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Exploring beyond-mean-field logarithmic divergences in Fermi-polaron energy
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We perform a diagrammatic analysis of the energy of a mobile impurity immersed in a strongly interacting
two-component Fermi gas to second order in the impurity-bath interaction. These corrections demonstrate
divergent behavior in the limit of large impurity momentum. We show the fundamental processes responsible
for these logarithmically divergent terms. We study the problem in the general case without any assumptions
regarding the fermion-fermion interactions in the bath. We show that the divergent term can be summed up to
all orders in the Fermi-Fermi interaction and that the resulting expression is equivalent to the one obtained in
the few-body calculation. Finally, we provide a perturbative calculation to the second order in the Fermi-Fermi
interaction, and we show the diagrams responsible for these terms.
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I. INTRODUCTION

The physics of an impurity in a many-body ensemble is an
intriguing problem, and constitutes a rich field of research in
condensed matter physics. The study of the quantum impurity
problem was initiated by Landau and Pekar, who proposed
that the properties of conduction electrons in a dielectric
medium could be understood in terms of so-called polarons,
i.e., quasiparticles resulting from the dressing of the electrons
by a cloud of optical phonons of the surrounding crystal [1].

More recently, the realization of spin and atomic mixtures
of ultracold atoms have paved the way to the study of impu-
rity problems in ultracold gases [2,3]. In these systems, the
impurity can be immersed in either a bosonic or a fermionic
medium, which leads to strikingly different behaviors and
phenomena. On the one hand, since the low-lying excitation
modes of a Bose-Einstein condensate (BEC) are phonons, the
Bose polaron (an impurity immersed in a Bose-Einstein con-
densate) is quite similar to the Landau-Pekar polaron [4]. By
contrast, in the Fermi-polaron case (an impurity immersed in
a spin-polarized gas of fermions [5,6]) the impurity is dressed
by a cloud of particle-hole pairs.

The case of an impurity immersed in a spin-1/2 superfluid
was brought into the limelight following experimental works
on Bose-Fermi superfluids [7–9]. As the fermion-fermion in-
teraction is varied in the BCS-BEC crossover, the fermionic
background medium evolves from a weakly attractive in-
teraction condensate of loosely bound Cooper pairs on the
BCS (Bardeen-Cooper-Schrieffer) side of the crossover to
a strongly attractive interaction on the BEC side where the
Fermi gas condenses in a BEC of tightly bound dimers. Thus,
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the polaronic state smoothly turns from a Fermi polaron on the
BCS side to a Bose polaron on the BEC side of the crossover.

In the case of a zero-range coupling between the impurity
and the fermions, a peculiar UV-divergent term appears when
calculating the polaron energy perturbatively with respect
to the impurity-fermion interaction [10,11]. This divergence
is typical in three-body problems with contact interactions
and was revealed first in the study of beyond-mean-field
corrections in dilute Bose-Einstein condensates [12]. Indeed,
three-body bound states, the Efimov trimer states, have been
studied in the case of the Bose polaron [13–15]. This work
is accomplished in the regime of the Born approximation
with respect to the impurity-bath interaction, and therefore far
from the universal regime where Efimov physics can form.
However, the divergence has its origins in three-body physics
and can be remedied using an effective field theory approach
[16,17].

In this scheme, the divergences are suppressed by intro-
ducing counterterms corresponding to effective three-body
interactions [11]. However, this renormalization process only
works if the density-density response of the fermionic su-
perfluid obeys a specific scaling that was found to be
incompatible with a mean-field description of the fermionic
background. This inconsistency is due to the omission of the
collective mode sector in the description of the excitation
spectrum of the system in the mean-field approach [11,18]. As
a consequence, a proper regularization could only be carried
out within the framework of random phase approximation
(RPA) [18].

In this work, we compute these divergent terms rigor-
ously in the case of an imbalanced spin-1/2 Fermi gas
using Feynman diagrams from the density-density response
function and we prove its behavior and relation to Tan’s con-
tact. Furthermore, we underpin the processes responsible for
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these divergent terms in the many-body problem without any
assumptions regarding the fermion-fermion interactions in the
bath. This is an important step in identifying diagrams which
have signatures of the few-body physics in the problem and
a step forward in understanding the polaron energy in the
many-body problem.

We start by introducing the Hamiltonian of the system and
a summary of the problem. Then we lay out the methodology
used in identifying the dominant terms in the problem. We
show that the processes responsible for the divergent behavior
can be categorized in three families of diagrams for which we
provide concrete arguments for their expressions in the large
impurity momentum limit.

II. SYSTEM DESCRIPTION

We consider the case of an impurity immersed in a par-
tially spin-polarized double Fermi sea at zero temperature.
The imbalance between the two spin populations is chosen
beyond the threshold for Clogston-Chandrasekhar transition
[3,19,20], allowing us to disregard diagrams where anomalous
propagators play a role. Furthermore, we assume that the
impurity-fermion interaction is weak and attractive; thus, we
can treat it perturbatively.

Introducing a quantization volume V , the Hamiltonian of
the system is written as

Ĥ =
∑
k,σ

εkâ†
k,σ âk,σ +

∑
q

ε(i)
q ĉ†

qĉq

+ g′
0

V
∑

k,q,k′,q′,σ

δk+q,k′+q′ ĉ†
q′ â

†
k′,σ ĉqâk,σ

+ g0

V
∑

k,q,k′,q′
δk+q,k′+q′ â†

k′,↑â†
q′,↓âq,↓âk,↑, (1)

where âk,σ is the annihilation operator of a fermion with
momentum k and spin σ , and ĉq is the annihilation operator of
an impurity with momentum q. Noting mi and m the respective
masses of the impurity and of the fermions, εk = (h̄2k2)/(2m)
is the kinetic energy of a fermion with wave vector k and
ε(i)

q = (h̄2q2)/(2mi ) is the kinetic energy of the impurity with
wave vector q. g′

0 and g0 are the bare coupling constants of
the fermion-impurity and the fermion-fermion interactions,
respectively.

The coupling constant g′
0 is related to the scattering length

and the cutoff � through the following equation:

1

g′
0

= 1

g′ − 1

V
∑
k<�

2mr

h̄2k2
, (2)

where g′ is the physical coupling constant between the
impurity and background fermions. It is related to the scat-
tering length a using the relation g′ = 2π h̄2a′/mr , with mr =
(m mi )/(m + mi ) the impurity-fermion reduced mass.

By using perturbation theory we can obtain an expression
for the polaron energy up to second order [11,18]:

Epol = g′n + g′2n

V
∑
q<�

[
2mr

h̄2q2
− χ1

(
q, ε (i)

q

)]
, (3)

where

χ1(q, E ) = 1

N

∑
α

|〈α|n̂q|0〉|2
(E + Eα − E0)

. (4)

Here n̂q = ∑
k,σ a†

k,σ ak+q,σ . |0〉 is the ground state of the
interacting bath and {|α〉} denotes a basis of eigenvectors of
the Hamiltonian of the fermionic bath alone.

It was conjectured in Ref. [11] that in the large momentum
limit

χ1
(
q, ε(i)

q

) − 1

ε
(r)
q

= O

(
1

q3

)
, (5)

thus leading to a logarithmically divergent value of the sum
appearing in Eq. (4). This divergence can be healed by in-
troducing a three-body interaction [11] but only under the
assumption that χ obeys the following asymptotic behavior:

χ1
(
q, ε(i)

q

) =
q→∞

1

ε
(r)
q

[
1 − π2κ (η)

m

mr

C2

Nq
+ · · ·

]
, (6)

where C2 is Tan’s contact parameter of the many-body back-
ground [21], η = mi/m, and

κ (η) = κI (η) + κII (η) + κIII (η)

=
√

η3(η + 2)

2π3(η + 1)2
− η

2π3
arctan

(
1√

η(η + 2)

)

− 4

π3

√
η

η + 2
arctan

(√
η

η + 2

)2

.

(7)

The addition of a diverging term was initially done as a
conjecture with the goal of regularizing the expression in the
large impurity momentum limit. This conjecture is supported
by an RPA analysis of the excitation modes of the fermionic
background [18] and the purpose of the present article is to
prove rigorously this behavior by solving the full many-body
problem and studying the processes responsible for the diver-
gence. After a first introduction of the methodology in Sec. III,
we will recover Eqs. (6) and (7) in Sec. IV using scaling
arguments to generalize the results to an arbitrary order of
the interaction parameter. This is supported by a perturbative
analysis in the bare fermion-fermion coupling constant to
identify the elementary processes by calculating exactly all
diagram contributions to second order in Appendix A.

III. METHODOLOGY

The chemical potential of the impurity or equivalently the
binding energy Epol of the polaron is given by the self-energy
of the impurity at zero momentum [22]:

Epol = �i(0, Epol ). (8)

We compute �i perturbatively in Ĥint up to second order, i.e.,
up to order (g′

0)2. Note that we do not treat perturbatively the
fermion-fermion interaction. The two diagrams up to order
(g′

0)2 are shown in Figs. 1 and 2. In time and momentum
representation, the impurity self-energy at first order reads

�
(1)
i (p, t2 − t1) = g′

0

V
∑
k,σ

(−i)Gσ (k, 0−)δ(t2 − t1), (9)
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FIG. 1. The lowest-order diagram for the impurity self-energy in
momentum-time representation. The open circle represents the bare
impurity-fermion coupling constant g′

0. The double line represents
the exact fermion Green’s function Gσ . The single lines represent the
impurity Green’s function Gi.

where Gσ (k, t ) is the exact fermion Green’s function. Using∑
k,σ (−i)Gσ (k, 0−)/V = n, the total density we find after

taking the time Fourier transform,

�
(1)
i (p, E ) = g′

0 n. (10)

The self-energy at second order is written in a diagram-
matic form in Fig. 2; therefore, it can be written as follows:

�
(2)
i (p, t2 − t1) =

(
g′

0

V

)2 ∑
q

(−i)e−iε(i)
q (t2−t1 )

× 〈n̂p−q(t2)n̂q−p(t1)〉(t2 − t1), (11)

where we have used that the free Green’s function of the im-
purity is G(0)

i (q, t ) = (−i)(t ) exp(−iε(i)
q t ). Taking the time

Fourier transform of Eq. (11), we obtain

�
(2)
i (p, E ) =

(
g′

0

V

)2 ∑
q,α

|〈α|n̂q−p|0〉|2
E − ε

(i)
q − Eα + E0 + i 0+

= −g′
0

2n

V
∑
q<�

χ1
(
q, ε (i)

q

)
. (12)

At order (g′
0)2, we must solve, using Eq. (8), Epol =

�
(1)
i (0, Epol ) + �

(2)
i (0, Epol). At lowest order, we can replace

Epol by 0 in �
(2)
i (0, Epol ). We express g′

0 in terms of g′ by
expanding Eq. (2):

g′
0 = g′ + g′2

V

⎛
⎝ ′∑

q

2 m∗

q2
+ · · ·

⎞
⎠.

In this way, we find that �
(1)
i gives the first term in Eq. (3),

and the first term in the sum. At the same order, g′
0 can be

FIG. 2. The diagram for the impurity self-energy in momentum-
time representation at second order in g′

0. The rectangle represents
the exact density-density response function of the fermionic many-
body background.

simply replaced by g′ in �
(2)
i and this term provides the con-

tribution associated with the function χ1 in the sum appearing
in Eq. (3). Our analysis shows that with the two diagrams of
Figs. 1 and 2, we recover Eq. (3).

The response function χ1 is directly related to the time-
ordered density-density response function χ through

χ1
(
q, ε(i)

q

) = −1

N

∫ +∞

0
e−iε(i)

q tχ (−q, t )dt, (13)

where

χ (q, t ) = −i〈T [nq(t )n−q]〉. (14)

Here, T is the time-ordering operator.
The goal is to prove the asymptotic behavior in Eq. (6),

and in order to do so we will classify the Feynman
diagrams contributing to the diagram in χ (q, t ); hence,
lim|q|→∞ χ1(q, ε(i)

q ).
These results hold for the case of an imbalanced Fermi gas

at zero temperature. We work on expanding the diagram in
Fig. 2 using the bold-diagrams formalism [23–25] in order to
find the contributions that scale as 1/q3 in the q → ∞ limit,
i.e., the ones responsible for remedying the divergent term
found in χ1(q, E ).

This is achieved by taking into account the cases where
(a) no interaction vertices are involved, (b) one fermionic
interaction vertex is present, and (c) two fermionic interaction
vertices are present in the fermionic bubble. We take inspi-
ration for this procedure from generalizing the perturbative
diagrams we have studied extensively (see Appendix A). In
general, as explained in Appendix C, we do not expect any
other diagrams to contribute to the diverging term. Further-
more, since no restrictions are made on the interaction nature
between the fermionic particles in the bath, these results hold
beyond the BCS regime.

IV. COMPUTING THE DOMINANT DIAGRAMS

In the weakly interacting limit between fermions, we study
in Appendix A the perturbative diagram contributions to the
divergent terms and we show the calculation for one of these
contributions fully.

Here, we focus on the more general case, where no assump-
tions are made about the fermion-fermion interaction strength;
we make qualitative arguments to distinguish the contribu-
tions to the diverging term. We can classify the diagrams
contributing χ1(q, ε(i)

q ) in three families for the diagrams of
χ (q, t > 0) using the bold-diagrams formalism [23–25]. The
bold-diagrams formalism is a diagrammatic approach to the
many-body problem where noninteracting propagators are re-
placed by the fully dressed Green’s function G lines resulting
from the resummation series, and the two-body interaction
vertices are replaced by the fully dressed two-body vertices
�. The bold diagrams are then classified in three families
depending on the number of bold vertices � they contain.
The first family contains diagrams with no bold vertices, the
second family contains diagrams with one bold vertex, and
the third family contains diagrams with two bold vertices. We
detail the contributions of each family in the following.
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FIG. 3. The bold diagram with no vertex � that contributes to the
density-density response function.

We define a “typical” energy scale Etyp = k2
typ/(2m) with

the wave-vector amplitude ktyp = max(|a−1|, |mμ|1/2). In the
q � ktyp limit, we also define a cutoff ε in time, ε � 1/Etyp

and q2/m ε � 1, and a cutoff � in momentum, � � ktyp and
� � q.

We will use the following properties of the exact Green’s
function Gσ (k, t ) and the exact two-particle vertices �(P, t )
of interacting fermions of the bath (see Ref. [26] for these
properties in imaginary time):

Property 1. If |p| � ktyp, Gσ (p, t ) is small, except in a
small interval 0 � t � (2m)/p2, where it tends to the Green’s

function of a particle in vacuum: Gσ (p, t )  −i(t )e−i p2

2m t .
Property 2. If 0 < t � ttyp, Gσ (p,−t ) → inp,σ , where

np,σ = 〈c†
p,σ cp,σ 〉 is the occupation number of the mode p, σ .

Property 3. If k � ktyp and t � m/k2, we can write to lead-

ing order Gσ (k,−t )  i C2
k4 e−i k2

2m t , where C2 is Tan’s contact
per unit volume.

Property 4. If |P| � ktyp, �(P, t ) is small, except in a
small time interval 0 � t � (4m)/P2, where it tends to the
vertex of two particles in vacuum: �(P, t )  �vac(P, t ) =
−4

√
π

m3t ei π
4 e−i P2

4m t(t ).

Property 5. If 0 � t � ttyp,
∫

d3P
(2π )3 �(P,−t )  −i C2/m2.

A. No interaction vertices

The bold diagram for χ (q, t ) with no two-particle vertex �

is simply a bubble diagram with the exact Green’s functions.
In momentum and time variables, this diagram is given by
(Fig. 3)

χT
a (q, t ) = −i

∑
k,σ

Gσ (k + q, t )Gσ (k,−t ). (15)

From Eq. (13), we find the corresponding contribution to χ1:

χ1 a
(
q, ε(i)

q

) =
∑

σ

i

n

∫ +∞

0
dt

∫
d3k

(2π )3
e−iε(i)

q t Gσ (k − q, t )

× Gσ (k,−t ). (16)

Gσ (k, t ) is the Green’s function of a fermion with momentum
k and spin σ . We have used

∑
k → V

∫
d3k/(2π )3 and n =

N/V the total density (V is the volume).
First, in Eq. (16) consider the contribution t < ε and k < �

in the integrals. Since q � � � k, we can replace Gσ (k +
q, t ) by Gσ (q, t ) at lowest order. If we use the first property

from above, we can write Gσ (q, t )  −i(t )e−i q2

2m t at lowest
order. Since t < ε � ttyp, we can use the second property

and replace at lowest order Gσ (k,−t ) by ink. Here, the inte-
gral on

∫
|k|<�

d3k
(2π )3 nk,σ tends to nσ in the limit �/ktyp → ∞.

We can perform the time integral on
∫ ε

0 dte−i q2

2mr
t = (−i)(1 −

e−i q2

2mr
ε )(2mr )/q2. The phase q2

2mr
ε � 1 gives a fast oscillating

term that we can neglect.
As a conclusion, the small-time, small-wave-vector contri-

bution to Eq. (16) gives 2mr
q2 , in the |q| → ∞ limit.

Second, we subtract the term of order q−2 in Eq. (16):

χ1 a
(
q, ε(i)

q

) − 2mr

q2

= 1

n

∑
σ

∫ +∞

0
dt e−i q2

2mi
t 1

i

∫
d3k

(2π )3

(
Gσ (k − q, t )

× Gσ (k,−t ) − 1

i
e−i q2

2m t Gσ (k, 0−)

)
. (17)

In the integral on the right-hand side of Eq. (17), we evaluate
the contribution of the domain {t ∈ [0, ε], |k| > �}. In this
domain, we can use Property 1 and replace Gσ (k + q, t ) with

−ie−i (k+q)2

2m t . We use Property 3 and replace Gσ (k,−t ) with

i C2
k4 e−i k2

2m t and Gσ (k, 0−) with i C2
k4 . We find

−i
∫

|k|>�

d3k

(2π )3

C2

k4

∫ ε

0
dt

[
e−i( q2

2mi
+ (k+q)2

2m + k2

2m )t − e−i q2

2mr
t

]
.

Neglecting fast oscillating terms, we find for the time integral
(−i)( 1

q2

2mi
+ (k+q)2

2m + k2
2m

− 2mr
q2 ).

Finally, the wave-vector integral can be performed after
the change of variable k → qk. The lower bound for the
norm of k is �/q, that we set to zero at lowest order. The
volume element scales like q3 and the integrand like q−6. This
gives the q−3 dependence. As a conclusion, in the |q| → ∞
limit, the integral on the right-hand side of Eq. (17) gives the
contribution

− (4m C2 Ja(η))

n

1

q3
,

where (q̂ is a unit vector)

Ja(η) =
∫

d3k

(2π )3

1

k4

(
η

η + 1
− 1

1
η

+ (k + q̂)2 + k2

)

= 1

4π

√
η3(η + 2)

(η + 1)2
.

FIG. 4. The diagram with one interaction vertex and bold propa-
gators for the fermions.
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This is the dominant contribution in the |q| → ∞ limit as is
explained below and we find

χ1 a

(
q,

q2

2mi

)
= 2mr

q2

(
1 − m

mr

C2

n

1

2π

√
η3(η + 2)

(η + 1)2

1

q
+ · · ·

)
.

Since C2/n = C2/N , we recover in the second term the κI (η)
contribution of Eqs. (6) and (7).

B. One interaction vertex

The only diagram with one bold � is the diagram shown in
Fig. 4. The analytic expression for χ1 b(q, ε(i)

q ) is

χ1 b
(
q, ε(i)

q

) = 1

n

∑
σ

∫ +∞

0
dt

∫
d3 p

(2π )3

∫
d3P

(2π )3

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2e−i q2

2mi
t Gσ (P − p − q, t1)Gσ (P − p,−t2)

× �(P, t2 − t1)G−σ (p, t − t2)G−σ (p + q, t1 − t ). (18)

In the case |P| > �, from Property 4 we see that the dominant
contribution to � is for t2 − t1 > 0, which contradicts the
time ordering from the dominant contributions for Green’s
functions where t1 > 0 and t2 < 0. So we can neglect the
contribution of the domain |P| > � in the integral on P.

In the case |P| < �, and all fermionic wave vectors larger
than �, due to Property 1, we can replace the Green’s func-
tions by their vacuum values. In the |q| → ∞ limit, since the
momenta are large compared to |P|, we can set P = 0 in the
Green’s functions. Due to the retarded nature of the fermionic
Green’s functions, we have the time ordering: t1 > 0, −t2 > 0,
t − t2 > 0, and t1 − t > 0. For t > 0, the integration domain
is {(t1, t2), t1 > t, t2 < 0}. Since all fermionic wave vectors
are large, the dominant contributions in the time integrals
come from small time differences smaller than ε. The time
argument t2 − t1 in � is negative and much smaller than ttyp.
At lowest order, we can replace �(P, t2 − t1) by �(P, 0−). We
define time differences t ′

2 = −t2 and t ′
1 = t1 − t which vary

between zero and ε. In the |q| → ∞ limit, the time t also lies

between zero and ε, due to the e−i q2

2mi
t in the Fourier transform

of χT
b (q, t ). We have the exponential term

e−i( q2

2mi
+ p2

2m + (p+q)2

2m )t e−i( (p+q)2

m )t ′
1 e−i( (p)2

m )t ′
2 .

In Eq. (18), the integrals on time give

(−i)3 1
q2

2mi
+ p2

2m + (p+q)2

2m

1
(p+q)2

m

1
(p)2

m

.

Due to Property 5, the integral on P gives a factor −i C2/m2.
Finally, after rescaling of p by q, we also find a q−3 scaling

and the asymptotic behavior for χ1 b(q,
q2

2mi
),

− (4mC2 Jb(η))

n

1

q3
,

where

Jb(η) = −
∫

d3 p

(2π )3

1
1
η

+ p2 + (p + q̂)2

1

(p + q̂)2

1

p2

= − 1

4π
η arctan

(
1√

η(η + 2)

)
.

This is also the dominant contribution in the |q| → ∞ limit
and we obtain the result

χ1 b

(
q,

q2

2mi

)
=2mr

q2

m

mr

C2

n

1

q

η

2π
arctan

(
1√

η(η + 2)

)
+ · · · .

This is equal to the κII (η) contribution in Eqs. (6) and (7).

C. Two interaction vertices

The diagrams with two bold vertices have the form in Fig. 5
with different permutations of the fermionic lines. All per-
mutations do not contribute except for the previous diagram
and the one where the two fermions connecting the interaction
vertices have different spins, which has the same exact contri-
bution resulting in a factor 2 in the final result. To this order,
there exists another possible diagram for which we argue in
Appendix B that it does not contribute to the divergent term.
The analytic expression for this diagram is

χT
c (q, t ) = −i

∑
σ,σ ′

∫
R4

4∏
i=1

dti

∫
d3kd3k′d3P

(2π )9
Gσ (k + q, t1)Gσ (k,−t4)G−σ (P − k, t1 − t4)�(P + q, t2 − t1)

× Gσ ′
(
k′ + q, t − t2

)
Gσ ′

(
k′, t3 − t

)
G−σ ′ (P − k′, t3 − t2)�(P, t4 − t3) (19)

and χ1 c(q, ε(i)
q ) as its time-domain Fourier transform. In

the |q| → ∞ limit, we assume the dominant contribution
to the integral comes from the high wave-vector regions.
In these regions, due to Property 1 from the previous calcula-
tion, the time arguments are restricted to small positive values
and the Green’s functions can be replaced by vacuum values.

This implies that we have the time ordering t1 > 0 > t4 and
t3 > t > t2.

Next, we assume that one the two momenta of the inter-
action vertices is smaller than �. This means that we have
two possibilities: either case (a), |P − q| < � and |P| → ∞,
or case (b), |P| < � and |P − q| → ∞. In case (a), due to
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FIG. 5. The diagram with two bold interaction vertices and bold
propagators for the fermions.

Property 4, we have t4 − t3 > 0. This is in contradiction with
the time ordering t4 < 0 and t3 > t > 0, and therefore we
must exclude this case.

In case (b), since |P| is bounded and all fermionic wave
vectors tend to infinity, we can set P = 0 in all of the Green’s
functions at lowest order. This means that |P − q| → ∞ and
we can replace �(P − q, t2 − t1) by �vac(P − q, t2 − t1) 
�vac(−q, t2 − t1) due to Property 4 and the fact that |P| is
bounded.

We define time differences which are all positive: τ1 =
t1, τ2 = t2 − t1, τ3 = t3 − t , τ4 = −t4, and τ5 = t − t2. These
time differences must be of the order of the inverse of typical
kinetic energies, which are of the order m/q2 � ttyp. As a
consequence, we can replace the time difference t4 − t3 by 0−

in �(P, t4 − t3). The integral on P gives
∫
|P|<�

d3P
(2π )3 �(P, t4 −

t3 → 0−) = �(r = 0, t = 0−) = i C2
m2 , where we have used the

fact that � � ktyp and we extend the wave-vector integral
to all space. Neglecting fast oscillating terms as before, the
integral on time differences {τi} gives

1
k′2
m

1
(k′+q)2

2m + (k′ )2

2m + q2

2mi

∫ +∞

0
dτ2e−i q2

2mi
τ2�vac(−q, τ2)

× 1
k2

m

1
(k+q)2

2m + (k)2

2m + q2

2mi

.

The upper bound on τ2 is ε, but since εq2/(2mi ) � 1, we have
extended it to infinity. The integral on τ2 can be performed

analytically and is equal to − 8π
m

√
η

η+2
1
q ∝ 1

q .

The integrals on k′ and k are performed after the change
of variables k′ → qk′ and k → qk. After this change of vari-
ables, we can set the lower bound �/q to zero at lowest order.
For each integral, a factor q3 comes from the volume element
and a factor q−4 comes from the integrand, which makes the
integral scale like q−1. Together with the q−1 scaling of the
intermediate �vac, we recover the q−3 dependence.

Putting together all the factors, we find for the |q| →
∞ limit of the diagram in Eq. (B1) the contribution to
χ1 c(q,

q2

2mi
),

128π m C2

n

√
η

η + 2
(Jc(η))2 1

q3
,

where

Jc(η) =
∫

d3k

(2π )3

1

k2

1
1
η

+ k2 + (k + q̂)2
= 1

4π
arctan

√
η

η + 2
.

We recover the κIII (η) contribution in Eqs. (6) and (7).

In Appendix C, we give arguments which justify that
diagrams with more than three interaction vertices give sub-
leading contributions to χ1(q,

q2

2mi
) in the q → ∞ limit.

V. CONCLUSION

We have calculated the leading-order contribution to the
static density response function χ (q, t ) in the limit of large
momentum transfer |q| → ∞ for an impurity immersed in a
two-component Fermi gas with contact interaction.

We have shown that the leading-order contribution is given
by the sum of three bold diagrams. The first diagram is a
bubble diagram with the exact Green’s functions. The second
diagram contains one interaction vertex and the third diagram
contains two interaction vertices. The leading-order contribu-
tion to χ (q, t ) in the |q| → ∞ limit is given by the sum of the
three bold diagrams.

This helps shed light on the origin of such logarithmic
divergences and provides a motivation to calculate these con-
tributions in other cases such as the Bose polaron to see if the
same behavior is present. This systematic approach has been
done at zero temperature, but can also be performed at finite
temperature using the same methods where similar results are
expected.
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APPENDIX A: PERTURBATIVE LIMIT

For this approach, we will compute the response function
χ (q, ω) in wave vector and frequency. We will use the formula

χ1
(
q, ε(i)

q

) = i

N

∫ +∞

−∞

dω

2π

χ (−q, ω)

ω + ε
(i)
q − i 0+ . (A1)

In the perturbative limit, we consider the case where the
fermion-fermion interaction is weak, i.e., g0 → 0−. In this
perturbative limit, Tan’s contact per unit volume is given by
C2 = m2 g2

0 n↓ n↑. In zeroth order, the only diagram that con-
tributes to the polaron energy is a bubble diagram that scales
as 1/q2 to the leading order with no q−3 term. To first order,
the contribution of the dumbbell and tadpole diagrams in the
large momentum limit are of 1/q4 order. This is expected
since the diverging term is second order in the Fermi-Fermi
interaction g0. To second order in g0, the diagrams that con-
tribute to the polaron energy consist of different families
which we detail in the following.

Diagrams where the two resulting fermions from the in-
teraction with the impurity in Fig. 2 do not interact with
each other. These are called the self-energy insertion dia-
grams since, in one of the fermionic lines, we introduce two
first-order diagrams or one second-order diagram from the
self-energy of the impurity. By computing all these contribu-
tions, we find that the only contributing diagram is the one
in Fig. 6. In this Appendix, we show the expression for this
diagram and we prove that it gives the contribution κI (η) in
Eq. (7). The diagram in Fig. 6 can be computed using the
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FIG. 6. A contribution to density-density response function to
second order in the fermion-fermion interaction. This is the only
diagram from the self-energy insertion diagrams which includes a
divergent term that has a 1/q3 scaling.

following equation:

g2
0

∑
k,p1,p2,σ

G0,σ (k)2G0,−σ (p1)G0,σ (p1 − p2)

× G0,−σ (k + p2)G0,σ (k + q).

(A2)

Remembering that all diagrams should be advanced with
respect to the frequency ω we write the Green’s functions
product in the following manner:∑

k,p1,p2

1

(ω1 − Ek + iη1)2

1

ν1 − Ep1
− iη

× 1

ν1 − ν2 − Ep1−p2
+ iη

1

ω1 + ν2 − Ek+p2
+ iη

× θ (|k + q| > kF )

ω1 + ω − Ek+q + i0+ , (A3)

where the sign of η and η1 determines the boundaries for the
amplitudes of the wave vectors p1, p2, and k. We can first
perform the integration over the frequencies ν1 and ν2:∑

k,p1,p2

θ (|k + q| > kF )

(ω1 − Ek + iη1)2(ω1 + Ep1
− Ep1−p2

− Ek+p2
+ iη)

× 1

(ω1 + ω − Ek+q + i0+)
+ 1

2εp2

. (A4)

We found out two contributions that give the 1/q3 behavior:

η1 = 0+, η = 0− ⇒ |k| > kF , |p1| > kF , |p1 − p2| < kF ,

|k + p2| < kF , (A5)

η1 = 0−, η = 0+ ⇒ |k| < kF , |p1| < kF , |p1 − p2| > kF ,

|k + p2| > kF . (A6)

We make the following change of variables:

p′
1 = p1 − p2, p′

2 = k + p2 ⇒ p1 = p′
1 + p′

2 − k,

p2 = −k + p′
2.

First we treat the case in (A5) where p′
1 and p′

2 are both
bounded and therefore we get the following inequalities:

|k| > kF , |p′
1 + p′

2 − k| > kF , |p′
1| < kF , |p′

2| < kF .

We observe from the second inequality that since |k| can go
to infinity and |p′

1| and |p′
2| are bounded then the latter two

are negligible for |q| → ∞, so we set p′
1 = p′

2 = 0 in the

following and we replace ω = −q2/2mi. We notice that the
Heaviside function θ (|k + q| > kF ) = 1 for all values of k
here:∑

k,p1,p2

1

(ω1 − k2/2m + i0+)2(ω1 + k2/2m − i0+)

× 1

(ω1 − q2/2mi − (k + q)2/2m + i0+)
+ 1

2εp2

. (A7)

The function has three poles with respect to ω1 and we inte-
grate over the upper half side of the complex plane:∑

k,p1,p2

1

(−q2/2mi − k2/2m − (k + q)2/2m + i0+)

× 1

(−k2/m + i0+)2
+ 1

2εp2

. (A8)

The two integrals over p1 and p2 give each a factor equal to
the density of the Fermi gas, n = k3

F /6π2. Then we perform a
variable change k = qp:

1

q3

∫ ∞

0

dk
(2π )3

−i

(−k2/m)2(q2/2mi + k2/2m + (k + q)2/2m)
.

(A9)

Second, we treat the case in (A6), where p′
1 and p′

2 are both
bounded and therefore we get the following inequalities:

|k| < kF , |p1| < kF , |p1 − p2| > kF , |k + p2| > kF .

We see that k and p1 are bounded so they go to zero and we
get∑

k,p1,p2

θ (|k + q| > kF )

(ω1 − Ek + iη1)2(ω1 + Ep1
− Ep1−p2

− Ek+p2
+ iη)

× 1

(ω1 + ω − Ek+q + i0+)
+ 1

2εp2

. (A10)

The function has four poles with respect to ω1 and we inte-
grate over the upper half side of the complex plane:

i
d

dω1

1

(ω1 − q2/2mi + i0+)
(
ω1 − p2

2/2mi + i0+) ∣∣∣∣
ω1=i0+

= −i

(q2/2mi )2
(
p2

2/m
) + −i

(q2/2mi )
(
p2

2/m
)2

1

(− k2/m + i0+)2
.

(A11)

By integrating this expression and in addition to the result of
the first case we get for this diagram

ig2
0

(
kF

6π2

)2

mκI (η)
1

q3

with η = mi/m. This is the first contribution that appears in
Eq. (6).

Other diagrams where the two interactions happen between
the fermions resulting from the interaction with the impurity
do not contribute except for the two diagrams shown in Figs. 7
and 8; the first one is the ladder diagram to second order while
the other is the crossed ladder diagram to second order. The
diagram in Fig. 7 gives the contribution in κII (η). The total
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FIG. 7. Another contribution to density-density response func-
tion to second order in the fermion-fermion interaction that shows a
1/q3 divergent term.

momentum of the interaction vertices diverges so we have to
plug in the full interaction vertex and this leads to calculating
the diagram in Fig. 4, which we do in the following. Thus, the
diagram has the following contribution:

2i

V

∑
P,p

θ (|p| > kF )

ω1 − Ep + iη

θ (|P − p − q| > kF )

� − ω1 − ω − EP−p−q + iη

× θ (|p + q| > kF )

ω + ω1 − Ep+q + iη

θ (|P − p| > kF )

� − ω1 − EP−p + iη
�(P),

(A12)

where P = (P,�), p = (p, ω1) are internal four-momenta
and q = (q, ω) is the four-momentum of the impurity.

We can write an expression for the Bethe-Salpeter equa-
tion for �, recalling that, at T = 0, Feynman rules add a factor
i in front of the recursive part, as follows:

�−1(P,�) = g−1
0 −

∑
|p1|>kF

θ (|P − p1| > kF )

� − Ep1
− EP−p1

+ iη

+
∑

|p1|<kF

θ (|P − p1| < kF )

� − Ep1
− EP−p1

− iη
(A13)

with g−1
0 = g−1 − ∑

p1

2m∗
p2

1
. We need to evaluate the expres-

sion at the frequency value ω = −εq which corresponds to the
impurity’s kinetic energy. Then we take the |q| → ∞ limit.
For that we can write Eq. (A12) as∫

d3P
(2π )3

∫ ∞

−∞

d�

2π
�(P,�) F (�, P, q, kF , m, mi ), (A14)

where the function F is given by

F =
∫

d3 p
(2π )3

θ (|p + q| > kF )θ (|P − p| > kF )

(� − εq − EP−p − Ep+q + iη)

× θ (|p| > kF )θ (|P − p − q| > kF )

(� − EP−p − Ep + iη)(� − Ep+q − EP−p−q + iη)
.

(A15)

FIG. 8. Another contribution to density-density response func-
tion to second order in the fermion-fermion interaction that shows a
1/q3 divergent term.

We note that F is holomorphic in the upper half of the com-
plex plane with respect to �. We split the complex function
�(P) into a sum of an advanced and a retarded function:
�(P) = �R(P) + �A(P).

The function �R(P) is holomorphic in the upper half of the
complex plane and �A(P) is holomorphic in the lower half
of the complex plane. With that we find that only �A(P) will
contribute in Eq. (A14) in order for the integrand to not be
holomorphic in the lower half plane and integrate to zero with
respect to �. Now, we rescale |p| by |q|:

(2m)3

q3
F

(
�

q2/(2m)
,
|P|
|q| , 1,

kF

q
, 1,

m

mi

)
.

By studying the behavior of the function �(P,�) at |P|,� →
∞ we find that its limit is zero. We prove that by noticing
that the second sum in Eq. (A13) is zero when |P| → ∞, we
write the Heaviside function in the first sum as 1 − θ (|P −
p1| < kF ) and the second term subsequently goes to zero for
|P| → ∞. We can calculate the remaining sum to find that
�−1(P,�) diverges for |P|,� → ∞.

As a result, in F we can replace the first two arguments
in the last expression by zero at lowest order and we find the
diagram to be ∝

|q|→∞
A
q3 with A given by

A =
∫

d3P
(2π )3

∫ ∞

−∞

d�

2π
γ A

↑,↓(P,�) (2m)3F (0, 0, 1, 0, m, mi ).

By definition we have∫ ∞

−∞

d�

2π
�A(P,�) = �(P, t = 0−)

and equivalently∫
d3P

(2π )3
�(P, t = 0−) = �(r = 0, t = 0−).

The last expression can be related to the two-body contact
as shown in Refs. [25,26] (the factor i comes from the zero-
temperature formalism):

C2 = im2 �(r = 0, t = 0−).

In this context the contact C2 will help us identify diverging
terms as it appears as a prefactor for these terms.

With that the coefficient of the divergent term becomes

A = −8 m C2F (0, 0, 1, 0, m, mi ).

This gives one of the contributions to the divergent term in
Eq. (3). With the notations used in Ref. [11] we calculate the
function F (0, 0, 1, 0, m, mi ) and we find

F (0, 0, 1, 0, m, mi ) = m3

π2
κII (η),

where η = mi/m and κII (η) = −π
2 η arctan( 1√

η(η+2)
).

The final diagram contributes to the κIII (η) term. For
the diagram in Fig. 8, the calculation takes the same steps
but we have to pay attention that the Fermi-Fermi vertex
on the right-hand side of the diagram cannot be summed
perturbatively but should be replaced by the dressed ver-
tex � as in the previous diagram. The relevant momentum
of this vertex diverges and therefore we replace �(P) by

033315-8



EXPLORING BEYOND-MEAN-FIELD LOGARITHMIC … PHYSICAL REVIEW A 109, 033315 (2024)

FIG. 9. The diagram with two bold interaction vertices and bold
propagators for the fermions.

−4π/(m
√

−m(� − P2/(4m) + i 0+)). We write the follow-
ing expression, dominant in the q → ∞ limit:∑

P,k,p,σ,σ ′
G0,σ (k)G0,σ (k + q)G0,−σ (P − k)

× G0,−σ ′ (P − p)G0,σ ′ (p)G0,σ ′ (p + q)�(P + q)�(P)

 −4
∑
P,k,p

4π �(P)θ (|k| > kF )

m
√−m(� − q2/2mi − Ek+q + i0+)

× θ (|k + q| > kF )θ (|P − k| > kF )θ (|P − p| > kF )

� − EP−k − q2/2mi − Ek+q + i0+

× θ (|p| > kF )θ (|p + q| > kF )

� − EP−k − Ek + i0+ . (A16)

Following the same steps as the other two calculations
detailed above we get the following result:

128 π m C2

n

√
η

η + 2
(Jc(η))2 1

q3
.

APPENDIX B: TWO INTERACTION VERTICES
SUBDOMINANT DIAGRAM

A second diagram with two bold two-particle vertices �

is shown in Fig. 9. The analytic expression is (global sign is
irrelevant, since we argue that it gives a subdominant contri-
bution in the q → ∞ limit)

χ1 d
(
q, ε(i)

q

) = ±i

n

∑
σ,σ ′

∫ +∞

0
dt

∫
R4

4∏
i=1

dti

∫
d3kd3k′d3P

(2π )9

× e−i q2

2 mi
t Gσ (k − q, t1)Gσ (k,−t2)

× �(P, t2 − t1)G−σ (P − k + q, t1 − t4)

× G−σ (P − k, t3 − t2)�(P + k′ − k, t4 − t3)

× Gσ (k′, t3 − t )Gσ (k′ − q, t − t4). (B1)

If we assume that all G′s are retarded with momenta which
are large, i.e., of order q, this gives seven conditions for the
different times: t1 > 0, t2 < 0, t3 > t2, t1 > t4, t > t4, t3 > t ,
and t > 0. The first, sixth, and seventh conditions imply the
third condition, so we have six conditions. If we assume that
|P| > � is large, this means that the dominant contribution is
for t2 > t1, which is inconsistent with the conditions. There-
fore, we assume |P| < �. We find that |P + k′ − k| � �, and
the dominant contribution is for t4 > t3, which is inconsistent

with previous conditions. As a conclusion, we find that this
diagram is not dominant, compared to the diagram for χ1 c.

We can recover this result in another manner. We assume
that all the fermionic wave vectors of G′s are of order q and are
large compared to ktyp. This means that at lowest order all the
G′s are retarded. Consider the time loop: 0 → t1 → t2 → 0.
Due to the retarded nature of the two G′s in this loop, the time
difference in � in this loop must be negative. This means that,
at lowest order, the wave vector of the � in the loop cannot be
large. We come to the same conclusion for the wave vector of
the second �, by considering the time loop t → t4 → t3 → t .
Following the same procedure as before, we see that there is
only one independent wave vector which is large. The integral
on this large wave vector gives a factor q3, while the integrals
on the five time differences give a factor (q−2)5 = q−10. This
gives finally a subdominant contribution of order q−7.

APPENDIX C: SUBDOMINANT DIAGRAMS WITH
MORE THAN THREE VERTICES

In this section, we give arguments which justify that bold
diagrams for the density-density response function with three
or more two-particle vertices give a subdominant contribution
in the q → ∞ limit. We assume that dominant contributions
in integrals come from high wave vectors (i.e., larger than ktyp)
of Green’s functions. The Green’s functions are then replaced
by free particle Green’s functions (indeed for negative time
differences, due to Property 3, the Green’s function tends
to zero like the wave vector to the power −4). Consider a
diagram with M two-particle vertices �. For M = 0 the di-
agram is shown in Fig. 3; for M = 1 it is shown in Fig. 4.
The two diagrams for M = 2 are shown in Figs. 5 and 9.
The q dependence comes from three contributions. The first
contribution is a “phase space” contribution: one integrates
on internal wave vectors which tend to infinity and scale
like q. Each three-dimensional integration gives a factor q3.
We denote N1 the number of such independent wave vectors.
The integrations give a factor q3 N1 . The second contribution
comes from integration on “small” positive (i.e., smaller than
ttyp) time differences entering Green’s functions. According
to our hypothesis, the wave vectors are of order q and each
time integration gives a factor of order q−2. We denote N2

the number of independent time differences entering Green’s
functions. Theses integrations give a factor q−2N2 . The third
contribution comes from integration on small positive time
differences of �′s, if the wave vector is “large.” The time
integration gives a factor q−1 (see Sec. IV C). We denote N3

the number of such time differences and wave vectors. These
time integrations give a factor q−N3 . In total, the contribution
of a diagram with numbers N1, N2, and N3 scales like qα , with

α = 3 N1 − 2 N2 − N3. (C1)

As an example, for the diagram in Fig. 3, we have M = 0,
N1 = 0, N2 = 1, and N3 = 0, and α = −2. For the diagram
in Fig. 4, we have M = 1, N1 = 1, N2 = 3, and N3 = 0, and
α = −3. For the diagram in Fig. 5, we have M = 2, N1 = 2,
N2 = 4, and N3 = 1, and α = −3. The diagram in Fig. 9
is subdominant. Indeed, we have seen in Appendix B that
N1 = 1, N2 = 5, N3 = 1, and α = −7.
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We now consider the general case, with M � 3 vertices �.
There are M + 1 independent wave vectors. N3 wave vectors
of �′s are high and therefore there are N ′

3 = M − N3 low wave
vectors for �′s. The total number of independent wave vec-
tors which are high is therefore N1 = M + 1 − N ′

3 = N3 + 1.
There are 2 M + 1 independent time differences. Among these
time differences, N3 are assigned to �′s with high momenta.
We assume that all the remaining ones are assigned to G′s
which have high momenta and are retarded. This gives N2 =
2 M + 1 − N3. We find

α = 4 N3 − 4 M + 1. (C2)

Using this formula, we recover the results we obtained for
M = 1 and M = 2. Indeed, in these cases, N3 = M − 1 and
α = −3. If N3 � M − 2, we find α � −7.

For M � 3, we argue that N3 � M − 2, or equivalently that
N ′

3, the number of advanced �′s, is larger than 2. Indeed, for
M = 3, by inspection of all the possible bold diagrams, we
found that at least 2 �′s are advanced. This is due to time
loops that involve one or two �′s and Green’s functions that
are retarded, and we expect this will occur in general. N3 �
M − 2 means, using Eq. (C2), that α � −7, and we conclude
that these diagrams give subdominant contributions.
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