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Systems of interacting bosons in double-well potentials, modeled by two-site Bose-Hubbard models, are of
significant theoretical and experimental interest and attracted intensive studies in contexts ranging from many-
body physics and quantum dynamics to the onset of quantum chaos. In this work we systematically study a kicked
two-site Bose-Hubbard model (Bose-Hubbard dimer) with the on-site potential difference being periodically
modulated. Our model can be equivalently represented as a kicked Lipkin-Meshkov-Glick model and thus
displays different dynamical behaviors from the kicked-top model. By analyzing spectral statistics of Floquet
operator, we unveil that the system undergoes a transition from regularity to chaos with increasing the interaction
strength. Then based on semiclassical approximation and the analysis of Rényi entropy of coherent states in the
basis of Floquet operator eigenstates, we reveal the local chaotic features of our model, which indicate the
existence of integrable islands even in the deep chaotic regime. The semiclassical analysis also suggests that the
system in chaotic regime may display different dynamical behavior depending on the choice of initial states.
Finally, we demonstrate that dynamical signatures of chaos can be manifested by studying dynamical evolution
of local operators and out-of-time-order correlation function as well as the entanglement entropy. Our numerical
results exhibit the richness of dynamics of the kicked Bose-Hubbard dimer in both regular and chaotic regimes
as the initial states are chosen as coherent spin states located in different locations of phase space.
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I. INTRODUCTION

The two-mode or two-site Bose-Hubbard model is a
prototype model to study many fundamental quantum dynam-
ical phenomena, including the Landau-Zenner physics [1–3],
Josephson effect [4,5], self trapping [6–8], and quantum chaos
[9–13]. A Bose gas trapped in a double-well potential or mod-
ulated optical lattice can be effectively described by a two-site
Bose-Hubbard model (Bose-Hubbard dimer) [14–18]. With
the experimental progress in cold atoms, the cold atomic
system has become an ideal platform for exploring these
intriguing dynamical phenomena [19–22]. As a minimum
model for studying many-body dynamics, the Bose-Hubbard
dimer has attracted intensive studies in the past years [15–18].
Although exhibiting rich dynamical phenomena [23], it is
known that the Bose-Hubbard dimer is integrable [17,18]
and thus does not support chaotic dynamics. Nevertheless,
chaotic dynamical behavior can occur when the tunneling
amplitude is periodically modulated [10,11]. If the periodical
modulation of tunneling is applied in pulse, the model can
be effectively described by a kicked-top model, which is one
of paradigmatic models widely used to understand quantum
chaos [24–35].

While the classical chaos is well defined as the exponential
sensitivity to the initial condition, the canonical definition of
quantum chaos is still on debate due to the unitary property
of quantum dynamics, especially for the quantum systems

*These authors contributed equally to this work.
†schen@iphy.ac.cn

without classical correspondence [36–38]. A traditional ap-
proach to define and diagnose quantum chaos, originated from
the Bohigas-Giannoni-Schmit conjecture [39], is level spacing
statistics. It allows us to identify a given quantum system as
chaotic system when its level spacing statistics closely match
the theoretical predictions derived from random matrix theory
(RMT) [39–44]. Besides the spectral statistics, the statistics
of eigenvectors also provide useful signatures for detecting
quantum chaos [34,35,44–48]. In recent decades, inspired by
the huge progress in the quantum experimental techniques
and the theory of quantum information, the quantum chaos
attracted much renewed attention from many different views,
including the development of new tools for detecting quantum
chaos and the application of quantum chaos to the forefront
of research. Important diagnostic tools include the entangle-
ment [27–29,49–54] and the out-of-time-ordered correlator
(OTOC) [55–57], which provide alternative ways to pursue
signatures of chaos from the dynamics of quantum informa-
tion. Recent studies on various systems of interest have proven
the OTOC to be a useful tool for studying quantum chaos
and thermalization in quantum systems [55–65]. Although the
exponential growth of OTOCs, or fast scrambling of quantum
correlations, on short timescale is commonly considered as an
indicator of chaos in many quantum systems [61–63], recent
studies unveil the existence some counterexamples, which
exhibit exponential growth of OTOCs resulting from unstable
fixed points [54,66–71]. While the OTOCs in the periodically
modulated Bose-Hubbard dimer are found to display obvi-
ously distinct behaviors in the chaotic and regular regimes
[31], scrambling dynamical behaviors around the saddle point
of Bose-Hubbard dimers are also studied in Ref. [70,71].
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In this work, we study a generalized model of the kicked
Bose-Hubbard dimer with the on-site potential difference
being modulated periodically and explore the signatures of
chaos by analyzing the spectrum and eigenvector statistics of
the Floquet operator and the dynamical behaviors of OTOC
and entanglement entropy. While the spectral statistics of
Floquet operator indicates the existence of transition from
regularity to chaos with increasing the interaction strength,
the analysis of Rényi entropy of coherent states in the basis
of Floquet operator eigenstates reveals distribution features in
phase space, resembling the semiclassical Poincaré section.
Insights from the semiclassical correspondence imply that
our system displays fruitful dynamical phenomena in various
parameter regimes with different initial states, which are wit-
nessed by observing dynamical behaviors of local operators,
OTOC, and entanglement entropy. We note that our model can
not be reduced to the kicked-top model, which can be realized
by modulating the tunneling or the interaction strength of
the kicked Bose-Hubbard dimer, and thus displays different
dynamics from the previous studied models [24–35].

The remainder of the paper is structured as follows. In
Sec. II, we introduce the model. In Sec. III, we use the spectral
statistics of Floquet unitary operator to show transitions from
regular dynamics to quantum chaos at different parameters.
In Sec. IV, we first present the Husimi distribution function
of Floquet eigenstates. Based on the semiclassical approxi-
mation, we give the Poincaré section of systems. Then we
study the phase space localization measure by means of mul-
tifractality dimensions of coherent state. Based on knowledge
in previous sections, we study the quantum dynamics with
typical initial states in Sec. V. In Sec. VI, we give a summary
and outlook.

II. MODEL

We consider the kicked Bose-Hubbard dimer model de-
scribed by

H = ν(b†
1b2 + b†

2b1) + U

N

2∑
i=1

ni(ni − 1)

+ μ

2
(n1 − n2)

∑
t

δ(t − nτ ), (1)

where ni = b†
i bi, bi and b†

j are the boson destruction and
creation operators fulfilling the commutation

[bi, b†
j] = δi j, [b†

i , b†
j] = [bi, b j] = 0, (2)

ν is the hopping amplitude between two sites, U is the on-site
interaction strength, and μ denotes the periodically applied
potential difference between two wells with the period τ .

Using the boson operator, we can define the angular mo-
mentum operators

Jx = b†
1b2 + b†

2b1

2
(3)

Jy = i(b†
1b2 − b†

2b1)

2
(4)

Jz = b†
1b1 − b†

2b2

2
, (5)

where Ja(a = x, y, z) are the components of angular momen-
tum operator Ĵ . One can check they satisfy the commutation
relation [Ji, Jj] = iεi jkJk and Ĵ2 = N

2 ( N
2 + 1). Since the total

particle number N̂ = n1 + n2 is a conserved quantity, after
omitting some constants, the model (1) can be represented as

H = 2Jx + k

2J
J2

z + μJz

∑
t

δ(t − nτ ), (6)

where we have fixed h̄ = 1 and set ν = 1 as the unit of energy,
J = N

2 and k = 2U . Our model is different from the celebrated
kicked-top model [24–29], which reads as

H = k

2J
J2

z + μJx

∑
t

δ(t − nτ ). (7)

In comparison with kicked-top model, our model does not
have the parity symmetry P = eiπ (Jx+J ) except when μ = 0
and π . Instead, it more resembles the kicked Lipkin-Meshkov-
Glick (LMG) model [54,72] if we focus on the totally
symmetric space.

III. SPECTRUM STATISTICS OF FLOQUET OPERATOR

The time evolution operator corresponding the Hamilto-
nian (6) is the unitary Floquet operator:

U = e−iμJz e−i(2Jx+ k
2J J2

z )τ (8)

and we choose τ = 1 for convenience. The spectral statistics
for a periodically driven quantum system can be carried out by
analyzing the quasienergies (or eigenphases) of the Floquet
operator. Next we study the spectral statistics of the unitary
Floquet operator to show the transition from regular to chaos.
The eigenphases of the Floquet operator U are defined as

U |�i〉 = eiωi |�i〉,
where ωi denotes the ith eigenphase of U with corresponding
eigenstate |�i〉. As {ωi} are 2π periodic, the values of ωi are
restricted within the principal range [−π, π ).

The level spacing ratios rn are defined as

rn = min(dn, dn+1)

max(dn, dn+1)
,

where dn = ωn+1 − ωn is the spacing between two succes-
sive levels with ωn being the nth eigenphase of the Floquet
operator. The crossover from regular (integrable) to chaos in
the model can be diagnosed by the mean level spacing ratio
(MLSR) 〈r〉, defined as

〈r〉 = 1

N − 1

N−1∑
n=1

rn, (9)

where N is the dimensions of Hilbert space of U . For regular
systems, the Poisson statistics yields 〈r〉P ≈ 0.386, while for
chaotic systems, which fulfill Wigner-Dyson statistics, the
mean value 〈r〉WD ≈ 0.53 [41,42]. Since 〈r〉 is periodic as μ

changes 2π , in Fig. 1, we display 〈r〉 in the parameter space
spanned by k and μ ∈ (0, 2π ]. When μ is close to 2π , the
value of 〈r〉 indicates it belonging to the integrable regime.
Varying μ and increasing k can induce the crossover from
integrable to chaotic regime. To see it clearly, in Fig. 2 we
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FIG. 1. Mean level spacing ratio 〈r〉 as a function of k and μ.
When k is small, the system is always in regular regime for any u.
With the increase of μ, periodical regular-chaotic crossover appears
in regime with larger k. Here we take J = 1000.

show how 〈r〉 changes at different k with fixed μ = 3 and 6. It
is clear that the model is always in the integrable regime when
μ = 6. In the following discussion, we will focus on the case
μ = 3 with different k.

IV. HUSIMI DISTRIBUTIONS OF EIGENSTATES
AND PHASE SPACE LOCALIZATION MEASURE

Even though the level statistics of dynamical systems be-
comes a standard probe in the studies of quantum chaos, it
cannot detect the local chaotic features in quantum systems.
In order to get a straightforward understanding of the on-
set of chaos, it is instructive to establish links between the
properties of eigenstates of Floquet operator and the trajec-
tories of classically chaotic systems. To this end, we will
first display Husimi distributions for various eigenstates of
Floquet operator, which reflect the quantum phase space dis-
tributions of Floquet eigenstates, in the regular and chaotic
regimes, respectively. Then we show the phase space Poincaré
section under the semiclassical approximation and reveal local
chaotic features via the study of the phase space localization
measure by means of multifractality dimensions of coherent
state.

0 5 10 15
0.35

0.4

0.45

0.5

0.55

FIG. 2. Mean level spacing ratio 〈r〉 as a function of k at fixed
μ = 3 and μ = 6, respectively.

A. Husimi distribution function

As a kind of smoothed (coarsely grained) Wigner distribu-
tion [73,74], the Husimi distribution serves as a tool to reveal
various aspects of eigenstates within the phase space [75,76],
offering insights into their localization properties. To define
the Husimi function, we employ the generalized coherent spin
states [77–80] given by

|θ, φ〉 = exp[iθ (Jx sin φ − Jy cos φ)]|J, J〉, (10)

where θ ∈ [0, π ] and φ ∈ [−π, π ), providing the orientation
of Ĵ . These coherent states satisfy

1

J
〈φ, θ |Ĵ|φ, θ〉 = (cos φ sin θ, sin φ sin θ, cos θ ).

The Husimi function in the phase space for the nth eigenstate
|�n〉 of the Floquet operator U is given by

Qn(φ, θ ) = |〈θ, φ|�n〉|2. (11)

To gain an intuitive understanding, we depict the Husimi
distribution of several randomly chosen eigenstates of Floquet
operator for different values of k in Fig. 3. In the regular
regime with k = 1 and μ = 3, the Husimi distributions dis-
play similar behaviors of regular periodic orbits, as shown
in Figs. 3(a)–3(c). It is clear that these eigenstates do not
exhibit the parity symmetry in the phase space, as the parity
corresponds to the operation of θ → π − θ and φ → 2π − φ.
On the other hand, in the chaotic regime, exemplified by the
case with k = 8 and μ = 3 as shown in Figs. 3(d)–3(f), the
Husimi distribution in the phase space become random and
irregular.

B. Semiclassical approximation

When J → ∞, our model has a well-defined quantum-
classical correspondence, so the chaotic behavior of the
quantum system can be also manifested in its semiclassical
dynamics. Defining m̂ = Ĵ/J , in the limit of J → ∞, we
see that m̂ behaves as classical angular momentum due to
the vanishing of commutators between mα (α = x, y, z). As
the classical angular momentum m̂ = (mx, my, mz ) is a unit
vector, it can be parameterized in terms of the azimuthal angle
θ and polar angle φ as m̂ = (cos φ sin θ, sin φ sin θ, cos θ ),
where θ ∈ [0, π ] and φ ∈ [−π, π ). Hence, the classical
phase space is a two-dimensional space with variables φ =
arctan my/mx and θ = arccos mz. We use the m̂ to reexpress
Hamiltonian as

H = J

[
2mx + k

2
m2

z + μmz

∑
t

δ(t − nτ )

]
. (12)

The full dynamical map can be obtained by following two
steps. First we consider the evolution of time-independent part
H = J (2mx + k

2 m2
z ), the classical equation of motion of m̂ is

ṁx = −kmymz, (13)

ṁy = −2mz + kmxmz, (14)

ṁz = 2my, (15)
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FIG. 3. First row: (a)–(c) are Husimi function rescaled by its maximum value for three randomly chosen eigenstates of Floquet operator
in the regular regime with parameters μ = 3 and k = 1. Second row: (d)–(f) are Husimi function rescaled by its maximum value for three
randomly chosen eigenstates of Floquet operator in the chaotic regime with parameters μ = 3 and k = 8. Here we fix J = 150.

where the coefficient J can be canceled by the commutation
of m̂. Then the kicked part of the Floquet operator alone yields
the map

m̃x = cos μmx − sin μmy, (16)

m̃y = sin μmx + cos μmy, (17)

m̃z = mz. (18)

In the first row of Fig. 4, we present the Poincaré section for
different values of the parameter k, while keeping μ fixed
at μ = 3.These figures also indicate that the model does not
have the exact parity symmetry any more. When k = 1, as
illustrated in Fig. 4(a), the model is in the integrable regime,
characterized by closed classical orbits and two approximate
unstable fixed points. When the value of k increases, as exem-
plified by the cases of k = 3 and k = 5 shown in Figs. 4(b) and
4(c), respectively, two closed periodic orbits in the integrable
regime vanish, and the remaining two gradually decrease in
size. Finally, for the case of k = 8 shown in Fig. 4(d), corre-
sponding to 〈r〉 ≈ 0.53, the system enters the quantum chaotic
regime. In this regime, all periodic orbits in the bulk of the
phase space disappear, except for a few very small isolated
unstable fixed points (which will be further discussed in the
next section). However, two integrable islands emerge in cor-
ner regions of phase space around θ ≈ 0 and π , respectively.
We numerically check that these two integrable islands still
survive when k is very large. In Appendix A, we also exhibit
the Poincaré section on the sphere phase space using the same
parameters utilized in Fig. 4.

C. Multifractality dimensions of coherent states

In order to further characterize the phase space structure
and get more insight into the quantum-classical correspon-
dence, we study the multifractal properties of the coherent
states in this section. We still use the generalized coherent
spin states given by Eq. (10). To define the Rényi entropy and
multifractal dimensions of coherent states, we expand it in the
orthonormal eigenstates basis of the Floquet operators U

|θ, φ〉 =
N∑
i=1

ci|�i〉, (19)

where the |�i〉 is the ith eigenstate of Floquet operator and
ci = 〈�i|θ, φ〉. Then we can define the Rényi entropy Sq and
multifractal dimensions Dq [81,82]:

Sq = 1

1 − q
ln

N∑
i=1

|ci|2q and Dq = Sq

lnN . (20)

For finite N , we have Dq ∈ [0, 1]. The values of Dq de-
crease with increasing q for q � 0. The fractal dimensions
of D∞

q are obtained via D∞
q = limN→∞ Dq in the limit of

N → ∞. The fractal dimensions measure the degree of er-
godicity of a quantum state in Hilbert space. For a completely
localized state D∞

q = 0 for q > 0, whereas D∞
q = 1 denotes

an extended state in the Hilbert space of Floquet operator
and thus corresponds to an ergodic state. The multifractal
states are the extended nonergodic states and characterized by
0 < D∞

q < 1. In our calculation, we choose q = 2 with D2

being the logarithm of the well-known participation ratio. In
the second row of Fig. 4, we depict D2 as a function of φ and
θ for different values of k. Comparing this with the first row
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FIG. 4. First row (a)–(d): Phase space Poincaré section of the classic equation of motions. The initial states (θ, φ) are selected on grid
of 20×20 on the phase space. Each trajectory is evolved for 400 kicks. The parameter μ is fixed at 3, and k = 1, 3, 5, and 8 from (a)–(d),
respectively. Second row (e)–(h): The multifractal dimension of coherent states, calculated on a grid of 100×100 on the parameter space of θ

and φ. The parameter μ is fixed at 3, and k = 1, 3, 5, and 8 from (e)–(h), respectively. In (e) and (h), we marked the coherent states which we
will be utilized as initial states in the calculation of dynamics in Sec. V.

of Fig. 4, we observe a very similar structure to the Poincaré
section discussed in Sec. IV B. Such a similarity suggests
that the multifractal dimensions of coherent states exhibit
an obvious correspondence to the underlying semiclassical
Poincaré section and thus provide very useful information
for understanding quantum chaos [34,83,84]. While Figs. 4(e)
and 4(f) look like they bear a little resemblance to distributions
with parity symmetry, we note that the resemblance is notably
absent when μ deviates significantly from π .

In the case of k = 1 shown in Fig. 4(e), the positions of
Dq ≈ 0 are located at the regions corresponding to the most
regular closed periodic orbits around the stable fixed points
in the Poincaré sections, indicating the coherent states located
at these points are the localized states in the Hilbert space,
while the points with higher multifractal dimension are along
the longer periodic orbits. As the k increases, D2 take larger
values and exhibit an approximately uniform distribution in
the rest of phase space except for some integrable islands
in the bulk, as shown in Figs. 4(f) and 4(g). When k enters
the quantum chaotic regime as shown in Fig. 4(h), where all
integrable islands in the bulk disappear, the coherent states
have high fractal dimensions almost everywhere in the bulk,
but there are still some points with small values in the bulk,
some of them will disappear when J becomes large, while
others are related to isolated fixed points in the semiclassical
dynamics [10,24]. These small patches are blurred in the back-
ground and need to be carefully found in the Poincaré section.
A detailed analysis is given in Appendix B. Finally, within
large integrable islands near the south and north poles of the

phase space, the fractal dimensions reach minimal values,
even within chaotic regimes.

We also define the average multifractal dimensions

D̄2 = 1

4π

∫
dSD2,

which represent the average D2 across the entire phase space.
In Fig. 5, we plot D̄2 versus k for various J = 100, 200, and
300. While D̄2 changes slowly with increasing k for smaller
k. Our results illustrate a rapid growth of D̄2 with increasing
k when k > 1.6, resembling the behavior of the mean level
spacing ratio presented in Fig. 2. However, as k enters the
quantum chaotic regime, with the gap ratio near to 0.53,
D̄2 begins to exhibit oscillations. This distinct behavior from

0 5 10
0.5

0.6

0.7

0.8

FIG. 5. Average multifractal dimension D̄2 as a function of k for
different J . The parameter μ is fixed at 3.
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FIG. 6. Dynamics of Sz from different initial coherent states. First row: (a)–(c) is in the regular regime with parameters μ = 3 and k = 1.
From left to right, the initial states correspond to diamond, circle, and star points marked in the Fig. 4(e). Second row: (d)-(f) is in the chaotic
regime with parameters μ = 3 and k = 8. From left to right, the initial states correspond to diamond, circle, and star points marked in the
Fig. 4(h). Here we fix J = 800.

the mean level spacing ratio is attributed to the existence of
integrable islands even for large k.

V. SIGNATURES FROM QUANTUM DYNAMICS

In the previous section, we have analyzed our system
through its structure of spectral and eigenvector statistics as
well as its semiclassical dynamics. We have conformed some
interesting local dynamical features, which can not be cap-
tured by the statistics of spectrum of Floquet operator. Based
on the analysis of phase space localization measure of eigen-
vector statistics and its corresponding classical phase space
trajectories, we infer that the choice of different initial states
may give rise to quite different quantum dynamics even for
system with the same mean level spacing ratio of spectrum
statistics. In this section we study the quantum dynamics to
further display the feature of our model. For simplicity, we
focus on the cases of k = 1 and k = 8.

A. Dynamical evolution of local operators

Before the discussion for the quantum dynamical signature
of chaos, we calculate the dynamical evolution of local oper-
ator observable Sz(t ), namely

Sz(t ) = 1

J
〈ψ0|Jz(t )|ψ0〉. (21)

Here the initial states are chosen as the coherent states studied
in the previous section. To see them clear, we marked our
initial states in Figs. 4(e) and 4(h) by using the diamond,

circle, and star points, respectively. We display our numerical
results in Fig. 6.

The first row of Fig. 6 illustrates the dynamics in the
integrable regime. When the initial states originate from short
closed orbits, Sz(t ) exhibits persistently oscillating behavior
as shown in Fig. 6(a). However, if the initial states are as-
sociated with long periodic orbits or unstable fixed points
[Figs. 6(b) and 6(c)], the oscillations eventually decay. In
the chaotic regimes, for the majority of initial states, as de-
picted in Fig. 6(d), Sz(t ) rapidly decays to a stationary state.
When the initial state is selected at the unstable fixed point,
Sz(t ) decays more slowly in an oscillatory manner, as de-
picted in Fig. 6(e). Interestingly, it exhibits a four-periodic

100 200 300
-1

-0.5

0

0.5

0 100 200 300
-1

-0.5

0

0.5

1
(a) (b)

FIG. 7. Dynamics of Sz from different initial product states. (a) is
in the regular regime with parameters μ = 3 and k = 1. (b) is in
the chaotic regime with parameters μ = 3 and k = 8. Here we fix
J = 800.
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FIG. 8. OTOC initialized from different initial coherent states. First row: (a)–(c) are in the regular regime with parameters μ = 3 and
k = 1. From left to right, the initial states correspond to diamond, circle, and star points marked in Fig. 4(e). Second row: (d)–(f) are in the
chaotic regime with parameters μ = 3 and k = 8. From left to right, the initial states correspond to diamond, circle, and star points marked in
Fig. 4(h). Here J = 100, 200, and 800, respectively.

oscillation behavior, consistent with our discussion in Ap-
pendix B. Conversely, within the integrable islands, the
dynamics of Sz remains frozen at the initial states, exhibiting
a self-trapping behavior, as shown in Fig. 6(f).

Next we demonstrate the dynamics of Sz(t ) by choosing
distinct initial states as product states of bosons: one with
bosons occupying solely on the first site, another solely on
the second site. As depicted in Fig. 7, the initial states of
single-site occupation are far from equilibrium for both the
integrable and chaotic cases, but they reach equilibrium in
different ways. While Sz(t ) exhibits obviously oscillating be-
havior in the regular regime, it rapidly decays to a stationary
state in the chaotic regime.

B. Dynamics of OTOC

The OTOC, as a new way to understand and diagnose
quantum chaos, has been discussed from many different fields
in recent years [57–63]. It is defined as

C(t ) = −〈[Ŵ (t ), V̂ ]2〉, (22)

where 〈· · · 〉 denotes the expectation values, Ŵ and V̂ are two
operators, and Ŵ (t ) = U †WU . Note that C(t ) � 0 if Ŵ and
V̂ are Hermitian operators. Analogy to the classical Lyapunov
exponents, OTOC is expected to have the exponential growth
at early time in quantum chaotic systems. While recently some
works found for integrable model the OTOC also can have
exponential growth if the initial states near the nonstable fixed
point in classical limit [66–71]. Here we study the square

commutator between two Jz operators, namely

Czz(t ) = −
(

1

J

)2

〈ψ0|[Jz(t ), Jz]
2|ψ0〉, (23)

where we still choose the coherent state given by (10) as
the initial state |ψ0〉. As we will illustrate in Fig. 8, in both
regular and chaotic regimes, the growth behavior of OTOC
strongly depends on its initial states. Based on the Poincaré
section and multifractal dimensions of coherent states, we
select separately three representative initial states for regular
and chaotic cases, respectively, as marked in Figs. 4(e) and
4(h) by using diamond, circle, and star points. In the regular
regime with k = 1, the diamond point is situated on short
closed periodic orbits near the stable fixed point, exhibiting
very small Rényi entropy. The OTOC from this point, as
depicted in Fig. 8(a), exhibits a slow linear growth, and the
saturation values are remarkably small. In contrast, the circle
point lies on a long periodic orbit in the Poincaré section,
featuring higher Rényi entropy compared to its surrounding
points. This orbit connects to unstable fixed points in the
Poincaré section. The OTOC from this circle point, illustrated
in Fig. 8(b), grows exponentially at early times, reaching a
larger saturation value. When the star point is situated near the
unstable fixed point in the Poincaré section, the OTOC growth
is clearly exponential at early times, as shown in Fig. 8(c),
resembling the chaos case discussed below. Additionally, its
saturation values are larger than those of the former point,
reaching a level comparable to the chaotic case.
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FIG. 9. Dynamics of OTOC from different initial product states.
(a) is in the regular regime with parameters μ = 3 and k = 1. (b) is
in the chaotic regime with parameters μ = 3 and k = 8. Here we fix
J = 800.

In the chaotic regime with k = 8, the diamond point ex-
hibits a large Rényi entropy, corresponding to a randomly
chosen point in the Poincaré section, which represents a ma-
jority of points in the phase space. The OTOC evolving from
this initial state, as depicted in Fig. 8(d), exhibits standard
exponential growth at early times and quickly reaches satu-
ration. The circle point is situated at an isolated unstable fixed
point, surrounded by random trajectories. The OTOC evolving
from this circle point, as illustrated in Fig. 8(e), also exhibits
exponential growth, but grows much slower than the case
from the diamond point. Finally, the star point is located in
deep integrable islands, featuring minimal Rényi entropy. The
OTOC evolving from this star point, as shown in Fig. 8(f), no
longer grows exponentially, and its saturation value is much
smaller than the values in Figs. 8(d) and 8(e), reaching the
same level as the regular case. With the increase in J , the
saturation value is further suppressed.

We also demonstrate the dynamics of OTOC with the ini-
tial state chosen as distinct product states of bosons: one with
bosons occupying solely on the first site, another solely on the
second site. As illustrated in Fig. 9, while the OTOC exhibits
a slow linear growth in the regular regime of k = 1, it exhibits
exponential growth at early times in the chaotic regime of
k = 8 for the initial state either on the first or second site.

C. Dynamics of entanglement entropy

The dynamics of entanglement entropy has been applied
to detect chaos in quantum systems [27,49–52]. A large spin
system can be effectively represented as a many-qubit system,
such as in our model and the LMG model, both of which
can be viewed as systems composed of J qubits. Employing
the decomposition method from Refs. [27,85,86], we calcu-
late the von Neumann entanglement entropy of the reduced
density matrix ρs after tracing out s′ = J − s qubits: SE =
−Trρs ln ρs. In the following calculation, we consider s = 2.
Using the same initial states as utilized in the dynamics of
OTOC, we explore the dynamical evolution of the entangle-
ment entropy.

Similar to the behaviors observed in the OTOC for different
initial states, in the regular regime with k = 1, as depicted in

0 50 100 150
0
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0.4

0.6

0.8

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

(a)
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FIG. 10. Entanglement entropy versus t for different initial co-
herent states. (a) is in the regular regime with parameters μ = 3
and k = 1. Three initial states correspond to diamond, circle, and
star points in Fig. 4(e), respectively. (b) is in the chaotic regime
with parameters μ = 3 and k = 8. Three initial states correspond to
diamond, circle, and star points in Fig. 4(h), respectively. Here we
take J = 400.

Fig. 10(a), the entanglement originating from a small closed
orbit exhibits persistent oscillations. Meanwhile, when initial-
ized from a long periodic orbit or an unstable fixed point,
the entanglement entropy grows with oscillations and reaches
a higher saturation value. In the chaotic regime with k = 8,
as illustrated in Fig. 10(b), the entanglement entropy expe-
riences rapid growth, swiftly approaching saturation when
initialized from the point where the OTOC exhibits standard
exponential growth. In contrast, for the case of an unstable
fixed point, akin to the OTOC dynamics, the entanglement
entropy reaches saturation at a more gradual pace compared
to the majority of cases. Finally, when initialized from deep
integrable islands, the entanglement entropy remains stagnant
and hovers around zero.

VI. SUMMARY AND OUTLOOK

In summary, we systematically study a kicked Bose-
Hubbard dimer, which can be effectively described by a
kicked LMG model, and uncover signatures of chaos in
the system from both statistical and dynamical aspects. The
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FIG. 11. (a)–(d) Poincaré section of the classic equation of mo-
tions on the sphere phase space. Each trajectory is evolved for 400
kicks. The parameter μ is fixed at 3, and k = 1, 3, 5, and 8 from
(a)–(d), respectively.

diagnosis of spectral statistics of Floquet operator reveals
the periodical dependence of μ and the existence of tran-
sition from regular to chaotic dynamics with the increase
in k. Furthermore, insights from semiclassical dynamics and
analysis of phase space localization measure suggest that the
system may display fruitful dynamical phenomena in various
parameter regimes with different initial states, which are con-
firmed by studying the dynamics of local operators, OTOC,
and entanglement entropy. Our results exhibit the richness of
dynamics in the kicked Bose-Hubbard dimer.

FIG. 12. (a) Multifractal dimension of coherent state.
(b) Poincaré section. The parameters are μ = 3 and k = 8.
The black points marked in the figure correspond to the fixed points
studied in Appendix B. (c) The Poincaré section corresponding to
the region delineated by the dotted line in Fig. 12(b).

101 102 103

J

0

100

200

300

400

500

FIG. 13. Size scaling of participation number M2 of three coher-
ent states marked in Fig. 12(a). Here J is total spin number, and the
Hilbert space dimension N = 2J + 1.

Our results build on the kicked Bose-Hubbard dimer and
are important complementary to previous studies based on
the kicked-top model. Due to the good controllability of cold
atomic platforms, our model is principally realizable in cur-
rent cold atomic experiments, and thus provides an alternative
protocol to study the interesting dynamical phenomena be-
yond the standard kicked-top model. Owing to the absence of
parity symmetry, it would be interesting to explore what new
features beyond the quantum kicked top can be found in the
future work.
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FIG. 14. The Husimi function of the coherent state at dif-
ferent time, starting from the left circular point in Fig. 12(a).
T = 1000, 1001, 1002, and 1003 correspond to (a)–(d), respectively.
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APPENDIX A: POINCARÉ SECTION
ON SPHERE TOPOLOGY

Here we provide the Poincaré section on sphere, which is
a true manifold for phase space of a spin model. As shown in
Fig. 11, we take the parameter μ fixed at 3, and k = 1, 3, 5,
and 8 from Figs. 11(a)–11(d), corresponding to Figs. 4(a)–
4(d), respectively.

APPENDIX B: ANALYSIS OF PROPERTIES
OF LOW-RÉNYI-ENTROPY POINTS

IN CHAOTIC REGIME

In Sec. IV C, we observe that there are still some points
with low Rényi entropy in the bulk of phase space even
when the model enters into the chaotic regime of k = 8, as
illustrated in Fig. 4(h). Here we show these points belonging
to different classes using the size scaling of participation
number [10]. The participation number is closely associated
with the Rényi entropy S2 of coherent states 20, defined

as M2 = 1∑N
i=1 |ci|4 = exp S2. We specifically examine the par-

ticipation number of the points depicted in Fig. 12(a). As
illustrated in Fig. 13, the participation number of the star point
increases with the dimension of the Hilbert space, while the
circular points almost keep invariant despite of changes in
the Hilbert space dimension. These two circular points cor-
respond to hidden fixed points in the Poincaré section marked
in Fig. 12(b), whereas the star point does not correspond any
fixed point in classical phase space. To clarify, in Fig. 12(c),
we display magnifications of the Poincaré section around the
two circular points marked by the dotted line in Fig. 12(b).
We also exhibit the long time dynamics of Husimi function
of these fixed points in Fig. 14. Initiating with the coherent
state localized at the left circular point in Fig. 12(a) [circle
point in Fig. 4(h)], we set J = 1000 and examine the be-
havior at T = 1000, 1001, 1002, 1003. Throughout these time
instances, the Husimi function consistently remains localized
predominantly at distinct fixed points marked in Fig. 12(b).
The dynamics for the initial state chosen at the fixed point
displays a four-periodic oscillating behavior.
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