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Generation of self-stabilized chirped dissipative Kerr solitons in the normal-dispersion
regime of a Si3N4 microring resonator with built-in spectral filtering
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Temporal dissipative Kerr solitons (DKSs) and their frequency counterparts, Kerr frequency combs (KFCs),
have been extensively explored in the anomalous dispersion regime for both continuous wave (CW) and pulse-
pumped microresonators. Compared to the CW pumping, the pulsed pump scheme has been shown to produce
DKSs with higher robustness. Recently DKS states have also been explored in the normal dispersion regime as
well. In this work, we demonstrate a stable single DKS state originating from a normal dispersion regime of a
silicon nitride (Si3N4) racetrack microring resonator with a built-in spectral filter for a chirped super-Gaussian
pulsed pump. Numerical simulations aided with analytically derived formulations indicate that a stable square-
shaped chirped DKS with a broad KFC can be generated. The proposed scheme also enhances the stability of
the single-chirped DKS state. The interplay of input chirp along with the spectral filtering effect causes the
stable single DKS to be trapped conveniently to the center of the driving pulse background. We believe that the
findings along with derived analytical formulations will be useful and might find applications in communication,
spectroscopy, optical tweezers, and more general all-optical manipulation of light pulses.
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I. INTRODUCTION

Temporal dissipative Kerr solitons (DKSs) are self-
sustained, ultrashort optical pulses generated in dispersive
and coherently driven Kerr nonlinear resonators [1]. DKSs
generated by the composite balance between group velocity
dispersion (GVD) and Kerr nonlinearity on one hand along
with cavity loss and external driving input pump on the
other hand [2,3] are inherently robust [4]. To date, DKSs
have been demonstrated in all-fiber [5], on-chip [6], and bulk
resonator [7] platforms. In sharp contrast to the dissipative
solitons (DSs) in mode-locked lasers [8], DKSs manifest as
coherent and equidistant spectral lines called Kerr frequency
combs (KFCs) in the spectral domain [9] which span over
a wide spectral bandwidth. KFCs enjoy diverse applications
including optical frequency synthesizers [10,11], all-optical
buffering [12], spectroscopy [13], optical tweezers [14], and
many more. In addition to bandwidth, sustained KFCs gen-
erated from single stable DKS states are essential for several
applications [15].

Traditional single DKS and hence KFC are generated in the
anomalous dispersion regime [16], where such DKS pulses
mostly remain limited in pulse duration and peak energy
[17,18]. On the other hand, DSs in mode-locked lasers reflect
a unique feature of frequency chirping in contrast to tradi-
tional solitons in optical fibers [19]. This makes bright DSs
accessible in the normal dispersion regime through spectral
filtering [20]. Motivated by the concept of frequency-chirped
DSs in mode-locked lasers, researchers are exploring the
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possibility of stable DKS generation in the normal disper-
sion regime as well, through the composite balance between
frequency chirp, spectral filtering, and dispersion. The first
exploration of the spectral filtering concept was in a normal
dispersion microresonator with wavelength-dependent quality
factor [21]. Recently, spectral filtering has been demonstrated
to generate highly positive frequency chirped DKSs in a nor-
mal dispersion fiber resonator [22]. Besides this, versatile
resonator architectures, showing normal dispersion, have been
proposed to study the complex dynamics of a wide range
of pulse regimes including dark solitons [23,24], switch-
ing waves [25,26], Raman solitons [27–29], and others. In
addition, bright DKS structures have also been reported in
a dispersion-shifted fiber (DSF) based ring resonator [30]
pumped in the normal dispersion regime. The significant pres-
ence of higher-order dispersion effects is the predominant
underlying mechanism behind the generation of such DKSs.

Generally, DKSs in microring resonators are driven by
continuous wave (CW) pump sources [15,31]. The CW driv-
ing signal forms a homogeneous background, which gives
rise to sech-shaped DKS that may rest at any random po-
sition within the homogeneous background. Thus, without
any active control [32–34] or passive modulation [35,36] the
temporal position of the DKS remains stochastic in the case of
CW pumps. Also, the temporal overlap between the DKS and
CW pump is less, which leads to inefficient pump-to-soliton
conversion [37,38]. To circumvent these disadvantages, two
alternative methods have been demonstrated in the litera-
ture for generating stable bright DKSs [15]. These include
the usage of mutually coupled multiple resonators [39] and
the synchronized pulse pumping scheme [40]. The former
method involves complicated ring geometries, making the lat-
ter method much simpler and straightforward. The amplitude
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inhomogeneity of the pulse driving scheme aids in trapping
the generated DKS at deterministic locations on top of the
pulsed background [41]. Such trapping locations depend on
the driving pulse energy [42]. Recent studies have further
explored the efficient control of trapping locations and soli-
ton dynamics upon pumping the resonator in the anomalous
dispersion regime by a chirped phase-modulated pulsed driv-
ing field [43]. Also, a recent work [44] has reported unique
signatures of square-shaped DKSs with a flat spectrum in
a normal dispersion fiber resonator with a pulse pump and
spectral filtering.

The present paper proposes and theoretically demonstrates
the generation of stable single DKS states in an on-chip
racetrack microring resonator (RMRR) with spectral filtering
and the chirped pulsed pump. The RMRR configuration is
similar to our previous work [15], but in addition consists
of a spectral filtering element. For the proposed RMRR, a
comparative study of the DKS states has been conducted in
both the anomalous and normal dispersion regimes without
and with a spectral filter, respectively. The unchirped Gaussian
and chirped super-Gaussian pulsed driving fields have been
used in numerical simulations. Spectral filtering along with
chirped phase modulation in the normal dispersion regime
have yielded characteristic square-shaped stable single DKS
states with high power. Through steady-state calculations, it
has been predicted that the region of stable chirped-DKSs
increases with the higher chirp. The numerical simulations
have been carried out with the well-known Lugiato-Lefever
equation (LLE) with spectral filtering (called LLE-F) and have
been verified by the Ikeda-map approach. Further, the pro-
posed model aids in an improved efficiency towards trapping
of the generated DKS compared to recent studies [43]. The ex-
tensive mathematical framework reported in this work might
help in understanding the spectral and temporal dynamics of
pulsed resonator systems.

II. SOLUTIONS OF LLE AND LLE-F
WITH PULSE PUMPING

A. Pulse pumping in anomalous dispersion

The temporal DKS state and the KFCs have been simulated
by the well-known driven and damped nonlinear Schrödinger
equation, which describes the mean-field cavity dynamics.
The LLE [45–47] is reproduced for the pulse pumping regime
as [41,46]
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Here tR denotes the round-trip time, and E (t, τ ) and Ein(τ )
represent the intracavity and pulsed pump fields, respectively.
The slow time t denotes the time for field confinement inside

the resonator following the photon lifetime. The fast time τ

indicates the behavior of the temporal envelope of the signal
that moves with the group velocity. The mathematical relation
E (t = mtR, τ ) = E (m)(0, τ ) correlates the slow and fast times,
where the index m indicates the total number of round trips
traversed by the circulating field in the cavity, δ0 denotes the
cavity phase detuning, which is given as δ0 = tR(ωn − ω0),
where ω0 and ωn are the angular frequencies of the pump
and nth resonance mode, respectively. α, κ , βm, and γ are
the power loss per round trip, coupling coefficient, mth-order
dispersion coefficient, and nonlinear coefficient, respectively.
L denotes the circumference of the cavity. �t is the desyn-
chronization parameter that symbolizes the temporal drift of
the pump pulse repetition rate with respect to the resonator’s
free spectral range (FSR), FSR = 1

tR
, and is written as �t =

tR − tP, where tP is the pump pulse repetition rate. Ein is the
peak driving amplitude and 2τg is the full width at half max-
imum (FWHM) of the pump pulse in the temporal domain.
The normalized parameters are
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is the finesse of the resonator. Equation (1) can
be recast in the normalized form as
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Equation (3) solved with steady-state ( ∂E ′
∂t ′ = 0) and ho-

mogeneous ( ∂E ′
∂τ ′ = 0) criteria results in the following cubic

equation [42,46]:

X = Y 3 − 2Y 2 + (D2 + 1)Y, (4)

where X = |(S(τ ′))avg|2 and Y = |E ′|2. Three sets of in-
tracavity field solutions can be acquired from Eq. (4): (1)
unconditionally homogeneous stable steady-state solutions,
(2) unconditionally homogeneous unstable solutions, and (3)
conditionally homogeneous stable (oscillatory) solutions. The
phenomenon of modulation instability [48], where a perturba-
tion develops on top of the steady-state background in both
anomalous and normal dispersion regimes [46,48], generates
the oscillatory solutions. When Eq. (4) is treated as a second-
order polynomial in D, it can be solved for three classes of
solutions:

D = Y ±
√

X

Y
− 1. (5)

In this section, the LLE simulations are carried out at a
pump wavelength of 1560 nm. The same RMRR configuration
of [15] has been considered for simulation purposes. The
resonator has β2 of −174.9 ps2/km and tR of 3.687 ps at the
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TABLE I. Simulation parameters for DKS in Sec. II A.

Parameter Value

Pump wavelength (λ0) 1560 nm
Round-trip time (tR) 3.687 ps
Round-trip loss (α) 0.0034
Coupling coefficient (κnormalized) 0.0044538
Second-order GVD (β2) −174.9 ps2/km
Third-order dispersion (TOD) (β3) −0.318 ps3/km
Nonlinear parameter (γ ) 0.65 W−1m−1

Input power (Pin) 132 mW
Desynchronization(�t) 0.026 ps

pump wavelength. The input pulse is Gaussian according to
Eq. (2) with a temporal FWHM pulse width (2τg) of 3.56 ps,
and period tP of 3.661 ps yielding a desynchronization (�t) of
0.026 ps. Although soliton generation is easily feasible when
the repetition rate of the input pump synchronizes with that
of the cavity [30,43], still the value of �t in this work is
small enough to ensure proper generation of DKS state [41].
The input pump power Pin = |Ein|2 of 132 mW is scanned
over a range of detuning values to explore the behavior of the
intracavity field at different homogeneous steady-state (HSS)
solution regimes of the LLE. All other parameters are the
same as mentioned in [15] (the parameters have been further
summarized in Table I). The solutions of Eq. (5) for the stable,
unstable, and oscillatory intracavity fields have been depicted
in Fig. 1 with black filled circles, red asterisks, and blue (light
gray) open circles, respectively. The LLE has been solved
numerically with the well-known split-step Fourier method
[48] to obtain steady-state solutions for three regimes. Four
representative solutions in the respective regimes have been
depicted in the inset. Initially, in the stable regime, the for-
mation of a multi-DKS state is represented (inset I) [40]. A
multi-DKS builds on top of the input pulse background. Os-
cillatory solutions are observed with an increase in detuning
parameter. In inset II an oscillatory solution with a Turing
pattern [49,50] like behavior is depicted. Interestingly, upon
pumping the cavity with pulses, the duration of the Turing

FIG. 1. Location of stable nontrivial solutions of Eq. (5) in the
parameter space defined by the tilt response. The stable, unstable, and
oscillatory solutions are marked by black-filled circles, red asterisks,
and blue (light gray) open circles, respectively. Pulse profiles of four
representative solutions in the respective regimes are given as insets.

pattern is the same as the input pulse width (2τg). Again, in
the lower branch of the tilt response, a stable single DKS state
atop the input pulse profile is observed (inset IV). It should
be noted that the power of this single DKS state is lower
than the multi-DKS. If the input power is increased close to
the up-switching point (marked by S+) [12], the DKS drifts
from the center, as shown in inset III. This is consistent with
findings reported in [42].

B. Bright soliton generation in normal dispersion

In general, dark solitons are generated in normal dispersion
regime [51]. However, to observe bright solitons in the normal
dispersion regime, a spectral filtering effect can be added to
the resonator [52], which eventually produces chirped DKS
[22,52]. The spectral filtering yields the following form of
the driven and damped nonlinear Schrödinger equation for the
MRR, known as LLE-F [52]:
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where f is the spectral filter bandwidth, and the rest of the
symbols have their usual meaning. Upon normalizing Eq. (6),

and normalizing f by the factor fn0 = f
√

L|β2|, f 2
n0
L = 2, the

following equation is obtained:
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where the symbols have their usual meanings. Here the pump
wavelength is 1029.7 nm where the resonator geometry (the
same as in Sec. II A and [15]) exhibits a normal second-order
GVD (β2) of 22 ps2/km and the tR is 3.717 ps. Simulations
have been carried out using a filter bandwidth of 10.475 nm
at the pump wavelength. The filter’s spectral bandwidth f is
calculated according to scaling laws defined for chirped DKS
in [52]. The same input Gaussian pulse, as in Sec. II A, has
been used with a desynchronization (�t) of 0.056 ps and a
fixed input pump power, Pin = 100 mW. The location of the
solutions in the parameter space defined by the steady-state
homogeneous tilt response of Eq. (7) is shown in Fig. 2 for a
range of detuning values. In the stable solution regime, dark
solitons [51] (inset I) with a smooth profile are obtained. In
the oscillatory regime, bright DKS with oscillatory profile
(inset II) is obtained, similar to the chirped DKS profile re-
ported in [52]. Thus, spectral filter bandwidth f plays the
most important role in generating bright solitons in the normal
dispersion regime [22]. However, it should be noted that the
power content of such oscillatory chirped bright DKSs is low.

III. PROPOSED MODEL AND RESULTS

Note that chirped DKSs were reported in a fiber cavity with
normal dispersion and an all-fiber format spectral filter [22],
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FIG. 2. Location of stable nontrivial solutions of Eq. (7) in the
parameter space defined by the tilt response. The stable and oscilla-
tory solutions are marked by the black filled circles and blue (light
gray) open circles, respectively. Pulse profiles of two representative
solutions in the respective regimes are given as insets.

where the fiber cavity was pumped with nanosecond pulses.
In contrast to the reported work [22], the present scheme
demonstrates chirped DKSs through a normal dispersion on-
chip MRR with a built-in integrated spectral filter. The MRR
with spectral filter is driven by chirped super-Gaussian ps
pulses. Through the homogeneous steady state analysis of
the LLE-F, the present work shows the interplay between
input chirp, spectral filtering, and normal dispersion can lead
to interesting temporal and spectral signatures of the single
DKS, and the same can be trapped at the center of the driving
pulse background.

A. Proposed method of chirped pulse pumping

The schematic top view of the proposed RMRR con-
figuration used in this work is depicted in Fig. 3(a). The
cross-sectional view is shown in the inset. The RMRR is
similar to [15] with a ring radius (R) of 50 µm and straight
arm length (Lc) of 120 µm. The waveguide width and height
are 2.8 and 0.7 µm, respectively. The bus and ring wave guides
are placed at a gap of 400 nm, which aids the operation in
a slightly overcoupled regime [31]. The RMRR has a spec-
tral filter enclosed within the ring waveguide. The practical
realization of a spectral filter might be a Bragg grating sim-
ilar to [53] inscribed within the lower straight arm of the
resonator. The filter has a Gaussian profile with a spectral
FWHM bandwidth denoted by, f as shown in the inset. The
finite element method (FEM) is used to obtain the disper-
sion and nonlinear properties of the waveguide. Figure 3(b)
shows the dispersion, D, and group velocity dispersion, β2.
The waveguide exhibits three zero dispersion wavelengths
(ZDWs), namely, at 1040 nm, 1700 nm, and 2670 nm, re-
spectively. The pump wavelengths used in this study are at
1029.7 nm and 1702.1 nm and are denoted by P1 and P2.
Clearly, P1 and P2 are very close to the ZDWs, and the
corresponding β2 values are 22 ps2/km and 25.9921 ps2/km,
respectively, at these wavelengths. The f is 10.475 nm and
11.166 nm at P1 and P2, respectively. The RMRR is pumped
by a linearly chirped super-Gaussian pulse of the following

FIG. 3. (a) Schematic of the proposed RMRR with spectral fil-
ter, R = 50 µm, straight arm length, Lc = 120 µm. Inset shows the
resonator cross section of waveguide. Spectral filter has a bandwidth
f of ∼10 nm (at a pump wavelength of 1029.7 nm) and ∼11 nm (at
a pump wavelength of 1702.1 nm). (b) Dispersion (D) and second-
order GVD (β2) (red circles correspond to the zero dispersion points;
P1 and P2 denote the pump wavelengths).

form:

Ein(τ ) = Ein exp

[
−

(
τ 2

2τ 2
g

)q

− iCτ 2

2τ 2
g

]
, (8)

where q and C are the super-Gaussian order and chirp param-
eters, respectively. The FWHM pulse width (2τg) is 3.56 ps.
The input pulse in the temporal domain is shown in Fig. 4(a).
The DKS propagation in the present situation is numerically
simulated by using the modified normalized LLE-F, which is

TABLE II. Simulation parameters for chirped DKS generation.

Parameter Value

Pump wavelength (λ0) 1029.7 nm
Resonant wavelength (λR) 1029.98 nm
Round-trip time (tR) 3.717 ps
Cavity detuning (δ0) 0.2217 rad
Round-trip loss (α) 0.0019
Coupling coefficient (κnormalized) 0.002938
Second-order GVD (β2) 22 ps2/km
Third-order dispersion (TOD) (β3) −0.198 ps3/km
Nonlinear parameter (γ ) 1.15 W−1m−1

Input power (Pin) 100 mW
Desynchronization (�t) 0.056 ps
Chirp (C) 0.3–0.75
Filter bandwidth ( f ) 10.475 nm
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FIG. 4. (a) Temporal profile of the driving field (2τg represents
the FWHM), (b) phase profile for different chirp values, (c) normal-
ized tilt response corresponding to Eq. (17) (for real values of �

avg
R

and α
avg
R ), at a chirp, C = 0.75, where S+

C denotes the up-switching
point, and (d) chirped temporal DKS state at S+

C obtained by solving
Eq. (13) using parameters enlisted in Table II, at C = 0.75. Note that
the chirped DKS develops on top of the driving field background.

given as
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The value of C is chosen in the range 0.3–0.75 to aid in the
generation of distortionless single-chirped DKS according to
studies reported in [54]. The phase profile of the pump field
as in Eq. (12) is shown in Fig. 4(b) for different chirp (C)
values. It can be seen that at C = 0 the phase is zero and the
phase profile is parabolic for all C > 0 values. As the value
of C increases from 0.3 to 0.75 the slope of the phase profile
becomes steeper at the leading and trailing edges of the input
pulse.

By inserting E ′ = E0eiφ(τ ′ ) into Eq. (9) according to
the procedure illustrated in [54], the following equation is

obtained:
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αR and �R are the effective normalized τ ′ dependent loss and
detuning [54], respectively.

B. Results

1. Quasi-HSS analysis: Comb self-stabilization

The normalized LLE, given in Eq. (13), is solved with the
steady-state ( ∂E0

∂t ′ ) and homogeneous ( ∂E0
∂τ ′ ) criteria and results

in the cubic equation as stated in Eq. (16),

X = (αR + �R)2Y − Y 3, (16)

where X = |(Sin )avg|2 and Y = |E0|2. Unlike Eq. (4) where
there is no phase dependency of the detuning parameter,
Eq. (16) contains �R and αR, which strictly depends on phase.
Hence, this HSS equation is called the quasihomogeneous
steady-state (Q-HSS) equation. Equation (16) also yields three
intracavity field solutions: (1) stable, (2) unstable, and (3)
oscillatory, like conventional HSS. Equation (16) resembles
a second-order polynomial in effective normalized detuning
�R and is solved for the three sets of solutions as

�R = −αR ±
√

Y 2 +
(

X

Y

)
. (17)

The condition dX
dY = 0 is applied to Eq. (16) to obtain

Y± = ±αR + �R√
3

. (18)

Using Eqs. (16) and (18), the up-switching point X + or S+
C is

obtained as

X + = S+
C = 2(αR + �R)3

3
√

3
. (19)

The solution of Eq. (17) is referred to here as the quasi-
HSS tilt response, which is plotted in Fig. 4(c) for the chirp
C = 0.75, at a fixed pump wavelength of 1029.7 nm and
over a range of real values of average effective detuning
�

avg
R . Note that for a particular chirp value, the real part of

average effective loss α
avg
R is unique. Here the black-filled

circles, red asterisks, and blue open circles correspond to
stable, unstable, and oscillatory solutions, respectively. At
the up-switching point S+

C [marked in the magnified inset of
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Fig. 4(c)], the intracavity stable single DKS field is shown
in Fig. 4(d). Corresponding to this particular solution, the
un-normalized detuning δ0 is 0.2217 rad, which is calculated
by FDTD numerical simulations for an input pump power
Pin of 100 mW. All other necessary parameters have been
summarized in Table II. Note that the spectral filter bandwidth
f should be greater than the FSR of the cavity [55] (refer
to the Appendix for details). The presence of any perturbing
element within the MRR geometry such as grating [53] or
air discontinuities [56] may generate a counterpropagating
wave within the resonator [57], which can inherently give
rise to either mode splitting or line-width broadening of the
resonant peaks [58–60]. This might affect the intrinsic quality
factor (Q factor) of the resonator and may further enhance
the threshold for parametric oscillation [61]. However, the
counterpropagating wave, in general, is quite weak and may
yield minimal coupling of energy to the propagating signal
and hence poor splitting of the resonant peaks [57]. If the
coupling is optimally low, then the presence of a grating
(which constitutes the filter) does not significantly deteri-
orate the intrinsic Q of the MRR [62]. Also, it has been
observed for an anomalous dispersion silica toroid micro-
cavity resonator that the formation of DKS is not degraded
in the presence of weak coupling [63]. To ensure negligible
splitting, the grating design can be tailored [58]. However,
the realistic optimization of the filter design parameters is
outside the scope of this work at present. Only the filter
bandwidth is optimized, which might be sufficient to illustrate
the spatiotemporal dynamics of chirped DKSs reported in this
work.

As observed from Fig. 4(d), the chirped temporal DKS
appears as a square pulse that sits on top of the quasiflat
region (region within the temporal FWHM width) of the pump
pulse background. The power of this pulse is greater than the
bright oscillatory DKS depicted in Fig. 2. Moreover, the pulse
duration is large as compared to the single stable DKS in the
anomalous dispersion regime (Fig. 1). This implies a better
overlap with the input pulsed “holding” pump field, and hence
a higher extraction of energy from the pump field is possible.
This inherently indicates a better pump-to-soliton conversion
efficiency [64,65]. The square-shaped DKS exhibits charac-
teristic oscillatory peaks at the leading and trailing edges as
the slope of the input phase profile changes steeply at the pulse
edges, and the chirp accumulation is high at these locations
[see Fig. 4(b) and Eq. (12)]. A high chirp accumulation gives
rise to the oscillatory peaks in temporal power profile. The
characteristic square profile is attributed to the cumulative ef-
fect of chirp and spectral filtering, along with nonlinear phase
accumulation in the normal dispersion regime [22,44,52]. The
temporal chirped DKSs sitting on top of the quasiflat pulsed
background [corresponding to stable single chirped solutions
of Eq. (13)] at chirp C values of 0.3, 0.45, 0.65, and 0.75 are
shown in Fig. 5(a). Figure 5(b) shows the magnified view of
the DKS. As denoted by the encircled regions, the oscillatory
structures become less pronounced with a decrease in chirp
value. Figure 5(c) represents the field evolution, which con-
firms sustained single-chirped DKS pulse propagation and has
oscillations in the pulse wings.

The simulated carrier envelope(s) of the Kerr frequency
comb(s) (KFCs) corresponding to the DKS states is shown in

FIG. 5. (a) Temporal chirped DKS state at different chirp values,
(b) enlarged view of the chirped DKS, where the encircled regions
indicate the power fluctuation at the wings of the pulse due to phase
accumulation, and (c) the steady-state field confinement at C = 0.75.

Fig. 6(a) for various values of C = 0.3, 0.45, 0.65, 0.75. The
oscillatory structures in the pulse wings result in character-
istic spectral side lobes in the KFCs, which have also been
observed in [44] for Nyquist pulses and in [30] for single
DKSs with multipeak temporal profiles, respectively, and in
the normal dispersion regime. However, in the current work,
the spectral side lobes are much more pronounced because

FIG. 6. (a) Carrier envelope of the frequency comb simulated
from Eq. (13) for various chirp values; (b) spectral variation of �λ,
which is the wavelength shift of sub-comb-like signatures, for dif-
ferent chirp values (encircled combination correspond to frequency
components close to the pump wavelength of 1029.7 nm).
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FIG. 7. Plot of round-trip phase accumulated over slow time t
along the wings of the temporal chirped DKS state, (a) C = 0.75,
(b) C = 0.65, (c) C = 0.45, and (d) C = 0.3. For the large chirp
value, a significant oscillatory signature is seen.

of an effectively large nonlinear phase accumulation that is
driven by the cumulative effect of input chirp, spectral fil-
tering, nonlinearity, and normal dispersion. It is clear that
the spectral side lobes, identified as sub-comb-like signa-
tures, possess a characteristic wavelength shift, denoted as
�λ. The variation of �λ with wavelength has been plotted in
Fig. 6(b). It is observed that �λ increases with an increase in
wavelength.

To better understand the physics behind the unique signa-
ture of the chirped DKSs and their corresponding KFCs, we
plot the evolution of the round-trip intracavity phase accumu-
lated over the slow time (t) at C = 0.75, 0.65, 0.45, and 0.3
in Fig. 7. The respective DKS states are shown in the top. It
can be seen that the phase accumulates along the wings of
the pulse. The phase accumulated recursively over multiple
round trips decreases with a decrease in the chirp value. This
confirms the oscillatory peaks in the pulse wings and the
sub-comb-like signatures manifest as a result of intracavity
phase accumulation, aided by an input chirp.

The quasi-HSS tilt response obtained from Eq. (17) for
the stable (black-filled circles), oscillatory (blue open cir-
cles), and unstable (red asterisks) solutions corresponding to
C = 0.3, 0.45, 0.65, and 0.75 are shown in Figs. 8(a)–8(d),
respectively. The lowermost branch of the tilt response, which

FIG. 8. Solution of the quasi-HSS tilt equation [Eq. (17)], con-
sidering the real values of �

avg
R and α

avg
R , for the stable (black filled

circles), unstable (red asterisks), and oscillatory (blue open circles)
solutions for various chirp values, (a) 0.3, (b) 0.45, (c) 0.65, and
(d) 0.75. The shaded region in all four images indicates stable single-
chirped DKS solutions.

governs the solutions for a stable single DKS state [shaded
region(s) in Fig. 8], is pronounced with an increase in C. Thus,
based on the quasi-HSS analysis, we can conclude that the
input chirp parameter leads to a higher possibility of gener-
ating a stable single DKS state. From Fig. 8 it is also clear
that multiple soliton states coexist for the same detuning, and
the possibility of such coexistence increases with an increase
in the magnitude of chirp. This behavior of chirped DKS is
consistent with previous studies on bright and dark DKSs
in the normal dispersion regime [30,66]. Note that effective
detuning, �

avg
R values larger than the range plotted in Fig. 8

may yield the maximum peak in tilt response. However, this
might result into unrealistic detuning (D and δ0) values, not
favoring the DKS generation [15].

2. Ikeda-F analysis

To corroborate our findings reported in the previous sec-
tion, we present simulations from the Ikeda-F map [52] in
the present section. Fundamentally distinct from the LLE, the
Ikeda model [42] isolates the computation in two steps: (1)
the propagation of the intracavity field envelope E inside the
ring waveguide of an MRR over a single round trip and (2)
the periodic boundary condition that caters to the coherent
injection of the pulsed driving field into the MRR. Intracavity
field evolution over a single round trip is governed by the
well-known nonlinear Schrödinger equation (NLSE) as

∂E

∂z
= −i

β2

2

∂2E

∂τ 2
+ iγ |E |2E , (20)

where E is the slowly varying intracavity field envelope, τ

denotes the time in the moving frame of reference, and γ is the
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TABLE III. Parameters for Ikeda-F simulation.

Parameter Value

Pump wavelength (λ0) 1702.1 nm
Resonant wavelength (λR) 1702.32 nm
Round-trip time (tR) 3.6796 ps
Cavity detuning (δ0) 1.0532 rad
Round-trip loss (α) 0.0117
Coupling coefficient (κnormalized) 0.01278
Second-order GVD (β2) 25.9921 ps2/km
Nonlinear parameter (γ ) 0.52084W−1m−1

Input power (Pin) 96 mW
Desynchronization (�t) 0.0186 ps
Chirp (C) 0.3–0.75
Filter bandwidth ( f ) 11.166 nm

nonlinear parameter per unit length. The periodic boundary
condition that describes the coherent addition of the chirped
pulsed-pump field to the ring waveguide while incorporating
the effects of loss and spectral filter can be written in the
Fourier domain as

En+1(ω) = e−iδ0 En(ω)

(
exp

{
−

[
(ω − ω0)2

f 2

+
(

α + κ

2

)]})
+ Ein(ω)δ(ω − ω0), (21)

where Ein(ω) = F{Ein(τ )} is the chirped pump pulse in the
frequency domain [Ein(τ ) is the same as in Eq. (8)], En+1(ω)
and En(ω) are the spectral fields at the beginning of the (n +
1)th and end of nth round trips, respectively, and the other
symbols have their usual meanings as given earlier.

The Ikeda-F simulations have been carried out at C = 0.75
and a pump wavelength (λ0) of 1702.1 nm where the GVD β2

is 25.9921 ps2/km. All other parameters are listed in Table III.
The chirped DKS state obtained from Ikeda-F simulation is
shown in Fig. 9(a). The temporal profile exhibits oscillatory
peaks in the leading and trailing edges of the pulse, simi-
lar to LLE-F. The simulated carrier envelope of the KFC is
given in Fig. 9(b), which also contains spectral side lobes like
Fig. 6(a). The subtle differences between the temporal and
spectral signatures observed from LLE-F and Ikeda-F meth-
ods are probably because the loss and detuning definitions are
included in different manners. The LLE is solved by including
effective loss and detuning which consists of additional phase
terms, but Ikeda-F is solved directly. The wavelength shift
(�λ) between the sub-comb-like signatures, as observed in the
frequency comb, is plotted in Fig. 9(c), for both LLE-F and
Ikeda-F approaches at λ0 = 1702.1 nm. A reasonably good
match between the two methods is visible.

3. τ-trapping position of generated chirped DKS

It has been demonstrated in [42] that in the case of pulsed
driving, the intracavity DKS within a resonator is highly
probable to experience an offset temporally from the driving
pulse center. All such temporal locations, on top of the driving
pulse background at which the DKS is robustly trapped, are
referred to as the trapping fast time position τtrap. The specific

FIG. 9. Solution of Ikeda-F with chirped input at a pump wave-
length (λ0 = 1702.1 nm). (a) Temporal chirped DKS state, (b) carrier
envelope of the frequency comb, and (c) comparison of �λ for the
LLE-F and Ikeda-F formulations (encircled combination correspond
to frequency components close to the pump wavelength).

τtrap temporal locations that are away from the driving pulse
center are determined by the driving pulse parameters [42,54].
This phenomenon of robust trapping of generated DKSs at
temporally offset positions from the driving pulse center is
known as spontaneous symmetry breaking (SSB) [42]. It has
been shown that for a chirped driving pulse, the DKS is
relocated to the center of the driving pulse after a critical
chirp is attained [43,54]. This phenomenon has been referred
to as SSB recovery [54]. In the case of our work, where the
DKS experiences both a spectral filtering effect and chirping
within a normal dispersion regime, we deduce that the SSB
recovery occurs at a much lower critical chirp value. The
LLE-F simulations in this section are performed according to
the procedure described in [43]. The initial DKS position (τ0)
is fixed at 0.5 ps. Numerical simulations are carried out by
sweeping the chirp value from 0 to 1. The total drift velocity
vdrift of the DKS relative to the chirped super-Gaussian pulse
is calculated according to the following expression [64]:

vdrift = a
(
S0,�

avg
R

)
φ′(τ0) + · · ·

+ b
(
S0,�

avg
R

){Re[S(τ )]}′τ0 + d, (22)

where the coefficients a and b stem from the projection of the
DKS’s neutral mode [41,64] along a linear fast-time variation,
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FIG. 10. Soliton trapping with respect to the fast time position
(τtrap) for various chirp parameters. Soliton trapping for both anoma-
lous and normal dispersion regimes is shown and compared, where
the positively chirped super-Gaussian input is considered according
to [43]. R1 and R2 denote the points of SSB recovery. In the case
of a normal dispersion regime (i.e., the present work), SSB recovery
occurs at a much smaller value of the chirp parameter.

determined by S0 and �
avg
R . The trapping locations, τtrap, of

the DKSs on top of the super-Gaussian background are shown
in Fig. 10 (magenta curve). Note that all simulations corre-
sponding to τtrap for chirped DKS have been carried out at
the up-switching point of the quasi-HSS response. The dotted
blue line depicts τtrap for the anomalous dispersion regime
without spectral filtering according to [43], which is plotted
for the sake of comparison. R1 and R2 denote the critical val-
ues of chirp for SSB recovery [42], i.e., the values of chirp at
which τtrap = 0. Initially for C = 0, a DKS located at τ0 = 0.5
is delayed from the center zero of the background and reaches
a stable trapping position at the trailing edge of the driving
pulse. This is true for both normal and anomalous dispersion
schemes. With an increase in C, the DKS experiences a delay
for the anomalous dispersion situation, with a reduced rate
till it reaches point R1 at C = 0.78, as visible from the slope
of the curve (dotted blue curve). At this position, the DKS
accelerates to the central peak of the driving super-Gaussian
background until τ symmetry is completely recovered. How-
ever, in the case of a normal dispersion regime, the SSB
recovery point R2 occurs at C = 0.16. Therefore, the com-
bination of spectral filtering and input chirp in the normal
dispersion regime facilitates stable trapping of the generated
chirped DKS at a much lower positive chirp value. In addition,
as C > 0 in the present work, the chirped DKS is trapped at
the stable τtrap = 0 position of the up-switching point.

IV. CONCLUSION

To conclude the work, we have proposed a scheme
to achieve a stable bright DKS state and corresponding
KFC in the normal dispersion regime. The combination of
a super-Gaussian chirped pulsed pump along with spec-
tral filtering and normal dispersion of the waveguide that
constitute the racetrack microring resonator produces a
unique square-shaped temporal signature of the output pulses.
The characteristic square shape leads to better temporal
overlap with the holding pulsed driving field. Extensive
analytical and numerical formulations through the quasi-
HSS and LLE-F equations, respectively, have indicated that
chirped pulsed pumping facilitates the sustained single DKS

FIG. 11. (a) Chirped temporal DKS and (b) corresponding
carrier envelope of frequency comb for different spectral filter band-
width f . Three cases for f � FSR ( f = 10.475 nm), f = FSR
( f = 0.95 nm), and f � FSR ( f = 0.5 nm) have been depicted.

operation regime. The studies through LLE-F have been val-
idated through the modified Ikeda model. We also observe
that SSB recovery occurs at a low chirp value in the present
scheme as compared to the anomalous dispersion situation. It
should also be pointed out that, although this work has been
carried out at small nonzero desynchronization (�t) values,
�t = 0 also yields similar spectro-temporal characteristics.
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APPENDIX: DEPENDENCE OF SPECTRAL FILTER
BANDWIDTH f ON FSR OF CAVITY

Figure 11 depicts how the bandwidth of the spectral filter
affects the spectro-temporal characteristics of the resonator
for a fixed FSR, such as f � FSR, f = FSR, f � FSR at
a fixed pump wavelength, λ0 = 1029.7 nm. The FSR of the
resonator is 0.95 nm at the pump wavelength. It is observed
that when the spectral bandwidth is much larger than the FSR,
i.e., f � FSR, the temporal DKS has the largest power and
wide KFC spectral bandwidth, whereas for f = FSR (i.e.,
f = 0.95 nm) and f � FSR (i.e., f = 0.5 nm), the power of
the DKS reduces and the spectral bandwidth of the KFC also
decreases. The decrease in the spectral bandwidth manifests as
an increase in the temporal width of the DKS. Such behavior
resulting in the enhanced frequency comb bandwidth with an
increase in spectral filter bandwidth has also been reported in
recent studies [22,67].

033502-9



SAURADEEP KAR AND SHAILENDRA K. VARSHNEY PHYSICAL REVIEW A 109, 033502 (2024)

[1] M. Saha, S. Roy, and S. K. Varshney, Phys. Rev. A 101, 033826
(2020).

[2] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science
332, 555 (2011).

[3] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R.
Holzwarth, and T. J. Kippenberg, Nature (London) 450, 1214
(2007).

[4] A. Roy, R. Haldar, and S. K. Varshney, J. Light. Technol. 36,
5807 (2018).

[5] M. Saha, S. Roy, and S. K. Varshney, Phys. Rev. E 100, 022201
(2019).

[6] G. Moille, X. Lu, A. Rao, Q. Li, D. A. Westly, L. Ranzani,
S. B. Papp, M. Soltani, and K. Srinivasan, Phys. Rev. Appl. 12,
034057 (2019).

[7] A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M.
Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye
et al., Phys. Rep. 729, 1 (2018).

[8] P. Grelu and N. Akhmediev, Nat. Photonics 6, 84 (2012).
[9] T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L.

Gorodetsky, Science 361, eaan8083 (2018).
[10] R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J.

Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264
(2000).

[11] D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair,
C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone et al.,
Nature (London) 557, 81 (2018).

[12] F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M.
Haelterman, Nat. Photonics 4, 471 (2010).

[13] A. Foltynowicz, P. Masłowski, T. Ban, F. Adler, K. Cossel, T.
Briles, and J. Ye, Farad. Disc. 150, 23 (2011).

[14] J. K. Jang, M. Erkintalo, S. Coen, and S. G. Murdoch, Nat.
Commun. 6, 7370 (2015).

[15] S. Kar, M. Saha, S. K. Bag, R. K. Sinha, S. Sharma, S. Singhal,
and S. K. Varshney, Phys. Rev. A 106, 013517 (2022).

[16] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev,
M. L. Gorodetsky, and T. J. Kippenberg, Nat. Photonics 8, 145
(2014).

[17] Y. Wang, M. Anderson, S. Coen, S. G. Murdoch, and M.
Erkintalo, Phys. Rev. Lett. 120, 053902 (2018).

[18] S. Kelly, Electron. Lett. 28, 1562 (1992).
[19] H. A. Haus and W. S. Wong, Rev. Mod. Phys. 68, 423

(1996).
[20] A. Chong, J. Buckley, W. Renninger, and F. Wise, Opt. Express

14, 10095 (2006).
[21] S.-W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M.

Yu, D.-L. Kwong, L. Maleki, and C. W. Wong, Phys. Rev. Lett.
114, 053901 (2015).

[22] C. Spiess, Q. Yang, X. Dong, V. G. Bucklew, and W. H.
Renninger, Optica 8, 861 (2021).

[23] X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E.
Leaird, M. Qi, and A. M. Weiner, Nat. Photonics 9, 594 (2015).

[24] C. Bao, Y. Xuan, C. Wang, A. Fülöp, D. E. Leaird, V. Torres-
Company, M. Qi, and A. M. Weiner, Phys. Rev. Lett. 121,
257401 (2018).

[25] B. Garbin, Y. Wang, S. G. Murdoch, G.-L. Oppo, S. Coen, and
M. Erkintalo, Eur. Phys. J. D 71, 240 (2017).

[26] Y. Xu, A. Sharples, J. Fatome, S. Coen, M. Erkintalo, and S. G.
Murdoch, Opt. Lett. 46, 512 (2021).

[27] P. Parra-Rivas, S. Coulibaly, M. G. Clerc, and M. Tlidi, Phys.
Rev. A 103, 013507 (2021).

[28] M. G. Clerc, S. Coulibaly, P. Parra-Rivas, and M. Tlidi, Chaos
30 (2020).

[29] M. Liu, H. Huang, Z. Lu, Y. Dang, S. Mei, C. Wang, B. Zhao,
and W. Zhao, Phys. Rev. Appl. 18, 044028 (2022).

[30] Z. Li, Y. Xu, S. Coen, S. G. Murdoch, and M. Erkintalo, Optica
7, 1195 (2020).

[31] J. K. Jang, A. Klenner, X. Ji, Y. Okawachi, M. Lipson, and A. L.
Gaeta, Nat. Photonics 12, 688 (2018).

[32] H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer,
V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and
T. J. Kippenberg, Nat. Phys. 13, 94 (2017).

[33] X. Yi, Q.-F. Yang, K. Y. Yang, and K. Vahala, Opt. Lett. 41,
2037 (2016).

[34] H. Taheri, A. A. Eftekhar, K. Wiesenfeld, and A. Adibi, IEEE
Photonics J. 7, 1 (2015).

[35] X. Xue, X. Zheng, and B. Zhou, Photonics Res. 6, 948 (2018).
[36] J. Pan, Z. Cheng, T. Huang, C. Song, P. P. Shum, and G.

Brambilla, J. Light. Technol. 37, 5531 (2019).
[37] C. Bao, L. Zhang, A. Matsko, Y. Yan, Z. Zhao, G. Xie, A. M.

Agarwal, L. C. Kimerling, J. Michel, L. Maleki et al., Opt. Lett.
39, 6126 (2014).

[38] X. Xue, P.-H. Wang, Y. Xuan, M. Qi, and A. M. Weiner, Laser
Photonics Rev. 11, 1600276 (2017).

[39] X. Xue, X. Zheng, and B. Zhou, Nat. Photonics 13, 616
(2019).

[40] E. Obrzud, S. Lecomte, and T. Herr, Nat. Photonics 11, 600
(2017).

[41] I. Hendry, B. Garbin, S. G. Murdoch, S. Coen, and M.
Erkintalo, Phys. Rev. A 100, 023829 (2019).

[42] I. Hendry, W. Chen, Y. Wang, B. Garbin, J. Javaloyes, G.-L.
Oppo, S. Coen, S. G. Murdoch, and M. Erkintalo, Phys. Rev. A
97, 053834 (2018).

[43] F. R. Talenti, Y. Sun, P. Parra-Rivas, T. Hansson, and S. Wabnitz,
Opt. Commun. 546, 129773 (2023).

[44] X. Xue, P. Grelu, B. Yang, M. Wang, S. Li, X. Zheng, and
B. Zhou, Light Sci. Appl. 12, 19 (2023).

[45] L. A. Lugiato and R. Lefever, Phys. Rev. Lett. 58, 2209 (1987).
[46] P. Grelu, Nonlinear Optical Cavity Dynamics: From Microres-

onators to Fiber Lasers (John Wiley & Sons, New York, 2015).
[47] S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, Opt. Lett.

38, 37 (2013).
[48] G. P. Agrawal, in Nonlinear Science at the Dawn of the 21st

Century, edited by P. L. Christiansen, M. P. Srensen, and A.
C. Scott, Lecture Notes in Physics Vol. 542 (Springer, Berlin,
Heidelberg, 2000), pp. 195–211.

[49] C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo, Phys.
Rev. A 89, 063814 (2014).

[50] A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M.
Dudley, C. R. Menyuk, and Y. K. Chembo, IEEE Photonics J.
5, 6100409 (2013).

[51] P. Parra-Rivas, E. Knobloch, D. Gomila, and L. Gelens, Phys.
Rev. A 93, 063839 (2016).

[52] X. Dong, C. Spiess, V. G. Bucklew, and W. H. Renninger, Phys.
Rev. Res. 3, 033252 (2021).

[53] A. Arbabi, Y. M. Kang, C.-Y. Lu, E. Chow, and L. L. Goddard,
Appl. Phys. Lett. 99, 091105 (2011).

[54] J. Pan, C. Xu, Z. Wu, J. Zhang, T. Huang, and P. P. Shum, Front.
Optoelectron. 15, 14 (2022).

[55] M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J.
Moss, and R. Morandotti, Nat. Commun. 3, 765 (2012).

033502-10

https://doi.org/10.1103/PhysRevA.101.033826
https://doi.org/10.1126/science.1193968
https://doi.org/10.1038/nature06401
https://doi.org/10.1109/JLT.2018.2878573
https://doi.org/10.1103/PhysRevE.100.022201
https://doi.org/10.1103/PhysRevApplied.12.034057
https://doi.org/10.1016/j.physrep.2017.08.004
https://doi.org/10.1038/nphoton.2011.345
https://doi.org/10.1126/science.aan8083
https://doi.org/10.1103/PhysRevLett.85.2264
https://doi.org/10.1038/s41586-018-0065-7
https://doi.org/10.1038/nphoton.2010.120
https://doi.org/10.1039/c1fd00005e
https://doi.org/10.1038/ncomms8370
https://doi.org/10.1103/PhysRevA.106.013517
https://doi.org/10.1038/nphoton.2013.343
https://doi.org/10.1103/PhysRevLett.120.053902
https://doi.org/10.1049/el:19920992
https://doi.org/10.1103/RevModPhys.68.423
https://doi.org/10.1364/OE.14.010095
https://doi.org/10.1103/PhysRevLett.114.053901
https://doi.org/10.1364/OPTICA.419771
https://doi.org/10.1038/nphoton.2015.137
https://doi.org/10.1103/PhysRevLett.121.257401
https://doi.org/10.1140/epjd/e2017-80133-7
https://doi.org/10.1364/OL.413585
https://doi.org/10.1103/PhysRevA.103.013507
https://doi.org/10.1063/5.0007350
https://doi.org/10.1103/PhysRevApplied.18.044028
https://doi.org/10.1364/OPTICA.400646
https://doi.org/10.1038/s41566-018-0261-x
https://doi.org/10.1038/nphys3893
https://doi.org/10.1364/OL.41.002037
https://doi.org/10.1109/JPHOT.2015.2416121
https://doi.org/10.1364/PRJ.6.000948
https://doi.org/10.1109/JLT.2019.2932903
https://doi.org/10.1364/OL.39.006126
https://doi.org/10.1002/lpor.201600276
https://doi.org/10.1038/s41566-019-0436-0
https://doi.org/10.1038/nphoton.2017.140
https://doi.org/10.1103/PhysRevA.100.023829
https://doi.org/10.1103/PhysRevA.97.053834
https://doi.org/10.1016/j.optcom.2023.129773
https://doi.org/10.1038/s41377-022-01052-8
https://doi.org/10.1103/PhysRevLett.58.2209
https://doi.org/10.1364/OL.38.000037
https://doi.org/10.1007/3-540-46629-0_9
https://doi.org/10.1103/PhysRevA.89.063814
https://doi.org/10.1109/JPHOT.2013.2277882
https://doi.org/10.1103/PhysRevA.93.063839
https://doi.org/10.1103/PhysRevResearch.3.033252
https://doi.org/10.1063/1.3633111
https://doi.org/10.1007/s12200-022-00018-3
https://doi.org/10.1038/ncomms1762


GENERATION OF SELF-STABILIZED CHIRPED … PHYSICAL REVIEW A 109, 033502 (2024)

[56] S. K. Bag and S. K. Varshney, J. Opt. Soc. Am. B 38, 1669
(2021).

[57] M.-Y. Ye, M.-X. Shen, and X.-M. Lin, Sci. Rep. 7, 17412
(2017).

[58] Q. Huang, K. Ma, and S. He, IEEE Photonics Technol. Lett. 27,
1402 (2015).

[59] Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, Adv. Mater.
29, 1604920 (2017).

[60] S. K. Bag, R. K. Sinha, M. Wan, and S. Varshney, J. Phys. D
54, 16LT01 (2021).

[61] X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, and K. Vahala, Optica
2, 1078 (2015).

[62] Z. Zhang, M. Dainese, L. Wosinski, and M. Qiu, Opt. Express
16, 4621 (2008).

[63] S. Fujii, A. Hori, T. Kato, R. Suzuki, Y. Okabe, W. Yoshiki,
A.-C. Jinnai, and T. Tanabe, Opt. Express 25, 28969 (2017).

[64] M. Erkintalo, S. G. Murdoch, and S. Coen, J. R. Soc. N. Z. 52,
149 (2022).

[65] J. Li, C. Bao, Q.-X. Ji, H. Wang, L. Wu, S. Leifer, C. Beichman,
and K. Vahala, Optica 9, 231 (2022).

[66] P. Parra-Rivas, D. Gomila, and L. Gelens, Phys. Rev. A 95,
053863 (2017).

[67] Y. Yu, Z. Wang, Z. Fang, Y. Li, and Z. Zhang, Phys. Rev. A 108,
053505 (2023).

033502-11

https://doi.org/10.1364/JOSAB.416454
https://doi.org/10.1038/s41598-017-16961-7
https://doi.org/10.1109/LPT.2015.2422731
https://doi.org/10.1002/adma.201604920
https://doi.org/10.1088/1361-6463/abdf95
https://doi.org/10.1364/OPTICA.2.001078
https://doi.org/10.1364/OE.16.004621
https://doi.org/10.1364/OE.25.028969
https://doi.org/10.1080/03036758.2021.1900296
https://doi.org/10.1364/OPTICA.443060
https://doi.org/10.1103/PhysRevA.95.053863
https://doi.org/10.1103/PhysRevA.108.053505

