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Monte Carlo Bethe-ansatz approach for the study of the Lieb-Liniger model
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We have developed a Monte Carlo algorithm to explore the equilibrium and out-of-equilibrium properties
of the Lieb-Liniger model. This Monte Carlo Bethe-ansatz (MCBA) algorithm has enabled us to successfully
reconstruct statistical ensembles for equilibrium or postquench dynamics, thereby facilitating the calculation of
macroscopic quantities of integrable models. Our results substantiate the validity of the (quench) thermodynamic
Bethe-ansatz equation from the perspective of first-principles statistical physics. Additionally, we have employed
this method to study the generalized Gibbs ensemble in relation to the postquench dynamics of the Lieb-
Liniger model. Furthermore, we have demonstrated the MCBA algorithm’s capacity to calculate correlations
using Bethe-ansatz wave functions. Our approach offers an efficient methodology for the investigation of the
equilibrium and out-of-equilibrium properties of integrable systems.
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I. INTRODUCTION

The description of equilibrium and out-of-equilibrium
properties in isolated quantum many-body systems within the
framework of statistical mechanics is a fundamental open
question [1–5]. It has been widely accepted that although the
entire system remains in a pure state, the reduced density ma-
trix of an arbitrary finite compact subsystem can be described
by a statistical ensemble in the long-time limit [6,7]. Further-
more, in generic isolated systems, nonequilibrium dynamics
are expected to result in thermalization, where the values
of macroscopic quantities become stationary and predictable
by statistical mechanics, irrespective of the widely differing
initial states [3,8,9]. Over the past few decades, the exper-
imental capability to investigate almost purely unitary time
evolution in cold atoms [10–20] has led to considerable theo-
retical excitement, significantly enhancing our understanding
of equilibrium and evolution of many-body quantum systems
[4–7,21–41].

One of the leading principles underlying the dynamics of
isolated quantum systems out of equilibrium is that of the
transport carried by conserved currents, particularly for those
emerging from unitary evolutions [31,42]. Consequently, the
real-time dynamics of integrable models, which possess an
infinite number of conservation laws leading to generalized
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thermalization [26,43,44], serves as a paradigm to study the
dynamics out of equilibrium [31,45]. It has been proposed that
integrable models equilibrate to generalized Gibbs ensembles
(GGE) involving higher conserved charges of the systems
[33,45–47]. The investigation of GGE has been a central topic
in the study of the dynamics of integrable models over the
past decade [21,24,25,45], including the rigorous proof of
the emergence of the GGE in certain noninteracting theories
[6,22,33] and the observation of the signs of the GGE on
experimental platforms [20,48–54]. The key idea of these
studies is the utilization of general statistical physics meth-
ods in the investigation of nonequilibrium quantum systems
through the study of statistical ensembles [55,56].

On the other hand, the quantum Monte Carlo method
(QMC), whose effectiveness has been demonstrated in nu-
merous studies of various quantum systems [57–62], is a
traditional and significant tool for investigating quantum
many-body physics [63,64]. The underlying reason enabling
the implementation of QMC is its ability to accurately and
efficiently sample a well-defined distribution on an artificially
introduced “phase space,” which is derived from the original
quantum problems through a variety of ingenious methods
[59,65,66]. This process can also be regarded as a simu-
lation of statistical ensembles which is just a phase space
with a well-defined probability distribution. In a more spe-
cific context, the implementation of the Monte Carlo method
involves generating a Markov chain of points in the phase
space based on the given probability distribution, and this
sampling method is known as the Metropolis algorithm [67].
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Once the generated Markov chain reaches thermalization, the
set of states it generates can faithfully represent the statistical
ensemble. When the ensembles are simulated, it is possible
to approximate and analyze the macroscopic and microscopic
properties of quantum systems, overcoming the computational
challenges posed by the many-body problem [66].

The inherent mechanism of QMC naturally leads to the fol-
lowing idea: for a statistical ensemble of an exactly solvable
model, in principle, we clearly know the analytical form of the
wave function of each state and its corresponding probability,
so we could solve the equilibrium and evolution of the system
by directly constructing the statistical ensemble. This idea
motivates our research.

This paper is arranged as follows. In Sec. II, we introduce
the Monte Carlo Bethe-ansatz method (MCBA), and prove
through examples that it can calculate the thermodynamic
quantities for systems in equilibrium by comparing with exact
solutions. In Sec. III, we further investigate the quench dy-
namics of integrable systems using the algorithm developed
in Sec. II, and discuss the problem related to the GGE. In
Sec. IV, by constructing a new statistical ensemble, we ex-
tended the Monte Carlo method to the calculation of wave
functions in an integrable model. We give a summary and
outlook in Sec. V.

II. THE MONTE CARLO BETHE ANSATZ

Traditionally, the QMC method (for instance, the varia-
tional quantum Monte Carlo [58,59]) works by representing
the wave function with a set of random walkers, each of
which represents a possible configuration (wave function)
of the system [55,66]. These walkers are propagated using
a Metropolis algorithm, which generates new configurations
of the system according to the probability associated with
each configuration. From a physics perspective, the random
walkers construct an ensemble corresponding to a known dis-
tribution.

For the simplest case in statistical physics, the canonical
ensemble, we can write down the corresponding probability
an assigned to each |ψn〉 by

an = 1

Z
e−β〈ψn|Ĥ |ψn〉, (1)

where Ĥ is the Hamiltonian, β = (kBT )−1 is the inverse
temperature with T being the temperature and kB the
Boltzmann constant, and Z is the partition function given by
Z = ∑

n e−β〈ψn|Ĥ |ψn〉. The effectiveness of the QMC method
comes from its ability to represent the statistical ensembles,
and thus it can provide thermodynamic information of a
system in equilibrium [56]. For algorithm correctness, the
random walkers |ψn〉 must form a complete basis of the
Hilbert space; they are chosen to be the Vannier basis in lattice
models or the eigenvectors of a noninteracting Hamiltonian,
conventionally, for the sake of computational simplicity. Ev-
idently, the |ψn〉 can also be selected as the eigenvector of
the Hamiltonian of the system, giving rise to the idea of the
MCBA [68–71]. The benefit of this approach is that in the
integrable models with exact solutions, the eigenvalues and
the corresponding eigenvectors can be solved analytically, and

thus the probability in (1) can be analytically calculated in
principle.

In the following discussion, we will use the Lieb-Liniger
model as a playground to discuss the MCBA algorithm. The
Lieb-Liniger model (LLM) [72,73] is one of the extensively
studied quantum integrable models, which provides an excel-
lent description of the properties of one-dimensional Bose gas
[74]. We use the LLM as the example to discuss the MCBA
algorithm for the following reasons: Firstly, the Bethe-ansatz
equations (BAE) for the LLM are relatively simple, especially
in the case of repulsive interaction, where all the roots of
the BAE are real, facilitating our numerical calculations. Sec-
ondly, the MCBA method can demonstrate its advantages in
handling continuous models, which is not trivial to deal with
numerically.

A. The Lieb-Liniger model

The LLM describes a system with N indistinguishable
bosons subject to a delta-function pairwise interaction poten-
tial in a periodic one-dimensional (1D) geometry with size
L. It was first solved through Bethe ansatz (BA) by Lieb and
Liniger [72,73], and the detailed discussion of the BA
approach to LLM can be found in Refs. [74,75]. The first-
quantized Hamiltonian for this system can be written as

Ĥ = −
N∑

i=1

∂2

∂x2
i

+ 2c
∑
i< j

δ(xi − x j ), (2)

where we work in the unit setting h̄ = 2m = 1. From this
point forward, we will discuss the repulsive case (c > 0). The
exact eigenstates of (2) under periodic boundary conditions
�(. . . , x j, . . . ) = �(. . . , x j + L, . . . ) are BA wave functions

�(x1, x2, . . . , xN ) =
∑
P∈SN

A(P)
N∏

j=1

eikPj x j , (3)

with SN in (3) denoting the permutation group of degree N ,
and the amplitudes

A(P) = exp

⎡
⎣i

∑
1�i< j�N

arctan
c

kPi − kPj

⎤
⎦. (4)

Notice that the form (3) is solely valid within the confined sec-
tor x1 < x2 < · · · < xN , while the value of the wave function
in other sectors can be obtained by its symmetric prop-
erty. The rapidities k � {k1, k2, . . . , kN } are solutions of the
BAE [72]

Lk j = 2π I j − 2
N∑

k=1

arctan
k j − kk

c
(5)

for j = 1, 2, . . . , N . The set of “quantum numbers” I �
{I1, I2, . . . , IN } determines the solutions of the BAE (5), which
are integers (half-integers) for N odd (even) numbers under
the constrain

I1 < I2 < · · · < IN . (6)
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Moreover, the eigenenergy of a certain BA wave function in
(5) is determined by

EI =
N∑

j=1

[k j (I)]2. (7)

B. The algorithm

The canonical ensemble ELLM of the LLM at (inverse) tem-
perature β can be constructed directly from the BA solution
introduced in Sec. II A, composed by any eigenfunction of (2)
with a probability aI = e−βEI /

∑
I e−βEI . Notice that a quan-

tum number I under condition (6) must uniquely correspond
to an eigenfunction of the Hamiltonian (2) in its Hilbert space,
thus the ergodicity of the eigenstates in ELLM can be achieved
by the random walk of the quantum number I. Based on this
observation, we design a Metropolis algorithm as follows.

Initialization. The random walker begins with an ini-
tial quantum number Iini, and customarily we set Iini =
{−N−1

2 ,−N−1
2 + 1, . . . , N−1

2 } as the quantum number of the
ground state.

Random walk. We utilize the Metropolis algorithm to im-
plement quantum walks in the canonical ensemble. Let j loop
from 1 to N , we ask I j ∈ I undergo a random walk, and the
rule is designed as the following: first, we randomly generate
a candidate Ic

j = I j ± 1, each with 50% probability, i.e., the
candidate walker Ic differs from the current walker I only
by the jth component. Next, we check the validity of the
condition (6): if (6) does not hold, we reject the candidate Ic,
the random walker remains unchanged; else we calculate the
current energy E0 = EI and the candidate energy E = EIc by
(7), and simultaneously generate a random number p with a
uniform distribution between 0 and 1. Based on the Metropo-
lis algorithm, we accept the candidate Ic if p < eβ(E0−E ), and
reject it otherwise.

Analysis. From the random walk designed above we obtain
a Markov chain In for n = 1, 2, . . . . We can estimate the
thermalization time nth of this random process by calculating
physical observables,—for instance, the energy (7). Next, we
use the random walkers In for n > nth to construct an ensem-
ble EMC, and it can be proved that EMC → ELLM when the size
of EMC goes to infinity [63,65]. Finally, all the thermodynamic
quantities of the system can be approximately calculated by
this generated ensemble EMC.

We name the algorithm introduced above Monte Carlo
Bethe ansatz (MCBA) as it is a typical Monte Carlo method
based on the Bethe-ansatz solutions. Our calculations con-
firm the thermalization properties of the MCBA in Fig. 1,
proving its validity. Quick thermalizations are observed. Due
to the finite size effect, the energy densities in equilib-
rium in Figs. 1(a)–1(c) differ slightly from the result E/L =
0.9024 obtained by the TBA equations, which is derived in
the thermodynamic limit L → ∞. We also observe that the
thermalization time nth grows linearly with system size, con-
firming the scalability of the algorithm. Please note that the
MCBA algorithm is a first-principles computation; it is based
on the fundamental principles of statistical physics, without
any additional approximations. In the following subsection,
we will use the MCBA algorithm as a benchmark to verify
the validity of the Yang-Yang thermodynamic method [76],

FIG. 1. The thermalization of the MCBA method for the LLM.
We set T = 1.0, c = 1.0, and N/L = 1.0, referring to the unit den-
sity. (a)–(c) correspond to the system size L = 50, 100, and 150,
respectively. The horizontal axis refers to the iterations, each iteration
completes a scan from 1 to N in the algorithm introduced in the text,
and vertical axis refers to the energy density. The black dash lines
present the numerical result of the energy density via thermodynamic
Bethe-ansatz equation (9), giving limL→∞ E/L = 0.9024, and the
colored dot lines correspond to the results from MCBA. In this
approach we take 500 random walkers; the solid line is the mean
value of the random walkers while the shadowed areas correspond to
the error bars with 99.7% confidence level. nt denotes the thermal-
ization time, defined by the first time that the mean value calculated
by all the random walkers reaches the result of long-time average.
The results show the validity of the MCBA. The random walkers
reach the equilibrium states quickly and the variances decay with the
increase of the system size.

which is an important method extensively used for calculating
the thermodynamic properties of integrable models [77].

C. The reconstruction of the Yang-Yang ensemble

1. The Yang-Yang thermodynamics

The thermodynamic properties of the LLM were first an-
alytically studied by C. N. Yang and C. P. Yang in 1969
by the statistical method named Yang-Yang thermodynamics
[76], which led to a significant step in studying the macro-
scopic properties of integrable systems in an exact manner
and provided profound understanding to a variety of physi-
cal phenomena, such as universal thermodynamics, quantum
criticality, and Luttinger liquids [74,77]. The key idea behind
the Yang-Yang thermodynamics is to perform coarse-graining
on the grand canonical ensemble ELLM to obtain an ensem-
ble EYY called the Yang-Yang grand canonical ensemble in
the thermodynamic limit. Each state in EYY is labeled by a
distribution function ρ(k) in the rapidity space. Explicitly, a
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state labeled by I in ELLM is mapped onto a state in EYY

through I → k → ρ(k), where the first mapping is the solving
of the BAE (5), and the second one is the density estimation.
Because this mapping is many-to-one, each state in EYY is
equipped with an effective entropy [32,76,78]

S

L
=

∫
dk[(ρ + ρh) ln(ρ + ρh) − ρ ln ρ − ρh ln ρh], (8)

where ρh(k) is the hole density which can be also obtained by
solving the BAE, see Ref. [75] for details. The grand canon-
ical thermal potential can be written as 	 = E − T S − μN ,
and δ	 = 0 gives the thermodynamic Bethe-ansatz equa-
tion (TBA)

ε(k) = k2 − μ −
∫

dk′a2(k − k′)T ln[1 + e−ε(k′ )/T ], (9)

where ε(k) is the dressed energy defined by ε(k) =
T ln[ρh(k)/ρ(k)], and the kernel a2(k) = 1

2π
2c

k2+c2 . The solu-
tion of (9), together with the integral relation [75]

ρ(k) + ρh(k) = 1

2π
+

∫
dk′a2(k − k′)ρ(k′), (10)

determines the density ρ(k), which corresponds to the max-
imum weight state in the EYY, providing the thermodynamic
properties of the LLM.

2. The ρ(k) generated by MCBA

Notably, the function ρ(k) can be numerically obtained via
MCBA by averaging all the random walkers I in EMC through
the mapping I → k → ρ(k). In each step of the random walk
we record the solution k of the BAE (5), these ks forms a large
set of k, and finally we can obtain a density distribution ρ(k)
by discretization. As an intermediate variable for calculating
physical quantities, the ρ(k) obtained by MCBA shares the
same formula as the one obtained by TBA, thus we can regard
the generation of the EMC by the random walker as the recon-
struction of the Yang-Yang ensemble EYY; see discussion in
Sec. III C.

In Figs. 2(a) and 2(b) we present the comparisons between
the results from the TBA and the MCBA in different tem-
peratures. The results show that the MCBA and TBA are in
good agreement, even though the system size in MCBA is
not large (L = 100). Here, we set n = N/L = 1.0, thus the
distribution ρ(k) is normalized. The density function ρMC(k)
obtained by the MCBA converges to the function ρTBA(k)
obtained by TBA quickly when the system size L grows;
we show the scaling behavior of the error defined by ferr =∫ ∞
−∞ dk|ρMC(k) − ρTBA(k)|2 in Fig. 2(c). These calculations

prove the reliability and effectiveness of the MCBA, and
the well-behaved scaling property guarantees that we can
approximate the thermodynamic limit results by performing
calculations on a relatively small system size through MCBA.
This advantage may potentially lead to more applications,
such as studying thermodynamics properties in the integral
models where TBA equations have not been established yet
(the Richardson-Gaudin model [79] or central spin model
[80], for instance), or studying the integral models where
TBA equations are difficult to handle (multicomponent Bose
gas [81,82], for example). We hope to explore this research
direction in our future works.
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FIG. 2. The reconstruction of the EYY by MCBA. In (a) and
(b) the red solid lines are obtained by solving the TBA (9) nu-
merically, the histograms are obtained by the data generated by
the MCBA, and the blue dots are obtained by the kernel density
approximation of the data. The results from MCBA closely match the
results from numerical solutions of the TBA. Here in (a) and (b), we
set L = 100, N/L = 1.0, c = 1.0, and T = 0.1 and 1.0 respectively,
and the total number of samplings are both 1 × 105. In (c) we present
the scaling behavior of the distance between the results from MCBA
and TBA defined by ferr = ∫ ∞

−∞ dk|ρMC(k) − ρTBA(k)|2, using the
data generated at T = 1.0. Fast convergence is observed when the
system size grows.

III. THE STUDY OF QUENCH DYNAMICS via MCBA

The success of Yang-Yang thermodynamics lies not only
in its description of the equilibrium state of many-body sys-
tems, but more importantly, it also gives an impetus for recent
developments on generalized hydrodynamics and quantum
transport of quantum integrable systems of interacting spins
[24,30,71], bosons, and mixtures. It was proposed that for a
postquench integrable model, the behavior of local observ-
ables at late time can be given by the expectation values
with respect to a single Hamiltonian eigenstate [23,32]. This
fact can be regarded as a generalization of the eigenstate
thermalization hypothesis, and it can also be considered as
a generalization of the saddle-point approximation in the
derivation of the TBA equation (9), which claims that the
statistical properties can be well described by the states with
maximum weight in the Yang-Yang ensemble EYY. To be
explicit, let {|ψm〉} be a complete set of eigenstates of the
Hamiltonian, i.e., Ĥ |ψm〉 = Em|ψm〉; the time evolution of an
arbitrary initial state �(0) is then given by

|�(t )〉 =
∑

m

ame−iEmt |ψm〉, (11)

033320-4



MONTE CARLO BETHE-ANSATZ APPROACH FOR THE … PHYSICAL REVIEW A 109, 033320 (2024)

where am = 〈ψm|�(0)〉 is the overlap between the initial state
and the mth eigenstate. The long-time average of an observ-
able Ô in a finite volume case can be written as

lim
τ→∞

1

τ

∫ τ

0
dt〈�(t )|Ô|�(t )〉 =

∑
m

|am|2〈ψm|Ô|ψm〉. (12)

The right-hand side of this equation can be interpreted as
a statistical ensemble called the diagonal ensemble (DE), in
which the weight of the eigenstate |ψm〉 is determined by
|am|2. The system thermalizes if the DE gives the same phys-
ical predictions as a canonical or grand canonical ensemble,
which is expected for a nonintegrable model. However, in an
integrable model the existence of a large number of higher
conserved charges prevents thermalization. It was suggested
that in integrable models the DE predictions should agree with
those of a generalized Gibbs ensemble, whose density matrix
is defined as

ρ̂GGE = exp
( − ∑

j β j Î j
)

Tr
[

exp
( − ∑

j β j Î j
)] , (13)

where the Î j are some conserved operators and β j are
the corresponding Lagrangian multipliers [32,33,38,45,83].
Equation (13) is a generalization of the ensembles we often
meet in statistical physics. For instance, for the canonical en-
semble we have only one β0 = 1/(kBT ), Î0 = Ĥ , and for the
grand canonical ensemble, we have extra β1 = μ, Î1 = N̂ ,
denoting the chemical potential and particle number opera-
tor. It was proposed firstly in Ref. [43] that the relaxation
of the hardcore bosons, which is a completely integrable
many-body quantum system, can be described by GGE, and
in subsequent work, researchers have confirmed the feasi-
bility of this idea across a range of models. It has been
proved analytically that the stationary postquench properties
in the one-dimensional Bose gas can be well described by
the GGE [22,84]; furthermore, in the specific Heisenberg
spin chain model [26], researchers were able to directly con-
struct the operators Î j in (13) by algebraic Bethe ansatz. It
has also been found that the GGE emerges in the bosonic
postquench Aubry-André model at the nonlocal and critical
states [47], and it also governs the dynamics of the perturbed
LLM by a one-body parabolic trap [21]. These works to
some extent demonstrate the robustness and universality of
the GGE.

However, as research progressed and a series of integrable
models were rigorously studied, it was discovered that in some
cases, the straightforwardly constructed GGE cannot provide
a complete description of the steady states of the quantum
integrable systems. It was proved that in the XXZ model, the
GGE failed to give the accurate postquench behavior from an
equilibrium state, especially when considering the correlators
[24,25]. The same phenomenon has also been observed in
the study of Bose gas [29,83]. In these cases, researchers
are able to obtain analytical results for the overlap integrals
between the initial states of the system and the eigenstates
of the quenched Hamiltonian, which enables the study of the
DE of the system after long-time evolution and the compar-
ison to the GGE results. The key to this analytical approach
lies in analogizing the overlap integrals obtained, denoted as
an = 〈ψn|�(0)〉, with the statistical ensemble, as represented

in (1). By introducing a new action derived from the overlap
integrals, known as the quench action, one can describe the
diagonal ensemble effectively within the framework of tradi-
tional statistical physics [23,32,71,85].

In this section, we will approach the connection between
the DE and the GGE from a different perspective. Unlike
previous studies that compare the DE and GGE through
computational results [21,24,25,29,83], our research aims to
directly construct the DE described by Eq. (12) using Monte
Carlo sampling methods. We will analyze the properties of
this ensemble using large datasets to address the relation to
the GGE.

A. The MCBA for quench action

We study the quench dynamics from the ground state |0〉
[the Bose-Einstein condensate (BEC) state] of the nonin-
teracting LLM to the interacting one, which was discussed
in detail in a series of works [29,32,83]. It was proved
numerically that the long-time behavior of LLM can be
well described by the DE according to the validity of
Eq. (12) even in a small system size [29]. Considering the
Hamiltonian (2) with even N , only the parity-invariant Bethe-
ansatz states |�k,−�k〉 � |{k j}N/2

j=1 ∪ {−k j}N/2
j=1〉 with k j being

positive and {k j}N/2
j=1 ∪ {−k j}N/2

j=1 being the solution of the BAE
(5) have nonzero overlap with the initial BEC state |0〉. The
overlap formula is given by [32,83,86]

〈�k,−�k|0〉 =
√

(cL)−N N!

det[G]

det[GQ]∏N/2
j=1

k j

c

√
k2

j

c2 + 1
4

, (14)

where the G and GQ are Gaudin matrices with el-
ements Gjm = δ jm[L + ∑N

l=1 K (k j, kl )] − K (k j, km), j, m =
1, . . . , N and GQ

jm = δ jm[L + ∑N/2
l=1 KQ(k j, kl )] − KQ(k j, km),

j, m = 1, . . . , N/2, with the functions K (k, μ) = 2c/[c2 +
(k − μ)2] and KQ(k, μ) = 2c/[c2 + (k − μ)2] + 2c/[c2 +
(k + μ)2]. Taking the probability represented by |〈�k,−�k|0〉|2
compared to the probability represented by Z−1 exp[−βE (�k)]
in the canonical ensemble, we can follow the idea in Ref. [76]
to derive the TBA equations using the coarse-graining method
and saddle-point approximation. This derivation was dis-
cussed in detail in Refs. [83] and [32], and we present only
the final result,

ε(k) = log

[
k2

c2

(
k2

c2
+ 1

4

)]
− h

−
∫ ∞

−∞
a2(k − p) ln[1 + e−ε(p)]d p, (15)

where similarly ε(k) = ln[ρh(k)/ρ(k)] with ρ(k) and ρh(k)
being the particle and hole density, respectively. Notice that
(15) is similar to (9) except for the driving term, and the
extra Lagrangian multiplier h in (15) can be determined by
the density.

In Sec. II we showed the validity and effectiveness of
the MCBA in equilibrium, which relies on its ability to
represent the Yang-Yang ensemble. This encourages us to
apply the same method to study the postquench DE. By
making slight modifications to the algorithm, replacing the
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(b)

(a)

FIG. 3. The reconstruction of the DE after quench by MCBA. In
(a) and (b) the histograms are obtained by the data generated by the
MCBA, the red solid lines are obtained by solving the quench TBA
(9) numerically, and the blue dots are obtained by the kernel density
approximation of the data. The results from MCBA closely match
the results from numerical solutions of the TBA. Here in (a) and (b),
we set L = N = 50, and c = 1.0 and 10.0, respectively. The total
number of samplings are both 2 × 105.

probability Z−1 exp[−βE (�k)] with the probability
|〈�k,−�k|0〉|2 in the Metropolis random walk, we can
reconstruct the postquench DE numerically.

In Fig. 3, we present the results of our MCBA algorithm
and compare them to the quench TBA equation. We find
that the results of the quench TBA equation can be obtained
for relatively small system sizes N = L = 50, similar to the
canonical ensemble case in Sec. II. The scatter points in Fig. 3
are obtained by the kernel density approximation from the
datasets generated by the MCBA, which match well with the
quench TBA equation (15).

We emphasize that our method are fundamentally different
from the calculations based on the (quench) TBA equations.
The derivation of (quench) TBA equations requires two im-
portant additional assumptions in addition to the fundamental
principles in statistical physics. The first one comes from
the form of the Yang-Yang entropy (8), which is rooted in
the quasi-particle picture of Landau’s Fermi liquid theory
[78]. In this picture, a coarse-graining method in momentum
space is effective; however, in the corresponding BAE, it is
necessarily assumed that local particle-hole excitations at the
Bethe roots, at least statistically, do not affect the overall
distribution of them. The second assumption is the saddle-
point approximation [87], which involves finding the state
with the highest probability in the ensemble and using it
to represent the entire ensemble in calculations. In contrast
to (quench) TBA, the MCBA method is first-principles-
based, relying solely on the results from exact solutions [(7)
and (14)] and fundamental principles of statistical physics
[(1) and (12)], without any additional assumptions. Thus,
in this sense, our results in Figs. 2 and 3 provide a nu-
merical validation of the effectiveness of the (quench) TBA
equations (9) and (15).

B. The construction of the GGE

The MCBA method described in Sec. III A can generate
a diagonal ensemble of the postquench LLM, and we also
know the probabilities associated with each state |�k,−�k〉 in
this ensemble as P(�k) = |〈�k,−�k|0〉|2. Suppose that the DE
can be described by the GGE; this means that the probability
P(�k) can be well fitted by

P(�k) ∝ e− ∑
m βmIm (�k) (16)

with Im(�k) = 〈�k|Îm|�k〉.
For the LLM, which can be obtained from quantizing

the nonlinear Schrödinger equation, a series of its conserved
quantities can be derived by expansion of the trace of its
monodromy matrix; please refer to Chap. 2 in Ref. [75]
and Ref. [88] for details. Although higher-order conserved
quantities have highly complicated algebraic forms [88], their
mutual commutativity allows us to combine them into a series
of commutative Îm operators. These operators have the prop-
erty that their expectation values on a Bethe-ansatz state are
equal to the mth power sum of the N Bethe roots correspond-
ing to that state [31,89], i.e.,

〈�k|Îm|�k〉 = Im(�k) =
N∑

j=1

km
j . (17)

Obviously, Î0 = Q̂, Î1 = P̂, and Î2 = Ĥ correspond to the
particle number, momentum, and energy respectively.

A simple idea is that we can construct a generalized Gibbs
ensemble with these conserved quantities, so that this ensem-
ble can approach the postquench diagonal ensemble, with the
additional requirement that the number of these conserved
quantities is finite [90] (otherwise, a theory with an infinite
number of parameters lacks predictive power). This means
that the probability on the left-hand side of (16) can be well
approximated by its right-hand side with the expression of Im

in (17), but when we attempted to numerically fit the states
in the DE obtained through the MCBA method in the form of
the right-hand side of (16) we failed, and we even found that
using more conserved quantities does not provide substantial
help in reducing the fitting error. However, it was widely
regarded that the GGE, when implemented correctly, should
converges to the quench action ensemble (which is equivalent
to the DE) in the thermodynamic limit [32]; this suggests that
the sequence of conserved quantities we obtained through the
quantum inverse scattering method should not be equated with
the sequence of conserved quantities in the GGE (13), at least
in the model we are studying. This confirms the conclusions
in Refs. [83,91] and [29] that simply using the GGE does not
yield the correct results.

However, the conserved quantities that satisfy the require-
ments of the GGE, i.e., the condition (16), can be obtained
in a simple way. Following the reasoning behind the quench
action derivation presented in Refs. [32] and [83], we observe
that in the overlap given by (14), the GQ and G matrices in
the numerator and denominator can be approximated by L(id)
in the thermodynamic limit L → ∞, so their determinants
approach LN/2 and LN , respectively. The second-order correc-
tion is of the order O( 1

L ), which can be safely ignored in the
thermodynamic limit. This inspires us to make the following
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FIG. 4. The fitting of the postquench DE by (18) by the conjec-
ture form (19) with different system sizes. (a) The fitting error vs
the system size. The error is expressed as the variance of the error
of 2 × 103 samples. Our result shows that the fitting error decreases
exponentially with the increase of system size. (b) The fitting result
of the effective chemical potential μ1 and μ2 in (18), where μ0 serves
as a renormalizing constant, and the μ1 corresponds to the operator
(23). The result shows that μ1 approaches to −0.5 at large system
size.

conjecture about the form of the right-hand side of (16):

P(�k) = e2μ0+μ1F (�k), (18)

with μ0 and μ1 being the Lagrangian multiplier in the defi-
nition of the GGE (13) and F (�k) being a symmetric function
of k j ,

F (�k) =
N∑

j=1

ln
k2

j

c2
+ ln

(
k2

j

c2
+ 1

4

)
. (19)

To verify this conjecture, we generated a series of DE at dif-
ferent sizes through MCBA, then randomly selected 2 × 103

states in each DE, and fitted these states by μ0 and μ1 using
Eq. (18). Our results show that as the system size increases,
Eq. (18) fits the results of the DE more accurately, see Fig. 4,
which confirms the validity of the conjecture.

In order to find a formal solution for the operator F̂ corre-
sponding to F in (19), we can use the sequence of conserved
operators Îm in (17) obtained from the algebraic Bethe ansatz.
For simplification, we set y j = 4

c2 k2
j and Ôm = ( 2

c )2mÎ2m, then
we have

Om(�k) = 〈�k|Ôm|�k〉 =
N∑

j=1

ym
j , (20)

and in the form of y j (19) reads

F (�k) = ln

⎡
⎣2−4N

N∏
j=1

y j (1 + y j )

⎤
⎦. (21)

Notice that the polynomial
∏N

j=1 y j (1 + y j ) can be expressed
in terms of Om in (20) by the Newton-Girard formula [92].

To be explicit, we denote the en with n = 0, . . . , N being
the elementary symmetric polynomial of y1, . . . , yN of degree
n. Then, we arrive at

∏N
j=1 y j (1 + y j ) = eN (e0 + e1 + · · · +

eN ), and each en can be expressed as a polynomial of Om by
formula

en = (−1)n
∑

m1+2m2+···+nmn=n
m1�0,...,mN �0

N∏
j=1

(−Oj )mj

mj! jmj
. (22)

If we replace the conserved quantities Oj by the conserved
operators Oj → Ô j in (22), we can obtain the series of opera-
tors en → ên. According to (21) we arrive at the expression of
operator

F̂ = ln[2−4N êN (ê0 + ê1 + · · · + êN )]. (23)

The êm are polynomials of Ôm, and therefore also polyno-
mials of Îm, thus we can claim that the formula (23) gives
the explicit form of the operator F̂ , satisfying 〈�k|F̂ |�k〉 =
F (�k). Clearly, the form of F̂ is extremely complicated; it is
obviously nonlocal, containing all higher-order conservation
quantities given by the algebraic Bethe ansatz, so its phys-
ical meaning is utterly obscure. However, if we insist that
the GGE should describe the steady postquench behavior of
the system we are studying, F̂ in (23) is still an appropriate
choice for constructing the GGE, and it may even be the only
one operator we need [see Eq. (18)] to determine the GGE
(13), fitting well with the results of the DE by MCBA.

C. Remarks

In this section, we constructed the postquench DE of LLM
through MCBA, and then by the analysis of the obtained
data, we first verified the effectiveness of the quench TBA
equation and then provided some analysis for the construction
of GGE. There are two important remarks that need to be
emphasized.

First, the ρ(k) as a density distribution function has dif-
ferent meanings in MCBA and in the quench TBA equation.
In MCBA, we regard all the roots of the BAE corresponding
to all wave functions appearing in the diagonal ensemble as
a set; this set gives a root distribution which is ρ(k), while
in the quench TBA equation, the meaning of ρ(k) is a root
distribution of one solution of BAE corresponding to the state
with the maximum weight obtained by the saddle-point ap-
proximation. However, when we calculate the measurements
of conserved quantities through density distributions, both
methods share the same formula Ī = ∫

dkρ(k)I (k) [31,71].
Thus, in this sense, at least statistically, these two ρ(k)s are
equivalent, so in our calculation we did not specifically distin-
guish between them.

Second, despite our ability to reconstruct the DE effec-
tively through MCBA, it remains a formidable challenge to
extract additional physical insights from the data, particu-
larly those pertaining to system correlations. The crux of this
problem lies in our limited analytical understanding of the
observable 〈�k|Ô|�k〉 for the wave function |�k〉 provided by the
BA, especially when Ô is the correlator. This long-standing
challenge provides the impetus for the research undertaken in
Sec. IV.
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IV. CALCULATION OF THE CORRELATIONS BY MCBA

While research on the LLM (2) dates back to the 1960s
when people first studied the model’s ground state [72], en-
ergy spectrum [73], and finite temperature properties [76],
the study of correlation functions in this model remains a
challenging task. So far, there are only some analytical re-
sults related to impenetrable bosons [93,94] and long-range
behavior [95,96]. In the past two decades, new numerical
methods have been applied to the research of this problem
[97–106]; these algorithms, being still in development, rely
on the analytical results provided by the Bethe ansatz and
require sophisticated numerical techniques with large-scale
numerical computation [107,108], thus the problem of corre-
lation functions in LLM has not been completely resolved to
this day.

In this section, based on the Monte Carlo method, we pro-
pose an approach for calculating correlation functions using
Bethe-ansatz wave functions. As discussed in Sec. II A, once
the BAE (5) is solved, we directly arrive at the wave function
of the eigenstate of the LLM, which reads

�(x1, . . . , xN ) =
∑
P∈SN

A(P) exp[ikP1 x1 + · · · + ikPN xN ] (24)

in the sector x1 < x2 < · · · < xN , and values of the wave
function in other sectors can be obtained through its symmet-
ric property. The form of the wave function in (24) appears
to be ideal, however, computation in this manner is nearly

infeasible. For instance, when calculating the norm of the
wave function, we immediately encounter

〈�|�〉 =
∫ 1

0
dx1, . . . , dxN�∗(x1, . . . , xN )�(x1, . . . , xN )

= N!
∫

dx1, . . . , dxN
0<x1<···<xN <1

�∗(x1, . . . , xN )�(x1, . . . , xN )

= N!
∫

dx1, . . . , dxN
0<x1<···<xN <1

∑
P,Q∈SN

A(Q)∗A(P)

× exp[i(kP1 − kQ1 )x1 + · · · + i(kPN − kQN )xN ].
(25)

Notice that here we set L = 1 as we do not consider the
case of thermodynamic limit L → ∞ in this section, and
the A(P), A(Q) can be evaluated by (4). Equation (25) is
difficult to calculate for two reasons: one is that it involves
multiple integrals, and the other is that it requires summation
over N! × N! terms. The divergence speed of N! × N! is
extremely fast; for instance, when N = 10, it already exceeds
1013, and such a scale of summation is almost impossible to
accomplish on a computer. Therefore, so far, the limit size
we have seen for direct calculation by wave function (24) is
N = 7 [102]. The same computational difficulties also arise
when we attempt to calculate the correlation functions g1

and g2.
We use the first quantization definition of correlation func-

tions g1(z) and g2(z), see Ref. [97], and expand them with the
wave function (24):

g1(z) = 1

〈�|�〉
∫ 1

0
dx2, . . . , dxN�∗(0, . . . , xN )�(z, . . . , xN )

= (N − 1)!

〈�|�〉
N∑

w=1

∫
dx2, . . . , dxN

0<x2<···<xw<z<xw+1<···<xN <1
�∗(0, x2, . . . , xN )�(x2, . . . , xw, z, xw+1, . . . , xN )

= (N − 1)!

〈�|�〉
N∑

w=1

∑
P,Q∈SN

∫
dx2, . . . , dxN

0<x2<···<xw<z<xw+1<···<xN <1
A(Q)∗A(P)

× exp[ikPw
z + i(kP1 − kQ2 )x2 + · · · + i(kPw−1 − kQw

)xw−1 + i(kPw+1 − kQw+1 )xw+1 + · · · + i(kPN − kQN )xN ] (26)

g2(z) = 1

〈�|�〉
∫ 1

0
dx3, . . . , dxN�∗(0, z, x3, . . . , xN )�(0, z, x3, . . . , xN )

= (N − 2)!

〈�|�〉
N−1∑
w=1

∫
dx3, . . . , dxN

0<x3<···<xw+1<z<xw+2<···<xN <1
|�(0, x3, . . . , xw+1, z, xw+2, . . . , xN )|2

= (N − 1)!

〈�|�〉
N−1∑
w=1

∑
P,Q∈SN

∫
dx3, . . . , dxN

0<x3<···<xw+1<z<xw+2<···<xN <1
A(Q)∗A(P) exp[i(kP2 − kQ2 )x3 + · · ·

+ i(kPw
− kQw

)xw+1 + i(kPw+1 − kQw+1 )z + i(kPw+2 − kQw+2 )xw+2 + · · · + i(kPN − kQN )xN ]. (27)

Subsequently, we dissect these two complicated expressions into their summation and integration components, and proceed to
simplify each of them. In order to achieve this, we introduce the notation gPQ, g(1)

PQ(z) and g(1)
PQ(z) by

gPQ = A(Q)∗A(P)
∫

dx1, . . . , dxN
0<x1<···<xN <1

exp[i(kP1 − kQ1 )x1 + · · · + i(kPN − kQN )xN ], (28)
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g(1)
PQ(z) = A(Q)∗A(P)

N∑
w=1

∫
dx2, . . . , dxN

0<x2<···<xw<z<xw+1<···<xN <1
exp[ikPw

z + i(kP1 − kQ2 )x2 + · · ·

+ i(kPw−1 − kQw
)xw + i(kPw+1 − kQw+1 )xw+1 + · · · + i(kPN − kQN )xN ], (29)

g(2)
PQ(z) = A(Q)∗A(P)

N−1∑
w=1

∫
dx3, . . . , dxN

0<x3<···<xw+1<z<xw+2<···<xN <1
exp[i(kP2 − kQ2 )x3 + · · · + i(kPw

− kQw
)xw+1

+ i(kPw+1 − kQw+1 )z + i(kPw+2 − kQw+2 )xw+2 + · · · + i(kPN − kQN )xN ], (30)

which are in charge with the calculation of the integral part
in Eqs. (25), (26), and (27), respectively. Utilizing these sym-
bols, we can express the correlation functions by summations

g1(z) = 1

N

∑
P,Q∈SN

g(1)
PQ(z)∑

P,Q∈SN
gPQ

, (31)

g2(z) = 1

N (N − 1)

∑
P,Q∈SN

g(2)
PQ(z)∑

P,Q∈SN
gPQ

. (32)

An important observation is that the integrals in Eqs. (28)–
(30) do have analytical expressions. A general result of this
kind of integral reads∫

dx1, . . . , dxN
0<x1<···<xN <1

exp[i(k1x1 + · · · + kN xN )]

= g[k1 + · · · + kN , k2 + · · · + kN , . . . , kN , 0] (33)

with the symmetric function g[χ1, . . . , χN ] defined by

g[χ1, . . . , χN ] =
∞∑

n1,··· ,nN =0

(iχ1)n1 (iχ2)n2 · · · (iχN )nN

(n1 + n2 + · · · + nN )!
. (34)

The function above has nice properties for real variables; it is
smooth and bounded, with iterative relation

g[χ1, χ2, . . . , χN ]

= g[χ1, χ3, . . . , xN ] − g[χ2, χ3, . . . , xN ]

χ1 − χ2
, (35)

and when all the variables are equal, we have

g[χ1 = a, χ2 = a, . . . , χN = a] = iN−1

(N − 1)!
eia. (36)

Notice that g[χ ] = eiχ is the case N = 1 in (36). With the
help of (35) and (36), we can numerically obtain the value
of any g[χ1, . . . , χN ] with real variables in polynomial steps
[more specifically, the time complexity of calculating g is
O(N2)]. Despite the potential problem associated with differ-
entiation in (35), we find these pseudosingularities will not
present principal difficulties when handled carefully due to the
smoothness and boundedness of the function g[χ1, . . . , χN ]
itself. Therefore, the difficulty of multi-integral calculation
has been numerically resolved. With the help of (33), (35),
and (36), we are able to calculate gPQ, g(1)

PQ(z), and g(2)
PQ(z) in

(28)–(30) for any given P, Q, and z in an economical manner.
We are now in the position to calculate the correlation

function (26) and (27). We observe that |g[χ1, χ2, . . . , χN ]|
attains its maximum value if and only if all the χ j take the

same value. This implies that the absolute value of gPQ in (28)
has a maximum when P and Q are equal. Further, we notice,
roughly speaking, that the absolute value of gPQ is larger when
P and Q are “closer.” (To put it concretely, the closer P and
Q, the fewer exchange operations are needed to link each
other.) The same phenomenon also occurs in the calculation
of g(1)

PQ(z) and g(2)
PQ(z) in (29) and (30). This inspires us to use

|gPQ| to perform importance sampling in the nearly infinite
phase space SN × SN of {P, Q}. To accomplish this idea, we
introduce the effective partition function

Z =
∑

P,Q∈SN

|gPQ|δ; (37)

this partition function corresponds to an ensemble giving a
probability Z−1|gPQ|δ to each point in the phase space SN ×
SN . Here, the δ in (37) is a positive parameter which can tune
the transition rate in the Monte Carlo algorithm that will be
discussed below. Under this setup, we are able to express g1(z)
and g2(z) in (31) and (32) in the form of ensemble averages:

g1(z) = 1

N

〈
g(1)

PQ(z)/|gPQ|δ〉Z
〈gPQ/|gPQ|δ〉Z

= 1

N

Z−1 ∑
P,Q∈SN

g(1)
PQ (z)

|gPQ|δ |gPQ|δ
Z−1

∑
P,Q∈SN

gPQ

|gPQ|δ |gPQ|δ , (38)

g2(z) = 1

N (N − 1)

〈
g(2)

PQ(z)/|gPQ|δ〉
Z

〈gPQ/|gPQ|δ〉Z

= 1

N (N − 1)

Z−1 ∑
P,Q∈SN

g(2)
PQ (z)

|gPQ|δ |gPQ|δ
Z−1

∑
P,Q∈SN

gPQ

|gPQ|δ |gPQ|δ . (39)

The expressions in (38) and (39) have paved the way for
MCBA calculations, and the algorithm is designed as follows.
We begin with any {P, Q} in the phase space SN × SN , and
then do the random walk in this space corresponding to the
probability Z−1|gPQ|δ . To achieve the random walk, we gen-
erate a candidate by randomly changing P or Q by randomly
generated exchange operation, and then use the Metropolis-
Hastings algorithm to determine whether to accept or reject
this candidate. After a sufficient number of steps, we can
calculate the numerators and denominators of (38) and (39),
respectively, provide estimates and errors, and thus solve for
g1(z) and g2(z).

In Fig. 5, we present the result of the correlation functions
for N = 5, where the wave function is chosen to be the first
excitation states. We compare our numerical results to the
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FIG. 5. The correlation function g1(z) and g2(z) for N = 5 and
first excitation state of the Hamiltonian (2), with L = 1 and c = 1.0.
The scatters with error bars are results obtained by the MCBA, where
in (a) and (b) the number of sampling in the MCBA algorithm is
104, while in (c) and (d) it is 106. The blue solid lines correspond
to the real parts and the red dash lines to the imaginary parts of the
correlation functions obtained by analytical calculation.

straightforward analytical calculation by (26) and (27) (when
N is small, direct calculation of the correlation functions is
feasible). The results show a good agreement between the
MCBA and the analytical calculation. We set δ = 1.0 in (37)
here and below for simplicity.

In Fig. 6, we present the result of the correlation function
for N = 5, 7, 9, and 11, where again the wave function is
chosen to be the first excitation state. Our results show the
well-behaved convergence of the MCBA.

However, when we aim to perform calculations for larger-
size systems, we encounter the sign problem in the QMC
algorithm. In Table I, we show the number of samples we have
generated by MCBA for plotting Fig. 6. It shows that as N
increases, the number of samples we used to achieve conver-
gent results increases exponentially. To study this divergence

TABLE I. The number of samples we used for different system
size in Fig. 6.

N 5 7 9 11

Nsample 2 × 106 5 × 106 4 × 107 2 × 108

0.0 0.5 1.0

0.0

0.5

1.0

0.0 0.5 1.0

0.0

0.5

1.0

5 7 9 11 13
1

10

(a)

(b)

(c)

exponential fitting

g
z

z

z

(
)

�
g

z(
)

�

FIG. 6. (a and b) The correlation function g1(z) and g2(z) for
N = 5, 7, 9, and 11, with first excitation state of the Hamiltonian
(2). Here, we set L = 1 and c = 1.0. The scatters with error bars
are results obtained by the MCBA, and the solid lines and dash lines
correspond to the real and imaginary part of the correlation functions,
respectively. (c) The absolute value of the ratio of the variance to
the mean of the random variable A = gPQ/|gPQ| as N increases. The
exponential divergence of this parameter indicates the presence of
the sign problem in Monte Carlo calculations.

behavior, we calculated the absolute value of the ratio of the
variance to the mean of the random variable A = gPQ/|gPQ|δ
in the denominators of (38) and (39), the results of which are
presented in Fig. 6(c). It shows that the ratio of the variance to
the mean of A exhibits exponential divergence as N increases,
confirming that we indeed need an exponentially divergent
number of samples to obtain convergent results.

The sign problem arises inherently from the algorithm it-
self. Referring to Eqs. (38) and (39), where their denominators
are considered, our computation essentially involves sampling
points on the unit circle in the complex plane. If the true ex-
pectation value in the denominator is close to zero, according
to the uncertainty propagation formula, the uncertainties cal-
culated in the denominator will be magnified greatly, making
the convergence of the computation difficult. Fundamentally,
this problem arises from the fact that the samples being drawn
do not have a definite sign, leading to positive and negative
cancellations in the numerical simulations. This is essentially
the sign problem encountered in QMC calculations, thus we
refer to it as the “sign problem.”

Notice that our method significantly differs from a range
of well-established Monte Carlo methods such as variational
Monte Carlo (VMC) [58,59], path integral MC (PIMC) [109]
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or diffusion MC (DMC) [110,111]. Our method essentially
employs the Monte Carlo technique to compute the wave
function (24) given by the Bethe ansatz, attempting to use the
exact solution to provide more physical information beyond
just the spectrum, which is a challenging problem in the study
of quantum integrable models [75]. Although this approach
currently appears to have some difficulties, its advantages are
also clear. Compared to VMC, it does not rely on trial wave
functions, thus its error is solely due to statistical uncertainty
without systematic error; compared to DMC, PIMC, or other
well-developed variational methods (the continuous matrix
product state algorithm [112,113] for instance), it can more
easily calculate arbitrary system eigenstates, such as the first
excited state information that we have calculated as an exam-
ple in this paper.

To summarize, despite encountering the sign problem
while trying to calculate larger-size systems, we have success-
fully validated the feasibility of the Monte Carlo algorithm
in calculating wave functions, and our algorithm has already
surpassed the current size limit for direct wave-function cal-
culation through exact solution obtained by Bethe ansatz
[29,102]. In fact, our algorithm still has considerable room
for improvement, as there is a high degree of freedom in se-
lecting the partition function (37). If we can select the partition
function more appropriately based on the characteristics of the
data, we should obtain better convergence. We hope to make
further improvements to this algorithm in future work.

V. SUMMARY AND OUTLOOK

In the present study, we have systematically incorporated
the Monte Carlo methodology into the exact solution from the
Bethe ansatz, thereby facilitating the first-principles construc-
tion and computation of statistical ensembles. This approach
has enabled us to explore the intricacies of both equilibrium
and nonequilibrium states within integrable models. Utilizing
the probabilities of states in the statistical ensemble provided
by the analytical results of the exact solutions, and in con-
junction with the Metropolis-Hastings algorithm, we have
successfully reconstructed the statistical ensemble. This has
laid the groundwork for our analysis of the equilibrium and
nonequilibrium properties of the quantum integrable system.

Our numerical findings corroborate the validation of the
(quench) TBA equations, which were derived based on
the quasi-particle picture and saddle-point approximation.

Moreover, our explorations into the diagonal ensemble
postquench yielded a concrete conjecture in the form of the
generalized Gibbs ensemble (GGE).

We also extended the use of the Monte Carlo Bethe ansatz
to the computation of correlation functions in Sec. IV. De-
spite encountering the well-known sign problem inherent in
quantum Monte Carlo algorithms when dealing with larger
sizes, our findings reaffirm the efficacy of the MCBA method
within the context of few-body problems. Notably, the com-
putational scalability achieved in our study has transcended
the prevailing limitations associated with studying correlation
functions via direct wave-function calculations. As a prospect,
coupled with the method of ensemble simulations through
Monte Carlo discussed in detail in Secs. II and III, our algo-
rithm holds the potential to compute the correlation functions
of quantum integrable systems in equilibrium or steady states.

The Monte Carlo method and the Bethe ansatz are two
mature methodologies that have been developed over a long
period of time for the study of many-body physics, yet re-
search combining these two methods remains rare to this day.
Therefore, our work provides a different approach. We have
also encountered certain difficulties in our current research.
Firstly, as discussed in Sec. III C, having fully constructed
the statistical ensemble through numerical calculations, we
still find it challenging to obtain richer physical information
beyond conserved quantities, especially information related to
correlation functions. This difficulty arises from the current
lack of sufficient analytical results regarding the correlation
of Bethe-ansatz wave functions. Secondly, when we applied
the MCBA to the calculation of correlation functions, we
encountered the typical sign problem inherent in Monte Carlo
algorithms. These two challenges present demands for our
future research. We hope to delve deeper into the study
of the Bethe ansatz, exploring possible analytical forms of
correlation functions. On the other hand, we anticipate that
leveraging existing research on the Monte Carlo algorithm
will help us find ways to reduce the negative impact of the
sign problem in the calculation of correlation functions.
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