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Multiple polaron quasiparticles with dipolar fermions in a bilayer geometry

Antonio Tiene®,! Andrés Tamargo Bracho,! Meera M. Parish®,23 J esper Levinsen ,3 and Francesca Maria Marchetti

1

' Departamento de Fisica Teérica de la Materia Condensada & Condensed Matter Physics Center (IFIMAC),
Universidad Autonoma de Madrid, Madrid 28049, Spain
2School of Physics and Astrononty, Monash University, Victoria 3800, Australia
3ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia

® (Received 24 January 2024; accepted 28 February 2024; published 25 March 2024)

We study the Fermi polaron problem with dipolar fermions in a bilayer geometry, where a single dipolar

particle in one layer interacts with a Fermi sea of dipolar fermions in the other layer. By evaluating the
polaron spectrum, we obtain the appearance of a series of attractive branches when the distance between the
layers diminishes. We relate these to the appearance of a series of bound two-dipole states when the interlayer
dipolar interaction strength increases. By inspecting the orbital angular-momentum component of the polaron
branches, we observe an interchange of orbital character when system parameters such as the gas density or the
interlayer distance are varied. Furthermore, we study the possibility that the lowest energy two-body bound state
spontaneously acquires a finite center-of-mass momentum when the density of fermions exceeds a critical value,
and we determine the dominating orbital angular momenta that characterize the pairing. Finally, we propose to
use the tunneling rate from and into an auxiliary layer as an experimental probe of the impurity spectral function.
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I. INTRODUCTION

Over the last two decades, significant progress has been
made in manipulating ultracold gases of dipolar atoms and
molecules. The surge in experimental activity in this field is
motivated by the expectation that the anisotropic and long-
range nature of dipole-dipole interactions can lead to exotic
states of matter [1-3]. Significant progress has already been
made with dipolar gases of highly magnetic atoms such as
Cr [4,5], Dy [6,7], and Er [8,9], where the achievement of
quantum degeneracy has allowed the investigation of droplets,
supersolids and other quantum phenomena [10]. However, in
order to access the regime of strong dipole-dipole interac-
tions, one requires other cold-atom platforms such as Rydberg
atoms [11] or heteronuclear molecules [12,13].

Fermionic polar molecules in layered geometries are
particularly promising for realizing quantum phases with
strong and tunable dipolar interactions. By confining dipolar
molecules to two-dimensional (2D) layers, inelastic losses
are suppressed, while the sign and strength of the dipolar
interactions can be precisely controlled [14]. Degenerate 2D
Fermi gases have already been achieved with KRb [15,16] and
NaK [17,18], while other molecules, including LiCs [19,20]
and NaLi [21], are also being explored. Moreover, recent
experiments with ultracold KRb molecules have demonstrated
the possibility to image and control multiple layers individu-
ally [22], thus expanding the range of scenarios that can be
explored with 2D dipolar gases.

From a theoretical standpoint, dipole-dipole interactions
are expected to generate ordered phases of fermions in layered
geometries. Of particular interest is the configuration where
all dipole moments are aligned perpendicularly to the con-
fining planes, such that the system has rotational symmetry.
In the case of a single layer, intralayer superfluid p-wave
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pairing can be driven by dressing polar molecules with a
microwave field [23,24]. Furthermore, density-wave insta-
bilities with dipolar fermions have been proposed [25-27],
including the spontaneous appearance of a stripe phase [28]
and Wigner crystallization [29] at sufficiently high densities
or strong interactions. In the case of bilayers, in addition
to density-wave instabilities [30], new interlayer bound pairs
can arise due to the attractive part of the dipolar interaction
[31-34]. Such pairing and associated interlayer superfluidity
has been studied in the case of both balanced [25,33,35] and
imbalanced populations [36]. The latter includes the possibil-
ity of realizing a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
modulated pairing phase [37]. Most notably, the stability of
the FFLO state can be enhanced by the long-range character
of the interlayer dipolar interaction, where different partial
waves contribute to the pairing order parameter.

In this work, we consider the limit of extreme population
imbalance for dipolar fermions in a bilayer, as illustrated in
Fig. 1. Specifically, we have an impurity problem, where a
single dipolar particle in one layer interacts with a Fermi sea
of identical dipolar fermions in a different layer. This so-called
“Fermi-polaron” problem has previously been considered in
Refs. [38,39] for the case of dipoles in a bilayer geometry,'
and the general problem of an impurity in a 2D Fermi gas
has been extensively studied in other 2D platforms such as
ultracold atoms [41-46] and doped semiconductors [47-50].
Our scenario can be readily realized with polar molecules;
however, note that our setup is quite general and could in
principle apply to other dipoles such as Rydberg atoms. We
consider two possible solutions of this problem. In the first,

The “repulsive Fermi polaron” problem with dipolar fermions in a
single layer geometry has been considered in Ref. [40].
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FIG. 1. Schematic representation of the bilayer geometry consid-
ered: a Fermi gas of dipoles (such as polar molecules) is confined
in the bottom layer o = 1, while a single dipole with the same
perpendicular alignment is confined in the layer o = 2, generating
an impurity problem where two interlayer dipoles attract each other
at short distances r < d and repel each other at large distances r 2 d

(see Fig. 2). Tunneling between the two layers is prevented by a
barrier (blue filled region between the two layers).

we generalize the interlayer bound state between two dipoles
to include the effects of an inert Fermi sea and how it blocks
the occupation below the Fermi momentum. In the second, we
consider the possibility of “polaron” quasiparticles, where the
impurity is dressed by particle-hole excitations of the Fermi
sea. Throughout, we compare our results with those previ-
ously obtained within a 7-matrix formalism which focused
on the limit of weak dipolar interactions [38].

By employing a variational ansatz, we evaluate the po-
laron spectrum to reveal that it is characterized by a series of
attractive polaron branches, where the number of branches in-
creases when the distance between the two layers decreases or
the dipole moment increases. We associate the appearance of
these polaron branches to the series of two-body bound states
that, similarly to the 2D hydrogen atom [51], is characterized
by a specific orbital angular-momentum component and a
principal quantum number. In the limit of vanishingly small
density of fermions, the attractive polaron energies recover
those of the dipole-dipole bound states. By evaluating the or-
bital angular-momentum component of each polaron branch,
we observe that the partial-wave character of the branches
evolve and interchange when we either increase the Fermi
density or, at a fixed density, we increase the bilayer distance.

In contrast with the well-studied case of contact impurity-
medium interactions [52,53], a distinctive feature of finite-
range dipole-dipole interactions is that the energy of the
lowest-energy polaron branch can either redshift, i.e., lower
its energy, with increasing Fermi density, or blueshift. We find
that this depends on the precise value of the dipolar strength,
a quantity related to the specific value of the dipole moment
and the layer separation. We explain this qualitative different
behavior in terms of the contribution of hole scattering in the
polaron formation, which we find is particularly important for
the dipolar potential.

Furthermore, we consider the possibility that the low-
est dipole-dipole bound state spontaneously acquires a finite
center-of-mass momentum when the density of the Fermi sea
increases. Because of the long-range nature of the dipole-
dipole interaction, this finite-momentum bound state mixes

different orbital angular-momentum components. We show
that, while for small densities, s-wave pairing dominates close
to the transition, for larger densities, the bound state acquires
p- and d-wave components. These results agree with those
found at finite but large imbalance in Ref. [37].

The paper is organized as follows: In Sec. II we introduce
the model of identical dipolar fermions in a bilayer geometry,
and we discuss the relevant length and energy scales including
their typical values in current experiments for either strongly
magnetic atoms or heteronuclear molecules. Section III de-
scribes the properties of the two-body interlayer bound states,
generalized to the case where a Fermi gas in one of the layers
acts to block the occupation of states below the Fermi sea.
In Sec. IV we describe the spectral properties of the Fermi
polaron, while in Sec. V we show that the polaron spec-
tral function can be probed analogously to radio-frequency
spectroscopy by introducing an auxiliary layer to the system.
Conclusions and perspectives are gathered in Sec. VI.

II. MODEL

We investigate the configuration schematically represented
in Fig. 1. A Fermi sea of dipoles (e.g., polar molecules) is
confined in one layer, with index o = 1, where the dipole
moments of the molecules are aligned perpendicularly to
the plane by an external field. Additionally, a single dipolar
molecule with the same perpendicular alignment occupies
layer o = 2. The Hamiltonian describing the systems is (we
set i = 1 and the system area A = 1)

5 A A At At A oA
H = E €kly o Ok s T E chqu,lck’jtq,zck’,zck,l’ (1)
k.o kk'q

where 6;0 (Ck.0) 1s the creation (annihilation) operator of a
fermionic dipole with momentum k in layer o. Dipoles in
different layers have the same mass m and their kinetic energy
is ex = k2/2m.

In writing Eq. (1) we have implicitly assumed that the
intralayer correlations are weak, such that the gas in layer
1 is in a Fermi-liquid phase where it can be treated as
approximately noninteracting. This neglects the possibility
of density instabilities which can occur in a (perpendicularly
aligned) 2D dipolar Fermi gas with large dipole moments or
high densities [28].

On the other hand, the second term in the Hamiltonian (1)
describes the dipolar interaction between a molecule in layer
1 and one in layer 2. The interlayer dipolar potentials in real
and momentum space are, respectively, given by [33,34,54]

v _ 2 r2 — 242 )
(r) - (r2 + d2 )5/2 ’ ( a)
Vy = —2nD*ge™ ", (2b)

where r is the planar separation. Here d is the layer separa-
tion and D? is the dipolar interaction strength. Out of these
variables it is profitable to introduce a dimensionless dipolar
strength
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FIG. 2. Interlayer dipolar interaction potential, Eq. (2), in (a) real
and (b) momentum space.

where Ey = 1/md? is the energy scale associated with the
layer separation. We see that Uj increases by either increasing
the dipolar interaction strength or by moving the two layers
closer to each other.

The interlayer dipolar potential is plotted in Fig. 2 in real
and momentum space. As expected, in real space the poten-
tial is attractive at short distances r < d, where the dipoles
are effectively arranged head-to-tail, while it is repulsive at
large distances r 2 d, where the dipoles are arranged side-
by-side. Note that the interlayer potential has a vanishing
zero-momentum contribution, i.e.,

Va=0 = /drV(r) =0.

This implies that the two-dipole bound state becomes very
shallow when Uy — 0 [34], as discussed further in Sec. III.

The dipolar interaction strength D?, which has the di-
mensions of energy times volume, is related to either the
permanent magnetic dipole moment p,, of a magnetic atom
or to the dipole moment D, of an atom or a molecule induced
by an electric field [1]:

Ko 2 :
b { Py magnetic
B 1 2 ;
Tne D;  electric,

where o is the vacuum permeability and €, the vacuum
permittivity. Usually heteronuclear molecules with induced
electric dipole moments display much stronger dipole-dipole
interactions than atoms with a permanent magnetic mo-
ment. To quantify the dipolar interaction, it is convenient to

TABLE I. Typical values of the dipolar length a,, in units of the
Bohr radius gy = 0.0529 nm for the highly magnetic atom '*Dy [3],
and for the heteronuclear molecules KRb [1,14] and LiCs [56]. The
corresponding value of the dimensionless dipolar interaction strength
Uy (3) is given in the second and third column for two different
bilayer distances d. In the fourth column we have Ur (6) (which is
independent of d) for a typical Fermi gas density n ~ 10% cm™2.

agq(agp) Uyp(d = 50 nm) Up(d = 500 nm) Ur
%Dy 1307 0.4 0.04 0.07
KRb 2 x 10° 6.3 0.6 1.1
LiCs 2 x 10° 634.8 63.5 110

introduce the dipolar length a4, [1,3]:2

p? = 34 @)
m
For heteronuclear molecules, a;; can be up to three orders
of magnitude larger than for magnetic atoms. Typical val-
ues of ayy for the highly magnetic atom '**Dy and for the
heteronuclear molecules KRb and LiCs are given in Table 1.
Furthermore, in current experiments, typically d ~ 500 nm;
however, very recently a new superresolution technique which
localizes and arranges dipolar molecules on a sub-50 nm scale
has been implemented [55]. The corresponding values of Uy
that can be achieved for both highly magnetic atoms and
heteronuclear molecules are listed in Table I. Throughout this
work we consider the dipoles to be structureless fermions such
that we do not make a distinction between magnetic atoms or
heteronuclear molecules.
The density n of dipoles in layer 1 is related to the Fermi
momentum kr by

krp = N4mn. (®)]

From this, we can define a many-body dimensionless param-
eter Uy analogous to the dipolar strength Uy:

2Er )
UF = U()kpd = U() E_ =mD kF. (6)
0

This dimensionless interaction strength characterizes the ex-
tent of many-body correlations in the system. As discussed
above, we neglect the intralayer interaction and assume an
ideal Fermi gas in layer 1. Strictly speaking, this requires us
to consider sufficiently small values of Uy such that there are
no ordered phases. Specifically, in the case of perpendicular
orientation of the dipole moments, it has been found that the
translational symmetry is broken for Ur 2 6 towards the ap-
pearances of a stripe phase [28], while Wigner crystallization
can occur for Ur 2 25 [29]. Nevertheless, to comprehensively
characterize bound-state and polaron properties in the pres-
ence of a Fermi gas, we must extend our investigation to
higher-density values. Therefore, to preserve the assumption
of an ideal Fermi gas in layer 1, we implicitly assume that
there is a small but finite temperature that induces the melting

2Note that Refs. [1,3] use a different definition of C,, but the same
definition of agy: Chg™* = 4w CH™ = 4xD? = 127 %2,

033318-3



ANTONIO TIENE et al.

PHYSICAL REVIEW A 109, 033318 (2024)

TABLE II. Values of the dimensionless density parameters
Er/Ey and 1/kpd that can be accessed in experiments on dipolar
Fermi gases with a bilayer distance d and a typical density of the
Fermi gas n ~ 10% cm™

d = 50 nm d = 500 nm
Er/Ey 0.015 1.6
1/krd 5.7 0.56

of the strongly correlated phases without strongly affecting
the impurity physics.

Typically, the density of the 2D Fermi gas in experiments is
n ~ 108 cm~2. This leads to values of U listed in the fourth
column of Table I. We furthermore list typical values for
the dimensionless parameters Er/Ey and 1/krd at different
bilayer separation d in Table II.

III. DIMER STATES

Due to the attractive part of the dipolar interaction, two
dipoles can form an interlayer bound state. In this section, we
discuss the properties of this two-body bound (dimer) state,
generalized to the case where the Fermi gas in layer 1 is inert
and acts to block the occupation below the Fermi momentum
kr. We thus consider a general two-body state with a center-
of-mass momentum Q described by

MQ@) = 3 p@cl el IFS), )

k>kr

where the sum over the relative momenta Kk is restricted by
Pauli blocking, k > kr, while |FS) = Hq<k1- 6;1 |0) describes

the Fermi sea in layer 1, and r]l((Q) is the two-body wave
function. The energies E can then be found by solving the
corresponding Schrédinger equation:

En (Q) = (ex + €g- k)n(Q) + Z V|k7k’|’7|((9), )

K >kp

which can be readily solved by numerical diagonalization.

Before discussing the solution of Eq. (8), it is useful to
classify the dimer states according to their orbital angular-
momentum component. First, if the impurity momentum Q =
0, the system is rotationally symmetric, and angular momen-
tum is a good quantum number. Furthermore, when Er = 0,
the center of mass and relative motion decouple, and therefore
the energy at finite Q is simply related to the energy at Q = 0
via EQ@ = E©@=0 1 02 /4m, allowing us to take advantage of
the rotational symmetry at Q = 0. The presence of the Fermi
sea complicates matters because then the center-of-mass mo-
tion no longer decouples. Thus, for a dimer state where both Q
and E are finite, the system is no longer rotationally invariant
and orbital angular momentum is not conserved.

To proceed, we expand the dimer wave function as a
Fourier series over the orbital angular-momentum basis e/

= il ©)

teZ

Q _ (0 _
M =My =

where ¢ is the angle between k and Q. The dimer Schrédinger
equation (8) now reads

kQ .

ER9 = Qe + €)@ — (i © 459

o0 dk/ k/
+/ ?V(k K, 072 (10)
kg

Here, we have taken the continuum limit ), — f dk'/(2m)?
and decomposed the interlayer potential in the orbital angular-
momentum basis by using the fact that the potential is
diagonal in angular momentum, i.e.,

2 /
dod ) o ~
/ _‘p_(pe—zéwv‘k_k/lel@ ¢ = See'V (k, k/, £), (11)
o 2m2m

where k = (k, ¢) and k' = (K, ¢'). Note that the potential
V(k, k', €) is real.

As expected, Eq. (10) becomes diagonal in £ when Q =
0 since, in this limit, the orbital angular momentum is a
good quantum number. Note also that, because the potential
Vk, k', ¢) is symmetric under the exchange ¢ +— —¢, the
eigenvectors for £ # 0 can either be symmetric or antisym-
metric solutions:

HO 4 5@
- M, —¢
M@ = ——7—< (12)
where n(+ 2 n,({g) , while 7),({5 2 = 0. In terms of these, the

Schrodinger equation reads (¢ > 0)

kQ (0 | -0
Zm( Ke—1 T 1 kz+1)

o0 dk/k/
+/ 5 Vik, K, 0759 (13)
kr T

Efig @ = Qe + Q)i @ —

One can see that the Schrodinger equation (10) now becomes
block diagonal using the symmetric and antisymmetric dimer
wave functions, i e., the equations for ﬁ,((g) and n(+ 2 decouple
from those for 7 n e ~9 the formerl = 0 states being in general
the lowest-energy solutlons

In the following two sections, we first analyze the two-
body limit, i.e., the limit Er — O where there is a single
particle in each of layers 1 and 2, and we study the appearance
of additional bound dimer states when the interlayer dipolar
strength Up increases. Then, in Sec. III B, we consider the
effect of a finite density of fermions in layer 1 and how this
can lead to the dimer spontaneously acquiring a finite center-
of-mass momentum.

3Note that, as mentioned previously, the Schrodinger equation be-
comes diagonal in ¢ when either Q =0 or Ep =0, such that
symmetric and antisymmetric solutions become degenerate.
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E/E,

FIG. 3. Energies of the bound-state dimers at Er = 0 and Q = 0
as a function of the dipolar interaction strength Uj. The energies are
labeled with n¢, where ¢ is the orbital angular momentum (£ = 0
is s wave, £ =1 is p wave, and £ =2 is d wave) and n is the
eigenvalue index, where n > £ + 1. (a) Vertical (gray) lines are the
binding thresholds for the 2p, 2s, and 3d states (see Table III). The
black (dashed) line is the analytical expression (15) for Ej, valid
for Uy > 1. (b) U, dependence of E,; for small values of U, and
comparison with the analytical expression (14) valid for Uy <« 1
[black (dot-dashed)].

A. Vacuum dimer

As explained above, in the absence of a Fermi sea in layer
1, the center-of-mass motion and relative motion decouple.
We therefore solve the two-body problem at Q = 0. The dimer
states can be labeled by the orbital angular momentum ¢ and
the eigenvalue index n (where increasing values of n indicate
larger energies eigenstates), which we assume to be n > £ +
1, in analogy with the 2D hydrogenic atom [51].

We plot in Fig. 3 the energies of the dimer states for
increasing values of Uy, i.e., for either increasing values of
the dipole moments D? or smaller bilayer distances d. As
expected, the 1s state is always bound for Uy # 0, even if it
becomes very shallow when Uy < 1, i.e., the binding energy
goes exponentially to zero. This has been already analyzed by
Ref. [34] and traced back to the fact that the interlayer dipo-
lar potential has a vanishing zero-momentum contribution,

TABLE III. Threshold values of U, for the binding of excited
dimer states.

2p 2s 3d 3p 4f 3s 4d

Uy 9.2 17.8 24.7 35 48 52 59.5

2 @ s
2p ——
1l 2s |
3d

n,,g( r)
N

-1 f f f
®)
3 L 4
aQ
S |
<
=
1 L 4
NPAYS |
0 0.5 1 1.5 2
r/d

FIG. 4. Real-space dimer wave functions in the case of Er = 0,
Eq. (16). We show (a) 1,,(r) and (b) |1,,¢(r)|* for Uy = 30.

in which case one cannot use Landau’s formula for the en-
ergy of the bound state E; x — exp[4m/ f dr V (r)]. Instead,
Ref. [34] found an approximation for the ls energy when
Uy < 1 by employing the Jost function formalism, leading to

—%[l—Ug-ﬁ-UTg %+y—1n2)]
Eiy ~ —Epe % , (14)
U[)—>()
where y is the Euler-Mascheroni constant. For large values of
U, variational calculations [57] show that

30U, 15
E, >~ —Eog|2Uy) —4,/— + —|. 15
s o( 0— 4/ > + 7 ) (15)

We see that these perturbative expressions match well with
our numerical results in the two limits, as shown in Fig. 3.

In addition to the 1s bound state, we find that the interlayer
dipolar potential can bind an increasing number of dimer
states with increasing Uy. The corresponding thresholds are
indicated as gray vertical lines in Fig. 3 and are listed in
Table III. In order of increasing Uy, the sequence of additional
dimer states that eventually bind is 2p, 2s, 3d, 3p, 4f, 3s,
4d, . ... Note that this order can change when we introduce
the effects of Pauli blocking at finite Er, even though the
orbital angular momentum remains a good quantum number
for 0 =0.

For each bound state with energy E,;, < 0, we evaluate in
Fig. 4 the corresponding dimer eigenfunctions in real space,

LkdE oo
() = it / S g, (16)

where J,(x) is the Bessel function of the first kind. We find
that, at small distances r < d, the dimer wave functions can
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be well approximated as

Ms(r) = Apge™" (17a)
M2s(r) = Aase™ " (1 = Boyr), (17b)
N2p(r) = )»zpre_‘“"rz, (17¢)
Maa(r) = hagrie @, (17d)

This is similar to the hydrogenic atom in 2D [51], with the
difference being that the dipolar potential leads to a stronger
confinement to shorter distances than the Coulomb potential,
i.e., the wave functions are concentrated at r < d.

Apart from the two-body bound states, we might wonder
about the scattering properties of the interlayer dipolar poten-
tial (2). In particular, one can show [34] that there is only a
very restricted parameter regime of scattering energies £ <
Ey and values of Uy ~ 1 where the scattering properties of the
dipolar potential recover those of a short-range contact-like
attractive potential. This, as also discussed in Ref. [34], is due
to the fact that for Uy < 1 the potential leads to a very shallow
bound 1s state, while for Uy > 1 there are additional states
becoming bound. We discuss these aspects in Appendix A,
where we explicitly evaluate the scattering phase shift within
the variable-phase method.

B. Finite-Er and finite-Q dimers

Similarly to the case of other attractive interaction po-
tentials, the dimer ground state spontaneously acquires a
finite center-of-mass momentum Q,,;, above a threshold den-
sity of fermions [45,58—60]. Such a dimer state can be
regarded as the extreme imbalance limit of the FFLO phase
in spin-imbalanced superconductors [61,62]. Over the last
few decades there has been significant interest in studying
this inhomogeneous superfluid phase in a variety of physical
systems—see, e.g., recent reviews [63,64]. The possibility of
generating such a phase has already been studied in Ref. [37]
for fermionic dipolar molecules in a bilayer geometry with
a finite imbalance of layer densities. Here, it was found that,
when the imbalance exceeds a critical value, the system under-
goes a transition from a uniform interlayer superfluid phase
to the FFLO phase and that this phase is enhanced by the
long-range character of the interlayer dipolar interaction. In-
deed, it has previously been shown that unscreened Coulomb
interactions significantly stabilizes the FFLO phase [58].

In this section, we consider this problem from the perspec-
tive of the extremely imbalanced limit, with a single particle
in layer 2. We show in Fig. 5 the spontaneous formation of
a dimer state with finite center-of-mass momentum for the
specific case of Uy = 5. In this case, we observe that the 1s
dimer state has a minimum at Q = 0 for Er < 0.46E,. For
larger densities of the Fermi sea in layer 1, the lowest energy
solution is for Q = Qnin # 0, with energy E ©nin) <« F©O=0) jp
which case the orbital angular momentum ceases to be a good
quantum number. For the range of Er studied in this work
(Er < 6E)), we do not observe any unbinding of the finite-Q
dimer state, i.e., we find that the dimer energy remains below
the energy Er of the normal state |[N) = 53,251T<F.1 |ES).

As also commented in Ref. [37], the long-range na-
ture of the dipole-dipole interaction can mix different

0d

EIE,

(i)

L

FIG. 5. Spontaneous appearance of a finite dimer center-of-mass
momentum when increasing the density of fermions in layer 1 for
Uy = 5. (a) Values of the center-of-mass momentum Q,,;, corre-
sponding to the lowest dimer energy. (b) Dimer ground-state energy
for Q = Qmin (purple solid line) and Q = 0 (black solid line). The
dashed line is the energy of the normal state, Er. The (gray) ver-
tical line indicates the threshold for Qp, # 0. (c) Probability (18)
that the dimer lowest eigenstate at Qy,;, contains an orbital angular-
momentum component £.

angular-momentum components of the paired state and thus
enhance the FFLO regime. We evaluate the probability that the
lowest-energy dimer eigenstate contains an orbital angular-
momentum component £ as

PO _ /oo kdk =1+ Q)

2
27 24 .

(18)

r

We plot PZ(Q‘“‘“) as a function of Er in Fig. 5(c). When Q = 0,
the lowest-energy state is 1s because £ is a good quantum
number. However, for Er > 0.46E, where the lowest dimer
state develops a minimum at Qp,;, # 0, the lowest eigenvalue
is characterized by several orbital angular-momentum compo-
nents £. As the transition from Q = 0 to finite Q,, is second
order, the s component (¢ = 0) dominates close to the transi-
tion. For larger values of Er, the dimer state acquires first a
p-wave component (¢ = 1) and, later, a smaller contribution
from the £ = 2, as well as £ > 2 components.
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In the following section, we illustrate how the properties of
the ground and excited states of the two-body bound dimers
affect the polaron properties, including its spectral function.

IV. POLARON

We now analyze the spectral properties of the polaron
formed by the dipolar impurity in layer 2 which is dressed by
particle-hole excitations of the Fermi sea of dipoles in layer 1.
To this end, we employ a variational ansatz [65] describing
a polaron with zero center-of-mass momentum, Q = 0, as
the superposition between the bare impurity weighted by the
variational parameter ¢y and a single particle-hole excitation,
described by ¢yq:

|P3) = (qboég,z +> ¢kqég_mé;léq,1) IFS). (19)

kq

Here, we use a notation where K is the momentum of the
particle states (k > kr) and q of the hole states (¢ < kr). The
polaron state is normalized so that 1 = |¢|* + Y "4 [PKql*-

The variational ansatz in Eq. (19) has previously been
successfully employed to describe the impurity problem in
different contexts, including ultracold atoms [41-45] and
doped semiconductors [47-50]. In the case of contact inter-
actions, truncating the dressing of the Fermi sea to a single
particle-hole excitation has been demonstrated to be an ex-
cellent approximation, with an almost exact cancellation of
higher-order contributions [66].

Previous work on the dipolar case [38] employed a
T -matrix approach to evaluate the lowest attractive polaron
branch energy, but the entire spectrum of excitations and
the important role played by excited dimer states have not
previously been considered. Furthermore, we find that there
are important qualitative differences between the variational
ansatz (19) and the T-matrix approach. This is unlike the case
of a pure contact interaction, where the variational ansatz in
Eq. (19) is completely equivalent to the 7-matrix approach
within a ladder approximation [67]. This highlights the im-
portant role played by the longer-range parts of the dipolar
interaction potential, despite the dipole-dipole interaction for-
mally corresponding to a short-range interaction in the sense
that one can define an asymptotic region and an associated 2D
scattering length [68]. We discuss in Appendix B the precise
relation between the ansatz (19) and the T-matrix approach
employed in Ref. [38].

By minimizing the expectation value (P3|(H — E)|P3) with
respect to the variational parameters ¢ and ¢yq, the polaron
spectral properties can be found by solving the eigenvalue
problem

Edy = Vi-qifiq: (20a)
k.q
Edyq = ExqPrq + Vik-q9o
(20b)

D Viwidwg =
k/

§ :V\q—Q’l(pkq”
q

where Eyxq = € — €q + €q_x and where we have omitted the
terms that are zero because Vo = 0. The polaron spectral

function A(w) can be evaluated as usual from the impurity
Green’s function G(w) [69]:

|¢(Vl)
G@) =2 gwy in’

1
= ——ImG(w).
Vg

(21a)

A(w) (21b)

Similarly to the dimer problem, it is profitable to project
the eigenvalue problem (20) onto an eigenbasis of the orbital
angular momentum. This simplifies the numerical solution
considerably, because we see that the polaron branches are
characterized by a small number of partial waves £. Thus, we
consider the following Fourier series of the dimer-hole wave
functions:

o
Brge = D¢ Prge.

LeZ

The eigenvalue equations (20) now read

kdk qd ~ -
Ego= [ 5 LS Wik g Oy (222)
LeZ

2w 2w

- - kg - -
E¢rye = 2€xdyy — ﬁ(‘%zq + rger1)

/ /

~ k
Vik,qg,?t
+Vik, q )¢o+f b

Vk, K, Oy

'd
- [ 19 5 4., Odge (22b)

2

where we have employed Eq. (11). As for the dimer wave
function, it is convenient to introduce symmetric and antisym-
metric solutions for the exchange ¢ — —£:

st _ Prae £ brg e

() = Tt Tl (23)

7(+) 7 7(=)
Where ¢kqo = ¢ng0 and ¢kq0
eigenvalue equations become

= 0. Restricting to £ > 0, the

kdk gd
Egy = / 1 qZ(z—amvac g. 08, (4a)

T(E) _ 2@ kqg oz (&)
E¢r = 2exdy, — ﬁ(‘l&kqw—u + bigert)

1./

. dk'k
o2 Vk . Od + [ —
T

Vk K. O

- [ Evaq. o6 (24b)

We thus find that the equations for symmetric and anti-
symmetric dimer-hole wave functions decouple. Most impor-
tantly, the impurity wave function ¢y only couples to the
symmetric dimer-hole wave function &;?. Thus, the antisym-
metric solutions will lead to additional eigenvalues for the
polaron problem but these will all have zero spectral weight.
As such, we can halve the degrees of freedom in the problem
by neglecting the antisymmetric sector.
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0 0.5 1 1.5 2 2.5 pulsive polaron recovers the energy of the bare impurity at

FIG. 6. Polaron spectral properties for Uy = 5. (a) Spectral func-
tion A(w) as a function of Er and energy. The (black) dashed and
dotted lines are the boundaries of the dimer-hole continuum (see
text). The broadening has been fixed to n = 0.05E,. (b) Evolution of
the polaron spectral weights Z as a function of Ey for the attractive
(A) 1s branch, its continuum (C), and the repulsive (R) branch.

By discretizing the eigenvalue equations on a Gauss-
Legendre grid in k € (kp, 00) and g € (0, kr) and including a
finite number of values £, we numerically diagonalize Eq. (24)
to find eigenvalues and eigenvectors and thus evaluate the
polaron spectral function according to Eq. (21). We have
checked that all our results are numerically converged with
respect to the number of points in the momentum grids as
well as in the number of £ values. It is interesting to note that
when w < 0 we need only very few, around four, values of £ to
obtain converged results in the considered parameter regime,
while to describe the scattering states we find that nine values
of ¢ are sufficient.

A. Spectral properties

We now analyze the properties of the polaron spectral func-
tion for increasing values of Uy. We see that there are strong
qualitative differences between the spectra, which originate
from the different numbers and types of dimer bound states.
We now go through these in detail.

Let us first discuss the case Uy =5, corresponding to
Fig. 6, for which only the ls two-body dimer state is bound
(see Fig. 3). The spectrum in Fig. 6(a) is characterized by
two polaron branches and a continuum of states. For w < 0,
the attractive polaron branch recovers the energy of the ls
dimer state in the limit Er — 0, and we thus label it as
the ls attractive branch. This resonance is well separated
from the continuum, and its energy coincides with the lowest
energy-eigenvalue of Eq. (24). The polaron spectrum also
exhibits another resonance at w > 0, the repulsive polaron,
which corresponds to a continuum of states rather than being

rest, w = 0, while it blueshifts when Er increases. Simultane-
ously, it broadens and loses spectral weight. In between the at-
tractive and repulsive branches is a continuum of states where
the hole in the @;71(,26:(,16(1,1 complex of the polaron state (19)
is unbound, while the dimer is bound. The energy of such a
state is that of a dimer with center-of-mass momentum ¢ and a
hole at momentum ¢, and hence the boundaries of this dimer-
hole continuum are E©“=9 and E@=kr) — E respectively,
where the energy is computed using Eq. (12).* Both energies
recover Ej; when Er — (0, as expected.

A distinctive feature of the spectrum in Fig. 6(a) is that
the 1s attractive branch blueshifts (increases its energy) as we
increase Er. This is in contrast with the case of contact in-
teractions [43,44] where the attractive branch always redshifts
(lowers its energy) with increasing Er. The origin of this qual-
itatively new feature is that the dipole-dipole scattering can be
significant at low momenta [see Fig. 2(b)] and therefore the
hole scattering can be strongly enhanced relative to particle
scattering despite the reduced phase space. As also discussed
in Appendix B, we can specifically trace the difference to the
term — 3 Vig—q/|#kq in Eq. (20), which is not present in the
previous 7'-matrix treatment of the dipolar polaron problem
[38]. This term is negligible for Uy < 2, in which case the 1s
attractive branch redshifts when Ef increases, but it becomes
important for larger values of Uy. The change from redshift to
blueshift with increasing Uy is shown in Fig. 7, where we plot
the evolution with Er of the energy of the 1s attractive branch
measured from the vacuum dimer energy E|;.

Figure 6(b) shows the spectral weight Z for each of the
branches, which is defined as the area of the spectral function
under the corresponding peak. Because the eigenvectors of the
polaron problem form a complete basis, the spectral function
satisfies the sum rule [ dwA(w) =1, and thus the total

“Note that we only plot the dimer energy at finite center of mass
E@=*) corresponding to the symmetric states under the exchange
£ +— —£ in Eq. (12) since these are the only ones with finite spectral
weight. Instead, for zero center-of-mass momentum, the symmetric
and antisymmetric solutions are degenerate in energy.
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FIG. 8. Polaron spectral properties for Uy = 15. (a) Dipolar
Fermi polaron spectrum as a function of Er and energy. The (black)
dashed and dotted lines are the boundaries of the 1s and 2p dimer-
hole continua (see text). The broadening has been fixed to n =
0.05E). (b) Evolution of the polaron spectral weights Z as a function
of Er for the attractive (A) 1s and 2p branches, their continua (C),
and the polaron repulsive (R) branch. The vertical gray line indicates
when the A 2p branch enters into the continuum at w = 0.

spectral weight is always one for all interaction strengths and
densities. When Er = 0, the spectral weight belongs entirely
to the repulsive polaron branch, which coincides with the
noninteracting impurity. When Ep increases, we see that Z
is transferred mostly to the attractive branch, first linearly and
then sublinearly. Only a small part of the spectral weight is
transferred to the dimer-hole continuum.

In Fig. 8 we show the case of stronger interactions Uy = 15
at which also the dimer state 2p is bound (see Fig. 3). Now,
the impurity spectrum changes qualitatively from the previ-
ous case because there are two attractive polaron branches:
when Ep — 0, one recovers, as before, the energy of the
1s dimer state, Ei;, while the second branch recovers the
energy of the 2p dimer state, E,,. Here, we label the attractive
polaron resonances by ls and 2p even though their orbital
angular-momentum components evolve with Er and change
in character (see below). Both attractive resonances have an
associated dimer-hole continuum: as before, the boundaries
of these are the energies of the dimer states E@=" and
E@=kr) _ Er 5 While the 1s dimer-hole continuum is higher
in energy than the ls attractive branch, we find that this is
not necessarily the case for the 2p branch, which for Er 2 Ej
clearly appears above its dimer-hole continuum (for Er < Ej,
the spectral weight is very small and it is difficult to distin-
guish it from its dimer-hole continuum). Both the 2p attractive

SNote that only for the 1s state do we always have E“=*) — E, <
E@=0

branch and the continuum blueshift in energy for increasing
Er and, eventually, move into the continuum of the ¢ =0
dimer state at w = 0.

Figure 8(a) also shows how the spectral weight of the
repulsive branch is predominantly transferred to the s-wave-
like attractive branch and how, compared with the case of
Uy =5 in Fig. 6, the spectral weight is transferred more
slowly because the 1s state is deeper bound. As a result, the
repulsive branch remains brighter and broadens more slowly
for increasing Er than in the previous case. This is further an-
alyzed in Fig. 8(b), where we see that the 1s attractive branch
spectral weight grows linearly with Er for small Er, while
the 2p attractive branch spectral weight grows sublinearly and
remains very small. Note that, with increasing density, the 2p
attractive branch enters the continuum (vertical gray line in
Fig. 8), in which case the criterion that we employ to eval-
uate the spectral weight of both the attractive and repulsive
branches becomes inapplicable due to the rapid broadening of
both modes. In Fig. 8(b), we thus stop plotting their spectral
weights at this point.

To gain further insight into the angular-momentum
structure of the polarons, we can evaluate the probability that
the hole in a given dimer-hole eigenstate n has an orbital
angular-momentum component ¢ [49]:

1 kdk gqdq, - 2
P = / — e 25
C =gl 27 2m 914" )

Because only the symmetric 4 states (23) have a finite spectral
weight, the probability satisfies P") = P{". Furthermore, the

probability is normalized such that } -, PZ(") = 1. In Fig. 9,
we plot the polaron spectral function for Uy = 15 for different
values of Ef together with the probability PZ(”) for =0,1,2
as a function of @ (with the dots corresponding to discrete
eigenvalues). One can clearly see that, for Ep < E, the
eigenvalues n corresponding to the ls attractive branch
and its continuum are predominantly s wave, i.e., Pé”) ~ 1,

while Péi)o ~ 0, and the eigenvalues n corresponding to the 2p
attractive branch and its continuum are predominantly p wave,
ie., Pl(") ~~ 1, while PK(;',Z1 ~ (0. However, for larger values of
Ep, there is an evolution of these probabilities, where the 1s
branch acquires a p-wave component, while the 2p branch
acquires both s- and d-wave components. As far as the dimer-
hole continuum is concerned, as already discussed in Sec. III,
the dimer state at zero center of mass corresponds to a single
value of the orbital angular momentum £. This can be clearly
seen in Fig. 9, where we recognize the energies of the dimer at
zero center of mass E 9= limiting the dimer-hole continua, as
those having P} = 1, with either £ = 0 or £ = 1. However, for
the other boundary of the dimer-hole continua, E“=*) — Ej,
the dimer state at finite center-of-mass momentum is generally
not an eigenstate of the orbital angular momentum and
involves a mixture of £ values that evolve with EF.

In Fig. 10 we plot the spectrum for strong dipolar inter-
actions, Uy = 24, for which also the 2s dimer state becomes
bound. Here, the repulsive branch very quickly transfers
its spectral weight to the nearby 2s attractive branch—see
Fig. 10(b). The behavior of the 2p attractive branch is very
similar to the case Uy = 15 analyzed previously. On the other
hand, the 1s attractive branch now becomes deeply bound and,
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FIG. 9. Polaron spectral function as a function of energy for three
different values of the Fermi energy Er and for Uy = 15. Symbols
(values on the right y axis) are the probabilities Pz(") that the dimer
polaron component has a value of the orbital angular momentum
equal to £ = 0, 1, 2 for a given eigenvalue n (24).

differently from before, it is the associated dimer-hole con-
tinuum that gains spectral weight first, with the 1s attractive
branch only overcoming the spectral weight of the dimer-hole
continuum for Er 2 Ej.

The strong distinction between the growth rate of the ls
state in the presence and absence of the 2s state leads us
to define the spectral weight growth rate at small Er, o =
dZ/d(Er /Ey)|g.=0. We show the results for the 1s and 2s
attractive branches in Fig. 11 as a function of Uy. While
for Uy < 17.8, the 1s attractive branch spectral weight grows
linearly with Er, when the 2s attractive branch appears for
Uy > 17.8, the 1s attractive branch spectral weight grows sub-
linearly and it is instead the spectral weight of its continuum
that grows linearly with Ef.

In Fig. 12, we plot the evolution of the probability Pe(")
defined in Eq. (25) as a function of Er for those eigenvalues
n that correspond to the ls, 2p, and 2s attractive branches,
for the three different values of Uy that correspond to Figs. 6,
8, and 10, respectively. We see that the 1s attractive branch
orbital character is predominantly s wave at low density, as
expected, before becoming more p wave with increasing Er.
However, for the attractive 2p branch, even though the p-
wave character dominates over the entire Er interval studied,
there is an exchange with both s- and d-wave components

o/E,

FIG. 10. Polaron spectral properties for Uy = 24. (a) Dipolar
Fermi polaron spectrum as a function of Er and energy. The (black)
dashed and dotted lines are the boundaries of the 1s, 2p, and 2s
dimer-hole continua (see text). The broadening has been fixed to
n = 0.05E,. (b) Evolution of the polaron spectral weights Z as a
function of E for the attractive (A) s, 2p, and 2s branches, their
continua (C), and the polaron repulsive (R) branch. The vertical gray
line indicates when the A 2s branch enters into the continuum at
w=0.

when Er increases. Finally, the 2s attractive branch quickly
loses its s-wave character towards both the p- and d-wave
components, before merging with the continuum at » > 0.
We can in general see that, as Uy increases, the exchange of
angular-momentum components is slower due to the attractive
branches moving further apart in energy.

Finally, we note that an alternative way of presenting the
polaron spectral properties is one where energy scales are
rescaled by Er and length scales by 1/kp. In this case, we fix

FIG. 11. Growth rate of the spectral weight at small densities
o =dZ/d(Er/Ey)g.=o of the 1s and 2s attractive (A) branches and
of the 1s continuum (C) as a function of the dipolar interaction
strength Uy. The (gray) vertical lines indicates the binding threshold
for the 2s state Uy, >~ 17.8 (see Fig. 3).
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ER/E,

FIG. 12. Probability Pl(") that the dimer polaron component has a
value of the orbital angular momentum equal to £ = 0, 1, 2 for those
eigenvalue indices n corresponding to the attractive (a) 1s, (b) 2p,
and (c) 2s branches. The vertical (gray) line in panel (b) indicates
when the A 2p branch enters the continuum for Uy = 15 (see Fig. 8),
and the one in panel (c) when the A 2s branch enters the continuum
for Uy = 24 (see Fig. 10).

the dipolar interaction parameter Uy (6) and study the polaron
spectrum by varying an additional dimensionless parameter,
such as Ey/Er or 1/kpd:

1 |[E U
krd ~ \ 2Er — Urp’

We plot in Fig. 13 the impurity spectral function obtained
by fixing Ur and increasing 1/kpd. In the units previously
employed, this corresponds to simultaneously increasing Uy
and decreasing Er/Ej, which we see leads to the binding of
an increasing number of dimer states. As shown in Fig. 13(a),
the branches with stronger spectral weight are those asso-
ciated with the s-wave dimer states. In Figs. 13(b)-13(d)
we plot the spectral function at a fixed value of energy
w < 0 as a function of 1/kpd. As a color map, we plot the
fraction of the spectral function with angular momentum ¢,
defined as the ratio between the angular-momentum weighted

0 05 1 15 2 25 3 35
Vkyd

FIG. 13. Polaron spectral properties for Uy = 15+/2. (a) Dipolar
Fermi polaron spectrum as a function of 1/krd and energy. The
(black) dotted lines are the dimer energies at zero momentum, E@=%),
from the 1s state up to the 4d one—unbinding of the zero-momentum
dimer occurs at w = 2EF (horizontal dotted line). The broadening
has been fixed to n = 0.05 x 2Er. Panels (b)—(d) are the spectral
functions at w = —40 x 2Er as a function of 1/krd and the color
maps are the fractions of the spectral function with angular momen-
tum £, Ay(w)/A(w) (26) for £ =0, 1, 2.

spectral function:

2
1 P"|¢5"
Ay(w) = —;Im[z o E0 i | (26)

n

and A(w)—note that 2420 Ay(w) = A(w). This allows us to
identify the dominant orbital angular-momentum component
£ of each attractive branch, which we see is strongly corre-
lated with the angular momentum of the corresponding bound
dimer state.

Making use of these units, we compare in Fig. 14 the
results for the energy of the ls attractive branch obtained
within the polaron ansatz (19) with those obtained in Ref. [39]
by quantum Monte Carlo (QMC) methods for different values
of Up. For Ur = 0.5, there is excellent agreement between
the two theories for any value of krd, suggesting that, within
this regime, disregarding intralayer interactions is a reliable
approximation. For larger values of Up, perfect agreement
is observed only at small kpd values, where the polaron
energy closely matches that of the vacuum dimer state. For
increasing krd values, where layer 1 approaches the transition
to a broken-symmetry phase [28,29], we find that deviations
increase, although the qualitative behavior remains similar.
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FIG. 14. Energy of the s attractive branch evaluated as a func-
tion of krd for different values of U (solid lines). We compare our
results with those obtained in Ref. [39] by QMC methods (symbols)
and with the energy of the vacuum dimer state E;, (dotted lines).

V. TUNNELING RATE AND IMPURITY
SPECTRAL FUNCTION

We now discuss how one can experimentally probe the
spectral function. Our proposal is inspired by radio-frequency
spectroscopy [70], where one can inject (eject) the impurity by
driving transitions from (to) an auxiliary hyperfine state that,
in the ideal case, does not interact with the medium. Similarly,
we suggest to use an auxiliary layer (o = 3) that the impurity
can tunnel into or from—see Fig. 15. We furthermore assume
that interactions between the dipolar particles can occur only
between layers 1 and 2, while tunneling can only occur be-
tween layers 2 and 3. This situation can, e.g., be achieved if
a potential barrier is present between layers 1 and 2, while
layer 3 is further away from both layers. We also note that, in
practice, a small 1-3 interaction can be taken into account by
considering the initial state to be a weakly dressed attractive
polaron, similarly to what is routinely done in the case of rf
spectroscopy for contact interactions, see, e.g., Ref. [71].

We thus have to extend the Hamiltonian (1) to include two
additional terms, H; and H,, that describe, respectively, the
kinetic energy of the particles in layer 3, and the tunneling
between layers 2 and 3:

Hy =) (e + M)y 3805 (272)
k
B, =1) &6, +He (27b)

k

Note that in the kinetic term A3 we have included a “detuning”
energy A, which represents the difference between the energy
minima of the confining potentials in the z direction.

The additional terms in the Hamiltonian exactly match
those used in radio-frequency spectroscopy on impurities
[72], where A plays the role of the radio-frequency detuning,
and ¢ the role of the Rabi coupling. Therefore, this auxiliary
layer provides access to the spectral properties. To be specific,
within linear response the tunneling rate can be evaluated
using Fermi’s golden rule between an initial state consisting

FIG. 15. Illustration of how the impurity spectral function can
be probed via tunneling from an auxiliary distant layer o = 3 to the
impurity layer ¢ = 2. Tunneling is suppressed between layers 1 and
2 by a barrier (blue filled region).

of one particle in layer 3 plus a Fermi sea of dipoles in layer
1, 6373|FS), while the final state is the polaron state |P;) (19).
This gives

C3oa(A) = 2102 Y |(P 65, IES) "8(A — E™)

1
= 27t>—ImG(A) = 2nt*A(A). (28)
T

Thus, measuring the tunneling rate as a function of the energy
difference A between the two lowest eigenenergies of the
z-confining lattice potentials is equivalent to measuring the
polaron spectral function A(w) (21b) evaluated in this work.

VI. CONCLUSIONS AND PERSPECTIVES

In this work we have studied a gas of dipolar fermions in
a bilayer geometry in the limit of extreme imbalance, i.e.,
a single dipole in one layer interacting with a Fermi sea of
dipoles in a different layer. We analyze two different yet
connected solutions of this problem. We first investigate the
properties of the interlayer dimer bound state, generalized to
include the Pauli blocking effect from the inert Fermi sea.
We find a series of bound states, characterized by the orbital
angular momentum and the principal quantum number, bind-
ing for increasing dipolar interaction strength or decreasing
bilayer distance. For the dimer ground state, we determine the
spontaneous emergence of a finite center-of-mass momentum
when increasing Er above a threshold value. The finite mo-
mentum dimer corresponds to the large imbalance limit of the
FFLO state studied in Ref. [37]. We find that this state has
a mixed partial-wave character, including s-, p-, and d-wave
contributions.

The other solution we analyze is the many-body polaron
state, where the presence of the impurity in one layer leads
to particle-hole excitations of the Fermi sea in the other
layer. We derive the polaron spectral properties by employ-
ing a single particle-hole variational ansatz, and we propose
that the tunneling rate of the impurity from an additional
auxiliary layer can be employed to experimentally access the
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spectrum. We find that the polaron spectrum is characterized
by a series of attractive polaron branches which we trace
back to the dimer bound states. At small Er, the polaron
energies and their orbital character recover those of the dimer
states. However, both energies and orbital angular-momentum
components evolve and interchange with Er. We find that the
energy of the ground-state 1s polaron branch evolves with Ep
in a qualitative different way depending on the value of Uy. We
explain this distinctive property of finite-range dipole-dipole
interactions in terms of whether hole scattering is negligible
or not in the polaron formation. We characterize the transfer
of oscillator strength from the repulsive branch to the series
of attractive branches in terms of their partial-wave character
and their distance in energy from the repulsive branch.

In our model, we neglect the repulsive interactions between
particles in the Fermi sea. As such, we neglect the possibil-
ity of strong intralayer correlations that could lead, at very
low temperatures, to the spontaneous appearance of density
modulated phases such as stripes [28] and Wigner crystals
[29], which are predicted to occur for either strong enough
dipolar interactions or large enough Fermi densities. While
beyond the scope of our study, an exciting perspective of
our work is the generalization of the polaron formalism to
include the possibility of the impurity interacting with such
strongly correlated phases [39], which could potentially leave
signatures in the polaron spectral response. Indeed, this would
mirror very recent experiments on exciton polarons in doped
2D semiconductor monolayers which have probed strongly
correlated states of 2D electron gases, such as Wigner crystals
[73,74], fractional quantum Hall states in proximal graphene
layers [75] and correlated-Mott states of electrons in a moiré
superlattice [76].

Another interesting perspective of our work would involve
considering a configuration where the alignment of the dipoles
is tilted at a slight angle relative to the normal direction. In this
case, the anisotropy induced by the dipole-dipole interaction
results in a distorted Fermi surface [25,26], consequently in-
fluencing the properties of the Fermi polaron and giving rise to
spatial anisotropies, as illustrated in a three-dimensional setup
by Ref. [77]. Indeed, deformations of the Fermi surface have
already been experimentally observed in a three-dimensional
degenerate dipolar Fermi gas composed of Er atoms [78].
Furthermore, a tilted configuration is expected to stabilize the
FFLO state (see, e.g., Ref. [79]) since it breaks the continuous
rotational symmetry and thus suppresses the pairing fluctua-
tions that destroy FFLO long-range order [80].

The research data underpinning this publication can be
accessed through Ref. [81].
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APPENDIX A: SCATTERING PHASE SHIFT

In this Appendix we evaluate the s-wave energy-dependent
scattering phase shift 8y(k), where E = k?/2uu = k?/m, with
= m/2 being the reduced mass. We use the variable-phase
method [82] which allows us to evaluate the phase shift pro-
duced by a potential that vanishes for all » > R, i.e., we define
Vr(r) = V(r)®(R — r). In this sense, the phase shift §,(R)
can be viewed as the accumulated phase shift at position R
in the true potential V (r). In 2D, §,(R) satisfies the following
first-order, nonlinear differential equation [83]:

ds,(R) _

b4
1R — EZ,U,V(R)R[Jg (kR)cos é,(R)

— Yo (kR) sin 8, (R)]?, (A1)

with boundary condition §,(0) = 0. In this expression, Jy(x)
and Y,(x) are Bessel functions of the first and second kinds,
respectively (the latter are also called Neumann functions),
and ¢ is again the orbital angular momentum. Thus, for s
wave, £ = 0. Finally, the scattering phase shift in the true
potential V (r) is given by the limit 8,(k) = limg_ o 8¢(R),
and it is a function of the scattering energy through the
momentum k in Eq. (A1).

The scattering phase shift for the interlayer dipolar poten-
tial (2a) has been previously evaluated in Ref. [34], where the
following approximate analytical expression for the s-wave
scattering phase shift was obtained for small values of Up:

—515(k) — ”TZ[IJJJY (k) — Ly (k)]
1= 3Ly (k) = % [Lyyy () = 35, (0]
where J — Jy(x), Y — Yy(x), and

tan &g (k) =~

(A2)

Irg(k) = /OO drrV (r)F (kr)G(kr),
0

Irgpo(k) = /OO drrV (r)F (kr)G(kr)
0

oo
X / ds sV (s)P(ks)Q(ks).
Using Eq. (14), a small-k expansion of this expression allows

us to recover the universal low-energy expression of the phase
shift for a short-range potential with a dimer state with binding

energy |Eyl:
1 k)2
cotao(k)=—1n< / “)
T

|Eqs] (A9
We note that this is the true phase shift for a contact potential;
however other potentials will generally have corrections of
O(K*) [84].

In Fig. 16 we compare the numerical results for the scat-
tering phase shift obtained by solving Eq. (Al) with the
approximation (A2) derived in Ref. [34] and the universal
low-energy expression in Eq. (A3). While we see that Eq. (A2)
is a good approximation for values of Uy < 2, the phase shift
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T ing implicit equation for the 7" matrix:
(A — fq+p )Vip—p| Tqp (E)
1} — Tap(E) =V, + )~ B RRLS (B
& " t€q — & — Equip
< s e e TP Ny . Do e
% U=02 Here, fx is the Fermi-Dirac distribution, i.e., at zero temper-
“ 0.1 U0=0. 6 - ature fi = O(kr — k), and E + €4 is the initial energy of the
//_ U0=1 .O scattering process.
0 . . . .
777777777777777777 Ui=2.0 | Starting from the 7' matrix, one can evaluate the entire
0.01 g polaron spectrum by evaluating the impurity Green’s function
0 02 0.4 06 0.8 | in terms of the self-energy—see Fig. 17(b):

kd

FIG. 16. Phase shift §y(k) as a function of momentum for
different values of U,. Numerical solutions obtained with the
variable-phase method (solid) are compared with the analytical ex-
pression (A2) derived in Ref. [34] (symbols) and the universal
low-energy expression (A3) (dashed).

for a contact potential is a good approximation only when
kd < 1and Uy ~ 1. For Uy < 0.6, as also argued by Ref. [34],
the blndlng energy of the 1s state becomes anomalously small
and thus the expression (A3) cannot, in practice, be consid-
ered the leading term for the low-energy scattering. However,
when Uy 2 2, both approximations become increasingly inac-
curate since then there are other dimer states that are close to
becoming bound.

APPENDIX B: RELATION BETWEEN T-MATRIX
APPROACH AND THE VARIATIONAL ANSATZ

We now discuss the relationship between the T-matrix
approach used to obtain the lowest energy attractive polaron
branch in Ref. [38] and the variational ansatz (19) that we
employ in this work.

For a finite-range scattering potential V;,, the T matrix
describes the scattering between an incoming impurity with
momentum Q and a bath fermion with momentum q which
are exchanging a momentum p. By using a diagrammatic
expansion within the ladder approximation [see Fig. 17(a)],
all terms can be resummed to give an implicit equation for
the 7 matrix. Considering, for simplicity, the case of an
impurity with zero momentum Q = 0, one obtains the follow-

@ q a+p q+p
F bath . .
N T = p + AP AP-P+
impurity
Q Q-p Q-p
(b)
q
I(E,Q) = T
Q Q

FIG. 17. (a) Ladder diagrams for the 7" matrix describing the
scattering between an impurity with momentum Q and a particle of
the bath with momentum q, which are exchanging a momentum p.
(b) Impurity self-energy in terms of the 7 matrix.

_
w— ()’

= Z fq7:1,p=0(0) +in).
q

G(w) = (B2a)

X(w) (B2b)

The spectral function is then obtained from the Green’s func-
tion as in Eq. (21b).

The T matrix can also be obtained directly from the po-
laron eigenvalue equations (20). Defining

o
Skq(E) = (E — E‘kq)ﬂ7 (B3)
b0
Eq. (20b) becomes
S/ E
k/
Si (E)
- qu lq— q’\Ekq Eig (B4)

If one neglects the last term, this equation coincides with
Eq. (B1) by changing variable k' = q + p’ and redefining

Sqrwa(E) = Top (E). (BS)

The last term in Eq. (B4) describes the scattering of the
impurity with a hole of the fermionic bath and corresponds
to the — Zq, Viq—q'|9kq term in the polaron eigenvalue equa-
tions (20). For a contact-interaction potential, the terms
- qu Via—q1%Kq can be safely neglected [65] because the
phase space for hole scattering is small. However, this is not
always true for a longer-range potential such as the interlayer
dipolar potential.

To show this, we plot in Fig. 18 the lowest polaron en-
ergy as well as the entire polaron spectrum, comparing the
results of three methods: (i) by solving the polaron eigenvalue
problem (20), (ii) by neglecting the term — qu Viq—q'|Pxq
in Eq. (20), and (iii) by numerically solving the 7 -matrix
equation (B1) (see below). Methods (ii) and (iii) give ex-
actly the same results, as they should. However, there is a
non-negligible shift compared with the results obtained with
method (i) if either Ef is large, Er > Ey, or if Uy > 1. This
coincides with the regime where the interlayer dipolar poten-
tial gives a very different scattering phase shift to that of the
contact potential—see Appendix A. In particular, the solution
of the full problem without neglecting the — Zq, Via—q1Pxq’
term is always blueshifted in energy compared with the case
where one neglects the scattering of the impurity with the
holes in the Fermi sea. This shift increases both as a function
of Uy and Ep. If Uy is large, Uy > 1, as in Fig. 18, then
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: (@) Uy=5 full variational ansatz
reduced variational ansatz
- reduced T-matrix
=
=z 2 F
S

E \J/Ey

o/E

FIG. 18. Polaron properties evaluated in three different ways:
(1) by solving the polaron eigenvalue problem (20) (full variational
ansatz), (2) by neglecting the — qu Vig—q1%xq term describing the
scattering with holes (reduced variational ansatz), and (3) by solving
the T-matrix equation (B1) by inversion. (a), (b) Energy of the
polaron 1s attractive branch for (a) Uy = 5 as a function of Er and
(b) Er = E; as a function of Uy. (c) Entire polaron spectrum as a
function of w for Er = Ej and U, = 5.

the overall redshift of the ls attractive polaron branch as a
function of Er can be changed into a blueshift.

To numerically solve for the 7' matrix, we can assume that
it depends only on a single angle, the one between q and p (s-
wave ansatz), so that the implicit equation (B1) can be easily
solved by direct inversion. If we define vector indices by i =
(p,p)and i’ = (p/, ¢’), the T matrix becomes

TAE. ) =Y (I -K(E, 9)l;' Ve,

where V; = V), and the matrix kernel is

dp'p’de’ (1 — fqip)Vip-pi

Kir(E, q) = — .
i) = o E +€q — €y — €qip

Similarly, Eq. (B4) can also be solved by inversion, with
the difference that now the vector space has a larger dimen-
sion. If we define the vector index as i = (k, g, ¢), where ¢
is the angle between k and ¢, and if we use the notation
k,k' > kp and ¢, g’ < kp, we find that the T matrix Sgq(E)
can be evaluated as

S{(E) = [T — K(E) + W(E)];' Vs,

i’

(B6)

where V; = V|x_q|, and where the two kernels are

~ dk'k’ ng/ , , V\k—k’|
Ki(E) = —— 8(g — q)——,
(E) = — =5 -dq(q q)E—Equ

~ dq'q d¢' Via—a’
Wi (E) = SLL 98 sk — k)y—19=91_
2r 2w E — Exg

The variational ansatz thus allows repeated impurity-hole
scattering, unlike the 7-matrix formulation. Note that this
is qualitatively different from screening effects such as the
Gork’ov-Melik-Barkhudarov particle-hole screening of the
particle-particle correlations responsible for superfluidity in
the BCS-BEC crossover [85]. In particular, an additional ex-
citation would be required to screen the interactions between
the impurity and a fermion from the medium. This would be
an interesting future direction of research but is beyond the
scope of the current work.
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