P = P̃ here.

where (δ±cmn) ≡ cmn + cm±1,n + cm,n±1 are the nearest-
neighbor interactions and (�1cmn) ≡ cm,n+1 + cm−1,n +
cm+1,n−1 and (�2cmn) ≡ cm+1,n + cm,n−1 + cm−1,n+1 are
next-nearest-neighbor contributions, such that c = a or c = b.
The parameters P, P̃, t1, t2, t̃2, φ are real-valued numbers;
these values depend on the physical quantities μ, κ, ε and
sizes of the radii of the rods.

Here, the external magnetic field (H0 �= 0) is found to in-
duce complex (φ �= 0) next-nearest coefficients, but real self
(P, P̃) and nearest (t1) neighbor terms. Upon closer inspection
of the imaginary part of P̃ and t1 [see Eqs. (B2) and (B3) in
Appendix B, respectively], we find local symmetries cause its
elimination. This is highlighted in Fig. 5. For example, the
imaginary part of x̂ · M is odd in the y direction at each rod
[see Fig. 5(a)], while ∂W̃ b

mn/∂x is (approximately) odd about
b-site rods in the x direction [see Fig. 5(b)]. Multiplying these
functions by W̃ b

mn [Fig. 4(b)] and W̃ a
mn [Fig. 4(a)] yields the

imaginary x component of the self [Fig. 5(c)] and nearest
[Fig. 5(d)] neighbor contributions, respectively. The corre-
sponding tight-binding coefficients are obtained by integrating
these functions. Then, integration yields a net zero contri-
bution due to the local odd symmetries. The y-component
portion behaves in a similar manner.

The complex nature of the next-nearest-neighbor coeffi-
cients defined in (B4) (in Appendix B) is a direct result
of the vector potential (3), which appears in the coefficient
M(r) in (2). Moreover, it is related to the intrinsic hon-
eycomb lattice symmetry. A more thorough examination of
the next-nearest-neighbor interactions is outside the scope of
this work.

033503-4



GENERALIZED HALDANE MODEL IN A … PHYSICAL REVIEW A 109, 033503 (2024)

TABLE I. Tight-binding parameters in (6) and (7) for different
applied external magnetic field strengths. The other physical param-
eters used are Ra = Rb = 0.3�, ε = 15ε0, and 4πMs = 1750 G, at
frequency f = 7.7 GHz. All cases have the same topological number.

H0 (Oe) P t1 t2 φ

300 0.982 −0.276 0.029 2.314
400 0.998 −0.278 0.034 2.317
500 1.020 −0.280 0.041 2.327
600 1.058 −0.285 0.052 2.346
700 1.103 −0.293 0.062 2.358

Notice that this system reduces to the “classical” Haldane
model given in Ref. [11] when t̃2 = t2 and φ → −φ. The
equations can be put in a more standard form by looking for
solutions of the form amn → amneiωt , similarly for bmn, and
then shifting the spectrum ω2 → ω2 + (P + P̃)/2. This yields
an on-site inversion parameter

M ≡ P − P̃

2
, (8)

which is important in Ref. [11] and below. The result of this
latter spectral shift is to effectively replace P by M in (6) and
P̃ by −M in (7).

We find the classical Haldane model when inversion
symmetry is not broken (P = P̃, t2 = t̃2) and a modified
version when inversion symmetry is broken (P �= P̃, t2 �=
t̃2). For instance, when the a-site and b-site rods differ,
the inversion symmetry of the lattice, r → −r, is broken,
and this leads to different interactions among the Wannier
modes and hence different coefficients (see Sec. V and
Appendix C).

We compare the bulk bands of the discrete model to those
numerically computed from (2); see Fig. 3. (All tight-binding
parameters used can be found in Appendix B.) Indeed, the
discrete approximation shows good agreement with the nu-
merical bands; the relative error throughout the Brillouin zone
is 6.5% or less. Moreover, for � = 5.8 mm spacing, the gap
frequencies in Fig. 3(b) lie in the vicinity of the 8-GHz mi-
crowave regime observed in Ref. [22].

To gain insight into the physical nature of the param-
eter φ, we perform two tests. First, dependence on the
applied magnetic field is explored. The value of H0 is var-
ied while the material parameters, e.g., ε and Ms, are held
fixed [cf. Eq. (1)]. The parameters are shown in Table I.
Since inversion symmetry is not broken, P = P̃ and t̃2 = t2.
Examining the model parameters, we observe that the mag-
nitudes of the P, t1, and t2 parameters increase, with little
(effectively no) change to the phase parameter φ. For sat-
urated magnetic ferrites, there is little change in the values
of μ and κ since ω is well separated from the resonant
frequency ω0 here.

Next, we consider a scenario in (1) where μ is fixed
and the value of κ is varied independently of it. The re-
sults are shown in Fig. 6. When κ = 0 all the nearest- and
next-nearest-neighbor coefficients are real and negative, hence
φ = π . As κ decreases and approaches −μ, the value of
φ also decreases. Moreover, it is clear that the value of φ

-0.8 -0.6 -0.4 -0.2 0
1.8

2

2.2

2.4

2.6

2.8

3

3.2

FIG. 6. Dependence of the phase parameter φ in (6) and (7) on
the anisotropy parameter κ in (1) for μ = 0.88μ0 and Rb = 0.3�.

depends on the rod radii, Ra and Rb. This is not surprising
since the Wannier functions often reflect the physical pro-
file of the photonic medium [15]. Therefore, as the radius
of the rod changes, so does the vector potential and the
phase parameter φ. If the direction of the magnetic field is
changed, i.e., H0 → −H0, Ms → −Ms, then (1) is effectively
conjugated and the phase terms in (6) and (7) reverse sign,
i.e., φ → −φ.

Reviewing the results of these tests, we can say that the
range of values for t2eiφ and t̃2eiφ primarily reside in the
second quadrant of the complex plane. Changing the direction
of the external physical magnetic field changes the direction
of the vector potential field A(r) and conjugates these co-
efficients into the third quadrant. Hence, many values inside
π/2 < |φ| < π in the phase diagram in Fig. 7 are realized by
adjusting κ and μ.

- - /2 0 /2

-6

-4

-2

0

2

4

6

FIG. 7. Phase diagram separating nontrivial Chern insulator
(interior) and trivial (exterior) systems for different ratios of
t̃2/t2. Shown is the Chern number C+ for the second spec-
tral band; the signs are reversed for C− corresponding to the
first band.
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V. ANALYTICAL CALCULATION OF BULK MODES

Consider bulk plane wave solutions of system (6) and (7)
with the form

amn(t ) = α(k)ei[k·(mv1+nv2 )+ω(k)t],

bmn(t ) = β(k)ei[k·(mv1+nv2 )+ω(k)t],

where k ∈ R. Next, define the nearest- and next-
nearest-neighbor vectors a1 = 0, a2 = v1, a3 = v2, and
b1 = v1, b2 = −v2, b3 = v2 − v1, respectively. Then, the
bulk Haldane system can be expressed as the following
eigenvalue problem:

(
M + H0 + H3 H1 − iH2

H1 + iH2 −M + τ (H0 − H3)

)(
α

β

)
= ω̃2

(
α

β

)
,

(9)

where τ = t̃2/t2 > 0 and M = (P − P̃)/2 with the terms

H0(k) = 2t2 cos φ

3∑
j=1

cos(k · b j )

H1(k) = t1

3∑
j=1

cos(k · a j )

H2(k) = t1

3∑
j=1

sin(k · a j )

H3(k) = 2t2 sin φ

3∑
j=1

sin(k · b j ).

Note that we have utilized the frequency shift ω2 =
ω̃2 + (P + P̃)/2 to follow the convention used in Ref. [11].
When τ = 1, this is precisely Haldane’s model [11] when
φ → −φ and ω̃2 → ω2 + H0. The dispersion surfaces of (9)
are given by

ω̃2
±(k) = H0(k)(1 + τ ) + H3(k)(1 − τ )

2
±

√
H1(k)2 + H2(k)2 + 1

4
[2M + H0(k)(1 − τ ) + H3(k)(1 + τ )]2. (10)

Below, we begin by studying the behavior of the spec-
trum near the Dirac points. In the absence of magnetization
(φ = π ) the spectral gap closes and the bands ω̃± touch at
these points. Moreover, as will be explained below, the contri-
butions that result in nonzero Chern numbers are acquired at
these points.

Consider the behavior of the spectral bands in (10) at
the Dirac point K ′ = (0, 4π

3
√

3�
)T , where the functions Hj, j =

0, ..., 3 reduce to

H0(K ′) = −3t2 cos φ, H1(K ′) = 0,

H2(K ′) = 0, H3(K ′) = 3
√

3t2 sin φ.

Hence, at this Dirac point, the spectral bands in (10) are given
by

ω̃2
± = −3t2 cos φ(1 + τ ) + 3

√
3t2 sin φ(1 − τ )

2

± 1

2
|2M − 3t2 cos φ(1 − τ ) + 3

√
3t2 sin φ(1 + τ )|.

A gap closure (i.e., ω̃+ = ω̃−) occurs when the equation

2M − 3(t2 − t̃2) cos φ + 3
√

3(t2 + t̃2) sin φ = 0 (11)

is satisfied.
If, on the other hand, the Dirac point K = −K ′ is consid-

ered, then

H0(K ) = −3t2 cos φ, H1(K ) = 0,

H2(K ) = 0, H3(K ) = −3
√

3t2 sin φ,

where the only difference is the sign of H3. Here, the corre-
sponding gap closure occurs when the equation

2M − 3(t2 − t̃2) cos φ − 3
√

3(t2 + t̃2) sin φ = 0 (12)

is satisfied. When τ = 1 (M = 0) (inversion symmetry
present), the gap closure condition reduces to that of the
classical Haldane model: φ = nπ with n ∈ Z. The curves in
(11) and (12) are shown in Fig. 7 for different values of τ and
correspond to topological transition points.

The eigenmodes associated with the ω̃2
± eigenvalues in (10)

are

c±(k) = 1

D(k)

(
H1(k) − iH2(k)

ω̃2
±(k) − M − H0(k) − H3(k)

)
. (13)

The term D(k) is a normalization factor chosen to en-
sure ||c±||2 = 1. Notice that these functions are peri-
odic in k: c±(k + k j ) = c±(k) for the reciprocal lattice
vectors j = 1, 2.

The Chern numbers are given by

C± = 1

2π i

∫∫
�

(〈
∂c±
∂kx

,
∂c±
∂ky

〉
−

〈
∂c±
∂ky

,
∂c±
∂kx

〉)
dk, (14)

where 〈f, g〉 = f†g and † indicates the complex conjugate
transpose. The region � is a reciprocal unit cell, given by
the parallelogram region formed by the reciprocal lattice
vectors k1, k2.

To compute (14), Stokes’ theorem is applied over �. This
equates the double integral over � to a closed line integral
along the boundary ∂�. However, since the eigenfunctions
(13) are not differentiable at the Dirac points, a contour in-
tegral which excludes these points must be implemented (see
Ref. [15]). Due to the periodic boundary conditions in the
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FIG. 8. Topological transition of frequency Bloch bands as inversion symmetry is broken by decreasing the radius Ra while keeping Rb =
0.3�. Numerical (black curves) and tight-binding (red curves) approximations are shown for (a) Ra = 0.25�, (b) Ra = 0.255�, (c) Ra = 0.27�,
and (d) Ra = 0.3�.

eigenmodes, the boundary ∂� makes no contribution to the
Chern number. The only nontrivial contributions come from
the two Dirac points,

C± = − 1

2π i

∮
∂K

A±(k) · dk − 1

2π i

∮
∂K ′

A±(k) · dk, (15)

where A±(k) = 〈c±,∇kc±〉 = 〈c±, ∂kx c±〉̂kx + 〈c±, ∂ky c±〉̂ky

is the Berry connection. The contours of integration in (15) are
taken to be small counterclockwise oriented circles centered
around the Dirac points, K and K ′, respectively.

Next, the eigenmodes are linearized about the Dirac point
k = K ′; a similar calculation follows for the other Dirac point.
Doing so, we get

c±(k) ≈ c±(K ′) + (k − K ′) · ∇kc±(K ′),

where ∇k ≡ ∂kx k̂x + ∂ky k̂y. After renormalizing the linear ap-
proximation via ψ = c±/||c±||2, the Berry connection and
Chern number (14) are computed in the neighborhood of the
K ′ Dirac point.

The following are the results. The contribution to the total
Chern number at the K ′ Dirac point is −1 for

2M − 3(t2 − t̃2) cos φ + 3
√

3(t2 + t̃2) sin φ > 0, (16)

and 0 otherwise. Meanwhile, the contribution at the K Dirac
point is +1 for

2M − 3(t2 − t̃2) cos φ − 3
√

3(t2 + t̃2) sin φ > 0, (17)

and 0 otherwise. The combination of these regions of topology
is summarized in Fig. 7. This figure represents a generaliza-
tion of the phase diagram in Ref. [11].

The Chern number is found by combining the contributions
in (16) and (17). Suppose we focus on the interval 0 < φ < π .
Then, for parameters that satisfy neither (16) nor (17), that
is, 2M < 3(t2 − t̃2) cos φ − 3

√
3(t2 + t̃2) sin φ, both Dirac

points have zero contribution and C+ = 0 + 0 = 0. Next, for
values that satisfy (16), but not (17), the K ′ Dirac point con-
tributes −1, and the K point has a null contribution, so C+ =

−1 + 0 = −1. Lastly, when both (16) and (17) are satis-
fied, that is, 2M > 3(t2 − t̃2) cos φ + 3

√
3(t2 + t̃2) sin φ, both

Dirac points contribute and cancel each other out, so C+ =
−1 + 1 = 0. For all cases considered in this paper, the analyt-
ically computed Chern numbers agree with numerics [37].

Lastly, it is observed that, similar to the classic Haldane
model, band gaps associated with topologically protected
waves only open for φ �= nπ, n ∈ Z. Physically, values of φ =
nπ correspond to completely real next-nearest-neighbor co-
efficients. Opening a spectral gap that supports topologically
protected edge modes requires complex next-nearest-neighbor
coefficients. In this model, the complex nature of the next-
nearest-neighbor coefficients is induced by the external
magnetic field.

A. Broken inversion symmetry

A notable feature of the Haldane model is a change in
topology when the degree to which the inversion symmetry
is broken is sufficiently large. The generalized model (6) and
(7) also exhibits this property. Physically, inversion symmetry
of the system can be broken by choosing different radii for the
a and b lattice sites, that is, Ra �= Rb. Doing so leads to P �= P̃,
t2 �= t̃2, and M �= 0 [as defined in (8)].

Spectral band diagrams resulting from such a change are
shown in Figs. 8 and 9. As the radii differential changes, the
system undergoes a topological transition that is captured by
the model. We observe that when Ra is sufficiently smaller (or
larger) than Rb, the system is a trivial Chern insulator. Only
when Ra ≈ Rb do we observe a nontrivial Chern insulator
state.

Specifically, for fixed radius Rb = 0.3�, the (numerical)
transition points between a trivial and nontrivial Chern in-
sulator occur at approximately Ra = 0.27� [at k = K ; see
Fig. 8(c)] and Ra = 0.35� [at k = K ′; see Fig. 9(b)]. The
discrete model (6) and (7) is also found to exhibit these topo-
logical transitions when the inversion symmetry is broken. On
the other hand, the bands of the discrete model close at slightly
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FIG. 9. Spectral bands and topological transition when inversion symmetry is broken by increasing the radius Ra while fixing Rb = 0.3�.
Numerical (black curves) and tight-binding (red curves) approximations are shown for (a) Ra = 0.3�, (b) Ra = 0.35�, (c) Ra = 0.4�, and
(d) Ra = 0.42�.

different radii, namely, (approximately) Ra = 0.255� [at k =
K ; see Fig. 8(b)] and Ra = 0.4� [at k = K ′; see Fig. 9(c)]. To
reduce this discrepancy, more accurate approximations can be
obtained by adding more interactions, e.g., next-next-nearest
neighbor.

We note that for values of τ smaller than 1, like Fig. 8,
typically the difference |Ra − Rb| for Ra < Rb needs to be
smaller to see a topological transition (numerical bands touch
for Ra = 0.27�, Rb = 0.3�, so |Ra − Rb| = 0.03�). In con-
trast, when Ra > Rb and τ is larger than 1, like Fig. 9, a
larger difference |Ra − Rb| is needed for a topological tran-
sition (numerical bands touch for Ra = 0.35�, Rb = 0.3�, so
|Ra − Rb| = 0.05�).

The tight-binding model also exhibits this asymmetry. In
examining the locations of the parameters (see Table II in
Appendix B) relative to the topological regions shown in
Fig. 7, it appears the source of the asymmetry is the noticeable
change in the value φ as Ra increases. This differs from the
behavior when Ra decreases, where φ does not change sub-
stantially. This asymmetry in the transition points also occurs
if instead Ra is fixed and Rb is adjusted. The main difference
is that the spectral touching points switch from what was
observed above: K ↔ K ′.

VI. TOPOLOGICALLY PROTECTED EDGE MODES

The edge problem is now considered. An edge is placed
along the zigzag edge parallel to the v1 lattice vector. Outside
the semi-infinite strip, the electric field is assumed to decay
exponentially fast. We find edge states that decay exponen-
tially in the v2 direction. Two topologically distinct edge band
diagrams are shown in Fig. 10. Edge modes along the direc-
tion v1 are found by taking

amn(t ) = an(k)ei[mk·v1+ωt],

bmn(t ) = bn(k)ei[mk·v1+ωt],

which reduces the governing system (6) and (7) to

ω2an = Pan + t1[(1 + e−ik·v1 )bn + bn−1]

+ t2eiφ[an+1 + e−ik·v1 an + eik·v1 an−1]

+ t2e−iφ[an−1 + eik·v1 an + e−ik·v1 an+1] (18)

FIG. 10. Spectral edge bands parallel to the v1 zigzag edge. The
model parameters for the (a′) topologically trivial and (c′) topologi-
cally nontrivial band diagrams are the same as those in Figs. 8(a) and
8(d), respectively. Green (blue) curves correspond to edge modes
localized along the top (bottom) boundary, decaying in the +v2 (−v2)
direction.
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ω2bn = P̃bn + t1[(1 + eik·v1 )an + an+1]

+ t̃2e−iφ[bn+1 + e−ik·v1 bn + eik·v1 bn−1]

+ t̃2eiφ[bn−1 + eik·v1 bn + e−ik·v1 bn+1] (19)

Note that k · v1 = (rk1 + sk2) · v1 = 2πr for r, s ∈ R due to
the relationship ki · v j = 2πδi j . As a result, the coefficients
cover one period over 0 � r � 1. This system is solved nu-
merically by implementing zero Dirichlet (open) boundary
conditions

an, bn = 0, n < 1, n > N,

where N is taken to be large. We took N = 64 to generate
Fig. 10. The band-gap eigenfunctions are exponentially local-
ized and decay rapidly away from the boundary wall, in the
± v2 direction.

The band configuration in Fig. 10(a′) corresponds to bulk
eigenmodes with zero Chern number due to strong inver-
sion symmetry breaking. As a result, there are no edge
modes spanning the entire frequency gap. On the other hand,
the system with corresponding nonzero Chern numbers in
Fig. 10(c′) exhibits a nontrivial band structure inside the
gap. These topologically protected chiral states propagate
unidirectionally.

We consider time evolutions of these topologically distinct
states. To do so, envelope approximations are evolved by
taking the quasi-monochromatic initial data

amn(0) = sech(νm)eimk·v1 an(k)

bmn(0) = sech(νm)eimk·v1 bn(k),

where an, bn are numerically computed edge states indicated
by the red dots at k = 0.5k1 in Fig. 10 and ν is a relatively
small parameter; here, we took ν = 0.1. Edge eigenmodes
localized along the bottom edge of MO honeycomb lattice are
taken. The edge envelopes are then propagated into a defect
barrier missing two lattice cells in the −v2 direction, in which
the electric field is negligibly small.

Using the initial condition above, the evolutions obtained
by solving (6) and (7) are highlighted in Fig. 11. Edge
states with corresponding nontrivial Chern invariants [see
Figs. 10(c′) and 11(c′′)] propagate chiraly around the de-
fect barrier. There is virtually no loss in amplitude. On the
other hand, edge modes associated with zero Chern number
[see Figs. 10(a′) and 11(a′′)] experience significant losses
and scattering upon collision with the barrier. A portion
of the original envelope propagates around the barrier, but
there is a nearly 67% amplitude loss due to scattering into
the bulk.

As a final note, we observe small decay in the maximal
amplitude of these topologically protected modes, a roughly
10% decline over 1500 time units. This is expected due to
dispersion. It is well known that self-focusing nonlinearity can
balance these dispersive effects and form solitons [38]. This
motivates this next section, which investigates a nonlinear
Haldane model and edge solitons.

FIG. 11. Envelope evolutions along and through a defect barrier.
Shown are both magnitudes |amn(t )| and |bmn(t )| at times in units
of �/c. Shown are (a′′) trivial and (c′′) nontrivial Chern insulators
with band diagrams given in Figs. 10(a′) and 10(a′), respectively.
Note: brightness is relative to the t = 100 magnitude. The boundary
is illustrated in teal color.

VII. A NONLINEAR HALDANE MODEL

In this section we consider the effects of nonlinearity in
our Haldane model. The physical motivation here is that of a
(relatively) high power electric field with nonnegligible on-
site Kerr-type terms proportional to the field intensity. We
consider the following nonlinear Haldane model:

d2amn

dt2
+ Pamn + t1(δ−bmn) + σ |amn|2amn

+ t2eiφ (�1amn) + t2e−iφ (�2amn) = 0 (20)

d2bmn

dt2
+ P̃bmn + t1(δ+amn) + σ |bmn|2bmn

+ t̃2e−iφ (�1bmn) + t̃2eiφ (�2bmn) = 0, (21)

where the linear interaction coefficients, δ±,� j, j = 1, 2, are
defined below Eqs. (6) and (7). Motivated by previous studies,
we take an on-site focusing, Kerr-type nonlinearity, i.e., σ >

0. For the simulations below, we took σ = 0.1.
The initial conditions used to generate solitons below are

of the form

amn(0) = Asech(νm)eimk·v1 an(k)

bmn(0) = Asech(νm)eimk·v1 bn(k),
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FIG. 12. Nonlinear edge soliton evolutions through a defect.
(a), (b), (d) Both magnitudes |amn(t )| and |bmn(t )| at times in units
of �/c. Note: brightness is relative to the t = 0 magnitude. The
boundary is illustrated in teal color; the defect location is fixed.
(c) Edge profile at the initial and final times.

with k = 0.65k1, and an, bn are topologically nontrivial linear
eigenmodes. We choose a linear edge mode whose cor-
responding dispersion (second derivative) is nonzero, i.e.,
ω′′(k) ≈ −0.287 < 0 (see red “x” marker in Fig. 10). Note
that these derivatives are defined in the directional derivative
sense

ω′(k) = ∇ω|k1 = lim
h→0

ω(k + hk1) − ω(k)

h
.

For reference, the group velocity is ω′(k) ≈ −0.0584 in
the v1 direction. Unfortunately, the third-order dispersion is
relatively large, ω′′′(k) ≈ −1.401, which will impact the for-
mation of solitons. For this relatively weak dispersion, we
seek a comparable weak nonlinearity to balance it, i.e., A =
0.3. A corresponding slowly varying profile (ν = 0.15) is
chosen to ensure as pure of a single edge mode as possible
is excited.

Using the parameters described above, a typical evolution
thorough a one-lattice cell defect in the −v2 direction is
highlighted in Fig. 12. The resulting nonlinear mode prop-
agates over relatively long time scales (0 � t � 1200) with
a nearly constant solitary form. We observe a small 3.7%
relative change in maximum magnitude between the initial
and final states. Hence, we refer to this as an edge soliton.
We note that, eventually, on longer time scales higher-order
dispersion terms will become nonnegligible and the mode will
degrade.

Now some further remarks about these topologically
protected edge solitons. Choosing the appropriate sign of
dispersion is imperative for achieving a self-focusing ef-
fect and solitons. When ω′′(k) > 0, we observe a gradual
self-defocusing dissipation of the envelope. The ideal sce-
nario for soliton formation in this MO lattice is when
ω′′(k) < 0 and ω′′′(k) ≈ 0. Choosing a mode centered at the

zero-dispersion (inflection) point, i.e., ω′′(k) = 0, results in
substantial dispersive breakup of initially localized solitary
waves.

In the nonlinear case, when we send a slowly modulated
mode corresponding to topologically trivial (null Chern num-
ber) into a defect, we observe significant radiation into the
bulk, similar to that observed in Fig. 11(c′′). In this weakly
nonlinear regime, it is important to modulate a topologically
nontrivial linear mode to obtain robust, unidirectional propa-
gation.

This model of nonlinearity is motivated by third-order
polarization effects of the electric field that are significant
[38]. These results suggest that it may be possible to realize
nonlinear edge modes. One potential benefit of nonlinearity
is the ability to (in theory) propagate balanced solitary modes
over long time scales that do not suffer from dispersion. A
complete description of these nonlinear modes is outside the
scope of this work.

VIII. CONCLUSION

A perturbed Wannier approach for obtaining tight-binding
approximations containing nearest and next-nearest neighbors
of a magneto-optical honeycomb lattice system is studied.
Remarkably, this method leads to a generalization of the cel-
ebrated system studied by Haldane in 1988 [11]. This model
agrees with experiments [22] and indicates topological tran-
sitions can occur when inversion symmetry and time-reversal
symmetry are broken. This data-driven Wannier approach has
been previously employed in rectangular lattice geometries
[27] and can be applicable for discovering and extrapolating
discrete reductions in other Chern insulator systems in cases
where a direct Wannier approach is ineffective. An interesting
future project is to better understand the physical mechanisms
that underlie this photonic Haldane model. When weak on-site
nonlinearity is incorporated, we found that slowly varying
edge soliton modes can be robustly propagated through lattice
defects.
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APPENDIX A: NUMERICAL COMPUTATION
OF SPECTRAL BANDS AND WANNIER FUNCTIONS

The numerical computation of the Bloch modes and ML-
WFs is reviewed below. A more comprehensive discussion
can be found in Ref. [27]. To simplify the necessary calcu-
lations, first, a linear transformation is introduced to map the
parallelogram unit cell to a square. The change of variables

u = 1

3
x − 1√

3
y, v = 1

3
x + 1√

3
y

transforms the parallelogram formed by the lattice vectors
v1, v2 into a square with (nondimensionalized) side length 1.
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As a result, the master equation (2) transforms to

− 4

9

(
∂2E

∂u2
− ∂2E

∂u∂v
+ ∂2E

∂v2

)
+ g(u, v)

∂E

∂u
+ h(u, v)

∂E

∂v

= ω2ε(u, v)μ̃(u, v)E , (A1)

where

g(u, v) = 4

9μ̃

∂μ̃

∂u
− 2

9μ̃

∂μ̃

∂v
+ 2iμ̃

3
√

3

∂η

∂v

h(u, v) = − 4

9μ̃

∂μ̃

∂u
+ 2

9μ̃

∂μ̃

∂v
− 2iμ̃

3
√

3

∂η

∂v
.

From here, a formulation similar to that used in Ref. [27] can
be applied. All transformed coefficients now have the peri-
odicity f (u + m, v + n) = f (u, v) for m, n ∈ Z. That is, the
functions are periodic with respect to the transformed lattice
vectors e1 = (1, 0)T and e2 = (0, 1)T . Hence, transformed
master equation (A1) is solved by looking for Bloch wave
solutions with the form E (w, κ) = eiκ·wu(w; κ), where u(w +
me2 + ne1; κ) = u(w; κ) for w = (u, v)T , κ = (ku, kv )T . Note
that this κ is unrelated to κ of the permeability tensor.

The numerical spectral bands shown throughout this
paper are computed by solving (A1) for the eigenfunction-
eigenvalue pair (u, ω) as functions of the transformed
quasimomentum. Subsequently, the quasimomentum is trans-
formed back to the original kx, ky variables via

kx = ku + kv

3
, ky = kv − ku√

3
.

The continuous Chern numbers are defined by

Cp = 1

2π i

∫∫
BZ

(∇k × Ap) · ẑdk,

with Berry connection

Ap(k) = 〈up(r, k)|∂kx up(r, k)〉UC,εμ̃x̂

+ 〈up(r, k)|∂ky up(r, k)〉UC,εμ̃ŷ

numerically computed using the algorithm [37] with respect
to the weighted inner product

〈 f , g〉UC,εμ̃ =
∫∫

UC
f (r)∗g(r)ε(r)μ̃(r)dr,

where UC denotes the unit cell.
The transformed Bloch wave is periodic with respect to the

transformed reciprocal lattice vectors, κ1 = 2π (1, 0)T , κ2 =
2π (0, 1)T . Notice that ei · κ j = 2πδi j . As such, it can be
expressed as the Fourier series

E (w; κ) =
∑

p

∑
m,n

W p
mn(w)eiκ·(me1+ne2 ),

where W p
mn(w) is a transformed Wannier function correspond-

ing to the pth band and centered at the (m, n) spatial cell. For
the problem studied in this paper, we only consider the lowest
two bands p = 1, 2 and truncate the remaining modes.

Next, the MLWF algorithm [36] is applied to find local-
ized Wannier functions for the g = h = 0 (corresponding to
M = 0) problem in Eq. (A1). This is done by finding a unitary
transformation that minimizes the functional describing the
spread of the Wannier function, given by Eq. (C1) below. Let

E1(w, κ) = eiκ·wu1(w; κ) and E2(w, κ) = eiκ·wu2(w; κ) corre-
spond to first and second spectral bands, respectively. A
spectral unitary transformation of the Bloch functions is taken
at fixed values of w,(

ũc(w; κ)

ũd (w; κ)

)
= U (κ)

(
u1(w; κ)

u2(w; κ)

)
,

where U (κ) is a 2 × 2 matrix. Only after computing these
Wannier functions do we realize where they are physically
located. Upon inspection, we replace the labels c, d with the
labels a, b, where a modes are centered at the a sites and b
modes centered at the b sites (see Fig. 4).

Upon obtaining these functions, the Bloch modes
Ẽ a(w; κ) = eiκ·wũa(w; κ) and Ẽ b(w; κ) = eiκ·wũb(w; κ) are
computed and then used to construct the Wannier functions

W̃ a
mn(w) = 1

4π2

∫∫
BZ

e−iκ·(me1+ne2 )Ẽ a(w; κ)dκ

W̃ b
mn(w) = 1

4π2

∫∫
BZ

e−iκ·(me1+ne2 )Ẽ b(w; κ)dκ

shown in Fig. 4.

APPENDIX B: TIGHT-BINDING PARAMETERS

The self-interaction terms in the generalized Haldane
model (6) and (7) are defined by

P =
∫∫

R2
∇W̃ a

mn · ∇W̃ a
mn + W̃ a

mn M · ∇W̃ a
mn dw (B1)

and

P̃ =
∫∫

R2
∇W̃ b

mn · ∇W̃ b
mn + W̃ b

mn M · ∇W̃ b
mn dw. (B2)

The nearest-neighbor coefficients in (6)and (7) are defined by

t1 =
∫∫

R2
∇W̃ a

mn · ∇W̃ b
mn + W̃ a

mn M · ∇W̃ b
mn dw

=
∫∫

R2
∇W̃ b

mn · ∇W̃ a
mn + W̃ b

mn M · ∇W̃ a
mn dw. (B3)

TABLE II. Tight-binding parameters and Chern number in (6)
and (7) for (i) nonmagnetized bands and (ii–viii) magnetized sys-
tems. The rod radii used to generate these parameters are given by Ra

and Rb for a sites and b sites, respectively. The value of C+ indicates
the Chern number corresponding to the second (upper) spectral band.
Cases (iii), (iv), (vi), and (vii) correspond to borderline touching
cases, numerical calculation of the Chern number is sensitive in this
region.

Ra Rb P P̃ t1 t2 t̃2 φ C+

(i) 0.3� 0.3� 0.882 0.882 −0.262 0.012 0.012 π 0
(ii) 0.3� 0.3� 1.020 1.020 −0.280 0.041 0.041 2.327 −1
(iii) 0.27� 0.3� 1.152 0.991 −0.297 0.049 0.037 2.391 −1∗

(iv) 0.255� 0.3� 1.231 0.978 −0.311 0.053 0.035 2.444 0∗

(v) 0.25� 0.3� 1.263 0.973 −0.300 0.055 0.030 2.405 0
(vi) 0.35� 0.3� 0.876 1.077 −0.265 0.031 0.048 2.178 −1∗

(vii) 0.4� 0.3� 0.790 1.132 −0.263 0.024 0.053 1.941 0∗

(viii) 0.42� 0.3� 0.729 1.149 −0.285 0.022 0.054 1.725 0
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FIG. 13. The top row panels highlight the rod radii for the different cases. Bottom rows show the MLWFs corresponding to those
physical parameters. (left) Radii: Ra = 0.25�, Rb = 0.3� and (right) radii: Ra = 0.4�, Rb = 0.3�. Also included for each Wannier function
is the corresponding spread, defined in (C1).

Both the self and nearest-neighbor coefficients were numer-
ically computed using the Wannier functions in Fig. 4 and
observed to be real. This process is highlighted in Fig. 5.
One of the (complex) next-nearest-neighbor coefficients in the
�1amn group of (6) is given by

t2eiφ =
∫∫

R2
∇W̃ a

mn · ∇W̃ a
m,n+1 + W̃ a

mn M · ∇W̃ a
m,n+1 dw,

(B4)

where the left-hand side is written in polar form, i.e., t2 � 0 is
the magnitude and φ ∈ [0, 2π ) is the phase. The other two
coefficients of �1amn are calculated in a similar way. The
coefficients for the terms in �2amn of (6) are also approx-
imations of the integral of the relevant Wannier functions,
but they are conjugates of those from �1amn, hence they are
labeled t2e−iφ . All the coefficients in (7) were computed in an
analogous manner, using the W̃ b

mn Wannier modes.
The parameters generated by this method and used to pro-

duce the figures throughout this paper are given in Table II.
All cases correspond to the magnetization by an external field,
or M(r) �= 0, except (i), which is the unmagnetized case.
Also included are the corresponding rod radii. The Chern
number corresponding to the upper spectral surface of the
tight-binding model is included. The value C+ = −1 corre-
sponds to phase points located inside the topological region
of Fig. 7, while C+ = 0 lies above or below this region. The
Chern numbers in the table were computed analytically as
well as numerically using the algorithm in Ref. [37] on the dis-
crete eigenvectors. The topological numbers for the discrete
(tight-binding) model match those for the continuum model
in the cases shown.

APPENDIX C: BREAKING OF INVERSION SYMMETRY

As discussed in Sec. V, breaking inversion symmetry can
induce a topological transition from a nontrivial to trivial

Chern insulator. This symmetry breaking can be implemented
by choosing different radii at a sites and b sites, that is, Ra �=
Rb in Fig. 1. The spectral bands induced by this change are
shown in Figs. 8 and 9. In particular, decreasing Ra relative to
Rb induces a topological transition and a touching point at the
K Dirac point. If, on the other hand, one considers Ra larger
relative to Rb, a similar topological transition occurs, but in-
stead the gap closes at the opposite Dirac point, K ′ = −K .

The computed parameters are summarized in Table II.
Examining the inversion parameter M = (P − P̃)/2, it is
observed to be positive when Ra < Rb, and negative when
Ra > Rb. For applications which seek to use these chiral
edge modes, inversion symmetry should be nearly satis-
fied, that is, Ra ≈ Rb. More precisely, the system supports
topologically protected modes when the parameters M̃ and
φ are chosen to reside in the inner (topological) region
of Fig. 7.

Some of the Wannier functions corresponding to broken
inversion symmetry are shown in Fig. 13. In each case the rod
profiles and their corresponding Wannier modes are shown.
These Wannier modes are constructed in a manner similar to
that described in Sec. III and [27], i.e., M = 0, μ̃ �= μ0. Also
given is the corresponding spread values

� = 〈|r|2〉 − |〈r〉|2,
〈xn〉 ≡

∫∫
R2

xn|W (r)|2ε(r)μ̃(r)dr, (C1)

where W (r) is the associated Wannier mode. The sublattice
sites whose rods have larger relative radius correlate to a
smaller variances; and vice versa for smaller relative rods.
This is the source of t̃2 �= t2 and P �= P̃ in the tight-binding
model. These different widths indicate different decay rates
and imply different tight-binding coefficients among sites of
the same type. On the other hand, the combined spreads
for Fig. 13 (left) are smaller (narrower width) relative to
Fig. 13 (right).
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