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Inspiration from machine learning on the example of optimization of the Bose-Einstein
condensate of thulium atoms in a 1064-nm trap
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The number of atoms in Bose-Einstein condensate determines the scale of experiments that can be performed,
making it crucial for quantum simulations. Optimization of the number of atoms in the condensate is a complex
problem which could be efficiently solved using the machine learning technique. Nevertheless, this approach
usually does not give any insight in the underlying physics. Here we demonstrate the possibility to learn physics
from machine learning on an example of condensation of thulium atoms at a 1064-nm dipole trap. Optimization
of the number of condensed atoms revealed a saturation, which was explained as a limitation imposed by a
three-body recombination process. This limitation was successfully overcome by leveraging Fano-Feshbach
resonances.
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I. INTRODUCTION

After the first successful cooling of rubidium [1] and
sodium [2] atoms to the Bose-Einstein condensation (BEC),
the field of cold atom-based quantum degenerate gases rapidly
developed [3–11]. One intriguing application of the con-
densate is quantum simulations, enabling the understanding
of complex materials through modeling in a controllable
quantum system [12]. Among many candidates for quan-
tum simulations, lanthanoids hold a special place due to
their large magnetic moment in the ground state, facilitating
long-range interactions and a significant number of low-field
Fano-Feshbach resonances. These resonances allow detailed
control of short-range interactions. The thulium atom has a
magnetic dipole moment of four Bohr magnetons (4μB) in
the ground state and a dense nonchaotic set of Fano-Feshbach
resonances [13,14]. Recently, the machine learning approach
has made it possible to condense thulium atoms into BEC in a
532-nm dipole trap, providing close atom packing [11].

Moreover, following the pioneering work [15] several
groups switched to simulations in a quantum gas microscope
[16–21]. This approach offers the advantage of individ-
ual atom control instead of relying solely on ensemble
measurements. This individual control becomes particularly
advantageous when addressing issues such as Anderson
localization [22–24]. Therefore, establishing a quantum mi-
croscope for the thulium atom could prove highly beneficial.

The necessity to optically resolve nearby sites requires a
numerical aperture of an objective to be as high as possible
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[15–21]. Given realistic limitations regarding a housing of the
vacuum volume, the size of an individual lattice size was in-
tended to be set to about a micron. For applications involving
optical lattices with site sizes ranging 0.5 to several microns,
implementing a dipole trap operating at a wavelength around
one micron offers distinct advantages.

In this work, cooling of the thulium atom to the BEC
in a 1064-nm dipole trap was performed. The cooling was
optimized using the Bayesian machine learning technique that
has already demonstrated valuable impact on the performance
of experiments with BEC production [25–27]. The machine
learning optimization was found to experience saturation at a
level of about 2 × 104 atoms in the condensate. This satura-
tion made it possible to conclude that there is an uncontrolled
parameter responsible for the limitation. Thus, the spectrum of
Feshbach resonances of the thulium atom [13,14] was reeval-
uated, and another magnetic field for the cooling sequence
was selected. This adjustment indeed enabled the optimizer
to increase the number of atoms in the condensate.

II. EXPERIMENTAL SETUP

The experimental setup closely followed the configuration
presented in [11]. The Zeeman slower and two-dimensional
(2D) optical molasses precooled atoms operate at the strong
transition 4 f 13(2F 0)6s2 → 4 f 12(3H5)5d3/26s2 with a wave-
length of 410.6 nm and a natural width of � = 2πγ =
2π10.5 MHz. Following the precooling stage, atoms were
loaded into the magneto-optical trap (MOT) operating at the
weaker transition 4 f 13(2F o)6s2 → 4 f 12(3H6)5d5/26s2 with a
wavelength of 530.7 nm and a natural width of � = 2πγ =
2π345.5 kHz [28]. The large detuning of the MOT light along
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FIG. 1. (a) Schematic of how the ODT beams are directed to the main UHV cell. Red lines show horizontal and vertical ODT beams; the
violet line shows the probe beam for the absorption imaging. (b) Evaporation sequence. The blue dots represent the values of beam powers
that were set as input parameters for the optimizer.

with the reduction of its intensity provided the polarization of
atoms at the lowest magnetic sublevel |F = 4; mF = −4〉 of
the ground state [29–34]. The atoms were cooled down to 22.5
± 2.5 µK and then loaded into the optical dipole trap (ODT)
[Fig. 1(a)]. The ODT was formed by a linearly polarized laser
beam (“horizontal beam PH ”) with a wavelength of 1064 nm

focused on the beam waist of 24.0 ± 0.4 and 54.2 ± 0.7 µm.
The beam was scanned using an acousto-optic modulator to
increase the geometrical overlap of the ODT and MOT po-
tentials [35]. The second “vertical beam PV ” with a waist of
100 ± 4 µm formed the crossed ODT (cODT) potential to
increase confinement and collision rate during evaporation.

FIG. 2. Bimodal fit of the atomic cloud. (a) Density plot of the atomic cloud with the presence of BEC. (b) The mask used to separate the
thermal cloud and the BEC fraction. (c) 3D plot of the thermal cloud fit, (d) 3D plot of the joint Thomas-Fermi and thermal clouds fits.
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FIG. 3. (a) Optimized horizontal ODT beam power in the log scale obtained in different optimization runs. (b) The process of optimization
with the fixed total duration of the evaporation step. The longer the setup total duration, the larger the resulting PSD of the atomic cloud. The
shaded regions with dashed and dotted edges represent the boundaries of the search region. The results of optimization are for the duration of
the evaporation sequence; the number of atoms, temperature, and phase space density are 11.8 s, 6 × 105 atoms, 1.5 µK, 0.034: 14 s, 4 × 105

atoms, 0.8 µK, 0.1; 16.8 s, BEС 2 × 104 atoms, thermal cloud 1.3 × 104 atoms, 0, 07 µK. (c) The saturation of BEC atoms in one magnetic
field and the increment of it in the other. (d) Fragment of the Feshbach resonance spectrum, taken from [13]. Vertical lines indicate positions,
selected for condensation experiments.

In the cODT, the evaporation was performed via sequential
ramps of the power [Fig. 1(b)] of the beams thereby lowering
the walls of the trap potential and allowing the higher energy
atoms to escape. This stage was the focus of the optimization
process. Simple linear parametrization was used, and the pa-
rameters specifying the sequence were the end points of the
linear power ramps.

Imaging of the atoms was achieved through absorption in a
probe beam [32]. The atomic cloud, reaching Bose-Einstein
condensation, exhibits a bimodal distribution reflected in a
two-dimensional absorption image [see Fig. 2(a)]. Following
a method similar to [33] for determining the number of con-
densed atoms NBEC, a special mask was employed to separate
the thermal cloud and the BEC fraction. Data points from the
central region of the absorption image overlaying the mask
were excluded, and the remaining data were fitted with a
Gaussian distribution [see Fig. 2(c)]. The size of the mask
was represented by the s parameter. The final size parameter
s was defined as the value when the width σx of Gaussian
distribution ceases to change [Fig. 2(b)]. Subsequently, the
corresponding Gaussian fit was subtracted from the initial data
point-by-point to yield the BEC fraction of the atomic cloud.
The BEC fraction data were then fitted with the Thomas-
Fermi distribution, providing the BEC size and the number
of atoms within it. The initial atomic cloud conforms to the
bimodal distribution [see Fig. 2(d)].

III. OPTIMIZATION PROCEDURE

There are a number of optimization algorithms available;
for example, gradient [36], genetic [37], and hybrid [38] al-
gorithms have been used in real-time quantum experiments.
Here a feedbacklike experimental procedure using a Bayesian
machine learning technique based on the Gaussian processes
model (for the details see Appendix A) was implemented.
Initially, the optimization criterion was the efficiency of evap-
oration γ :

γ = ln
DPS

DPS
(0)

/
ln

N (0)

N
, (1)

where DPS
(0) and DPS are the initial and final phase space

densities of the atomic cloud, respectively, and N (0) and N
are the initial and final numbers of atoms, respectively [11].

In the original configuration of the setup, the duration of
evaporation step was fixed, and only the intensity of cooling
beams was varied. One might question whether this approach
is reasonable or whether a change in the duration of the evap-
oration step might be beneficial. The answer to this question
could be derived from machine learning without necessar-
ily setting the total duration of the evaporation step as an
optimization parameter. The procedure involves running op-
timization with the total duration of the evaporation step t1
and then conducting another optimization with t2 > t1. If the
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FIG. 4. (a) Calculated dependence of the PSD versus the number of atoms. PSD is calculated separately for the horizontal and crossed
ODT, and values for the both atomic clouds are presented in the intermediate region (see Appendix B). (b) Phase space density (PSD) of the
atomic cloud during the cooling sequence. (c) The dependence of the maximum achieved NBEC and the total duration of evaporation step in the
ODT on the magnetic field. (d) Decay of the thulium BEC and comparison with the theoretical curve from [44] (solid line). The theoretical
curve was rescaled in horizontal and vertical directions by the factors 0.34 and 0.130, respectively.

results are the same, setting the total time of the evaporation
ramps as an optimization parameter would waste computer
resources rather than provide a better result, supposing the
dependance of the evaporation efficiency from the duration
of evaporation process to be a smooth function.

Contrarily, it was found that, with the cost function (1), the
best ramps with a total duration of the evaporation step of 11.8
s were approaching the parameter boundaries, with the phase
space densities (PSDs) reaching 0.034 [the “11.8 s” label in
Fig. 3(b)]. This clearly underscores that the optimum evapo-
ration for achieving quantum degeneracy should last longer.
Consequently, the duration of cooling cycle was increased to
14 s. With this adjustment, the best ramps did not reach the
boundaries [the “14 s” label in Fig. 3(b)], but the atomic cloud
exhibited a PSD of about 0.1, and the duration of evaporation
step was still insufficient to achieve condensation. It is worth
noting that the horizontal beam power at 11.8 s of the 14-s
evaporation sequence exceeds that of the 11.8-s sequence,
confirming the necessity to increase the total duration of the
evaporation step.

The final goal of the experiment is the optimization of the
number of atoms in the condensate. Since the phase space
density no longer rises once the condensate is achieved, the
cost function (1) becomes meaningless. Therefore, to opti-
mize the number of atoms in the condensate, the cost function
was modified as

C(X) = βγ γ + βBECNBEC, (2)

where NBEC is the number of atoms in BEC (see Fig. 2),
βγ and βBEC are coefficients that can be tailored arbitrarily.
This way, the number of atoms is explicitly included in the
cost function. It should be noted that cooling efficiency γ

should also be taken into account since if for some reason
condensate was not achieved, the number of atoms in the
condensate would be 0. If only the number of atoms in the
condensate was the cost function, then all the runs without
BEC would be treated equally and the machine would not
learn from those. The presence of γ helps to solve this issue
and to use the experimental runs in the learning process more
efficiently.

Considering that the 14-s cooling duration still appears
to be too short as mentioned above, two 1.4-s-long ramps
were added to the evaporation sequence. The optimization
routine was performed with the new cost (2) and only six
parameters—the three last powers in the horizontal and ver-
tical beams (the “16.8 Tail” label in Fig. 3). The other
parameters were set to the best values found in the pre-
vious optimization run to ensure high PSD before the
BEC formation. The best evaporation sequence produced the
BEC with (2.0 ± 0.2) × 104 atoms. Note that the horizontal
power at the 14-s moment while being a varying param-
eter had not remarkably changed during this optimization
run.

The goal of optimization is to identify the global optimum
of an evaporation process [26]. The described iterative pro-
cedure likely finds a local optimum, so the optimization was
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FIG. 5. (a) Horizontal ODT beam power in a linear scale. (b) Horizontal ODT beam power in a linear scale (zoomed). (c) Vertical ODT
beam power. (d) The aspect ratio of BEC during the free fall expansion.

performed with the parameters representing the full evapo-
rative sequence [labeled as “16.8 Full” in Fig. 3(a)]. It is
noteworthy that the power of the horizontal beam in the 16.8
full sequence at 14 s became larger than the one of the 16.8
tail, while the last two remained unchanged. The number of
atoms in the BEC did not change. It underlines the fact that
the first ramps of evaporation are not as crucial for the final
BEC production.

Finally, the optimization was performed by varying the
total duration of the evaporation ramps as a parameter [the
“Duration variation” label in Fig. 3(a)], and a slightly shorter
16.3-s sequence with approximately the same powers and the
same number of atoms in the BEC was achieved.

Several sequences achieved from optimization procedures
are presented in Fig. 3(a). It is evident that variations in the
beam power are not quite trivial. Further details can be found
in Appendix A.

IV. UNDERSTANDING OF PHYSICS LIMITING
OPTIMIZATION

The optimization technique mentioned above compelled
the learner to acquire a large number of atoms with subcritical
phase density, leading to a significant increase in the number
of atoms with a critical PSD just before BEC formation.
However, the number of atoms in the BEC itself did not
rise substantially, despite being the optimization criterion. On
the contrary, the BEC atom count exhibits a ceiling effect.
Specifically, the number of atoms at a critical PSD = 2.61
(see Sec. V B at [39]) increases from one experiment to an-
other, but the number of atoms in the condensate remains more
or less the same [Fig. 3(c), label “3.91G”]. This observation

suggests that there is likely some inelastic process during the
evaporation cooling, which becomes strongly enhanced when
the BEC starts to form. The dynamics of evaporation cooling
were extensively studied [40] in the regime of low phase
density, which however does not seem to yield any surprises.
In the regime of high PSD, when condensate starts to form,
one might expect a decrease in the three-body recombination
cross section [41] on the one side, but a considerable rise in the
density of atoms in the BEC region on the other. Thus, given
the saturation observed, one can conclude that three-body
recombination, examined previously for 87Rb atoms [42,43],
is likely to be a limiting factor for evaporation cooling and
loading a large number of thulium atoms into the BEC.

The three-body recombination may be strongly enhanced
in the middle of Fano-Feshbach resonance. These resonances
were studied before for the thulium atom and exhibited
strong temperature dependence [13,14]. At higher tempera-
tures, higher-order resonances appear in the spectrum [see
Fig. 3(d)]. Nevertheless, these resonances at lower tempera-
tures are not completely forbidden, they are just suppressed by
a centrifugal barrier, but should still have a finite cross section.
In the regime of large density, the overall probability of high-
order Feshbach resonance may become significant and lead
to three-body recombination. It is important to note that this
logic had not been confirmed by any calculation and had been
a pure guess inspired by the optimization behavior. To test this
idea, optimization was performed in several magnetic fields
for which there were no known types of Feshbach resonances
[see Fig. 3(d)].

Initially, the magnetic field of 4.80 G was selected to per-
form the BEC optimization. The number of atoms in BEC
strongly exceeded the value previously found for 3.91 G
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[Fig. 3(c), label “4.8G”]. The number of atoms right before
quantum degeneracy was also expectedly larger. To under-
stand possible reasons for this, the parameters of the atomic
cloud were measured at each point of an evaporation se-
quence, found by the optimization procedure [Figs. 4(a) and
4(b)]. The diagram in Fig. 4(a) clearly demonstrates that the
efficiency of evaporation was better in the magnetic field of
4.80 G in the crossed ODT and did not significantly differ in
the horizontal one.

Two other magnetic fields were set up for BEC optimiza-
tion. Figure 4(c) illustrates that both the optimal duration of
the evaporation step and the number of atoms in the conden-
sate strongly depend on the magnetic field (see Appendix C).
The shrinkage of evaporation is likely caused by the depen-
dence of scattering length on the magnetic field, but it may
also be related to the three-body recombination loss channel.
However, the maximum number of atoms in BEC does not
increase with decreasing the duration of the evaporation step.

Finally, after an intensive literature search, it was discov-
ered that the effect of saturation of the number of atoms in
BEC due to three-body recombination was actually theoret-
ically predicted before for 87Rb atoms in a magnetic trap
[44]. One of the key features of this prediction is the gradual
decay of BEC, which is, indeed, observed in the experiment
[Fig. 4(d)]. To compare with the theoretical prediction, the
theoretical curve, presented in [44], was fitted to the experi-
mental data by rescaling the curve horizontally and vertically
with the factors 0.34 and 0.130, respectively. Of course,
thulium parameters differ from ones for rubidium, but there
is no doubt that the general trend is the same. Note that three-
body recombination limiting the number of atoms in BEC has
been observed for rubidium and sodium atoms in a magnetic
trap [45,46]. In that case the fast evaporation ramps were
applied at the final stages of evaporation to reduce the integral
effect of three-body recombination loss to contrast with our
method, relying on the changing three-body recombination
rate itself via Feshbach resonance.

V. CONCLUSION

In summary, Bayesian optimization was used to obtain
the BEC of thulium atoms in a 1064-nm optical dipole trap.
The implemented optimization procedure made it possible
to observe the saturation of the number of atoms in BEC,
which was interpreted as three-body recombination caused
saturation. Overcoming this saturation involved analyzing the
Feshbach resonance spectrum at a relatively high tempera-
ture and selecting another magnetic field for the evaporation
procedure. As a result, up to 4 × 104 atoms were condensed
into the BEC state thus increasing the number of atoms in the
condensate by a factor of 2. The behavior of the BEC decay
over time was compared with the previous prediction, made
for 87Rb atoms, indeed attributing the decay to a three-body
recombination.
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APPENDIX A: OPTIMIZATION DETAILS

1. Optimization algorithm

Given M experimental parameters X ∈ RM subject to
optimization and the measure of performance C(X), the op-
timization problem can be interpreted as finding the global
optimum of a black-box function. This problem is addressed
automatically via sequential probing of C(X). In a typical op-
timization loop, the control computer sends parameters Xi to
the experimental apparatus, receives and evaluates C(Xi ), and
decides which parameters Xi+1 to probe next. The Bayesian
optimization algorithm was applied, which builds a statistical
model of C(X) (which is called “cost function” in the context
of machine learning) and utilizes it to choose Xi+1.

To perform the Bayesian optimization, one should choose
a type of model and a strategy to update the model. Fol-
lowing the previous results [11], the most common type of
model was exploited—the Gaussian process, which consid-
ers C(X) as a stochastic Gaussian process. In other words,
at any X, there is a random variable with a Gaussian dis-
tribution p(μ(X), σ (X)) with a mean μ(X) and a standard
deviation σ (X). The update strategy is probing the mini-
mum of a biased cost function a(X) = χμμ(X) + χσσ (X).
Different combinations of coefficients χμ and χσ make it
possible to perform different types of strategies. For exam-
ple, if C(X) should be globally minimized, the combination
χμ = 1, χσ = 0 represents an “optimizer” strategy, and χμ =
0, χσ = −1 represents a “scientist” one [37]. To avoid trap-
ping in the local minimum, a balance between these two
strategies should be maintained. Therefore, a cycle with four
X points was chosen: three points corresponded to the min-
imum of a biased cost function with the coefficients from
the sets χμ = {1, 0, 1}, χσ = {0, −1, −1} plus one ran-
domly chosen X point. To build the initial Gaussian model the
optimization procedure started with 30 runs with randomly
chosen parameters. Then the four-step cycle mentioned above
was repeated, after every of which the updated model was
built. Generally, the best cost value was reached in 100–300
iterations (including 30 first random ones) for launches with
the number of parameters M ranging 6–16.

2. Comments on beam scanning

The process of turning off the horizontal beam scanning
(refer to the main text) underwent optimization through nu-
merous runs including those described in the main text. All
the obtained evaporation sequences indicated that the optimal
strategy was turning off the sweeping with a fast 100-ms ramp.
Alternative approaches such as employing several long ramps
or sweeping the beam throughout the entire evaporation pro-
cess, resulted in poorer PSD due to a smaller number of atoms
compared to the “fast turn off” strategy. This was observed
despite the fact that the temperature immediately increased
up to 50 µK after turning off. That is why in the subsequent
optimization runs, the starting point was fixed at the moment
when the sweeping was turned off.
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FIG. 6. (a) Horizontal ODT beam power in a log scale. (b) Horizontal ODT beam power in a linear scale. (c) Horizontal ODT beam power
in a linear scale (zoomed). (c) Vertical ODT beam power.

3. Types of optimizations

The best evaporation ramps for different optimization types
in the 3.91-G magnetic field are presented in Figs. 5(a)–5(c).
Note that the “duration variation” sequence, achieved with
the total duration of the ramps as a parameter, is slightly
shorter than set earlier. Besides, the aspect ratio of the BEC
is presented in Fig. 1(d).

APPENDIX B: MEASUREMENT OF PSD

The phase space density DPS of an atomic cloud was cal-
culated as

DPS = N

(
hν̄

kbT

)3

, (3)

where N is the number of atoms, ν̄ is the geometric mean
of the x, y, z trap frequencies, and T is the temperature of
an atomic cloud. During the evaporation, atoms from the
horizontal ODT are loaded into the crossed ODT, and both of
them are presented in the absorption image overlaying. The
horizontal and crossed ODT clouds were separated by the
double Gaussian fit, and the DPS value was calculated for each
of them independently. That is the reason why the plots in the
main text contain two separate sections.

APPENDIX C: EVAPORATION IN VARIOUS
MAGNETIC FIELDS

Figure 6 shows evaporation ramps obtained by the opti-
mization procedure with a cost function (2) (see the main text)
for different magnetic fields.
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