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We present a quantum-Monte-Carlo–based density functional to describe droplet formation and supersolidity
in dipolar systems. The usual Lee-Huang-Yang term, accounting for quantum correlations in the conventional
extended Gross-Pitaevskii equation (eGPE), has been substituted by the correlation energy evaluated with
quantum Monte Carlo. We demonstrate the ability of our functional to reproduce existing experimental data
for the minimum critical number of atoms Nc required for droplet formation. Nc is a challenging quantity for
theoretical predictions, and the eGPE provides only a qualitative description of it, mainly when it is applied
to dysprosium. We also use our approach to characterize the BEC-supersolid transition. The quantum-Monte-
Carlo–based functional can be easily implemented in any existing eGPE code, improving the description of
dipolar systems without increasing the computational cost.
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I. INTRODUCTION

Ultracold dipolar systems made up of lanthanide atoms,
mainly Dy [1], Er [2], or their mixtures [3], have been
extensively studied in recent years (see Ref. [4] for an ex-
perimental review). The long-range and anisotropic nature of
the dipolar interaction gives place to unique many-body phe-
nomena such as the formation of ultradilute quantum droplets
[5–7], the existence of supersolid phases [8–10], and, recently,
the observation of anomalous temperature behavior [11,12].
State-of-the-art experiments provide unprecedented insight
into this correlated regime. Some achievements in this respect
are the measurement of the roton of the quasiparticle excita-
tion spectrum [13], of collective excitations [14–16], and of
the static structure factor, which has been used to character-
ize density fluctuations across the BEC-supersolid transition
[17,18]. Recently, the first Bose-Einstein condensate of polar
molecules has been observed [19], which would potentially
give access to the study of new phenomena in dipolar systems.

The extended Gross-Pitaevskii equation (eGPE), which
includes beyond-mean-field contributions to the Lee-Huang-
Yang (LHY) form [20–22], has been extensively utilized to
describe ultracold dipolar systems with remarkable success
[23–29]. For instance, in Er systems, this theory allows us
to describe the formation of droplets [6], supersolid phases
[30], and also the excitation spectrum [13,30]. Similarly, for
Dy atoms, the eGPE has been successfully applied to evaluate
superfluid critical velocities [31] and collective excitations
[14,15] and to describe striped states in oblate traps [32].
Despite these successes, some challenges still need to be
addressed. It has been shown that incorporating the LHY
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correction does not always result in an improvement, for
instance, in the description of the roton minimum for Er sys-
tems [33]. More significantly, eGPE prediction of the critical
(minimum) atom number to form a droplet in Dy systems is
only qualitative [34]. In addition to this evidence, it is worth
highlighting a fundamental drawback that affects the eGPE
description in the regime where dipolar interaction dominates,
namely, its dynamic instability in the long-wavelength limit.

Efforts to refine the eGPE description of ultracold dipolar
systems have attempted to improve the description of quantum
correlations [35–37] or to include thermal effects in the model
[38,39]. An alternative approach consists of using quantum
Monte Carlo (QMC), which evaluates exactly quantum cor-
relations at all orders. However, its huge computational cost
hinders the direct calculation of large systems containing a
number of atoms N > 104. To tackle this limitation, models
in which the experimental scattering length is rescaled to
allow for the formation of small droplets have been used
[40,41]. QMC calculations have also estimated the critical
atom number for a small droplet (N ∼ 103) [34]. The critical
atom number arises from a subtle balance between dipolar
attraction and quantum correlations, making it a challenging
quantity to calculate. In the context of Bose-Bose mixtures, it
has been shown that it is possible to avoid the QMC limitation
in the number of atoms by constructing a density functional
[42–45] with the same approach that was used previously in
the study of liquid-4He drops [46,47]. Such a functional im-
proves the description of quantum correlations, as it includes
information from the QMC equation of state (EOS). In this
work, we present a QMC-based density functional (DF) for
dipolar systems. We specialize it to the study of Dy (Dy-DF).
The Dy-DF is able to accurately reproduce the critical atom
number for droplet formation, highlighting the potential of
this approach for advancing our understanding of ultracold
dipolar droplets. We also show that it can be applied to study
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other relevant phenomena in Dy systems, such as the BEC-
supersolid transition.

This paper is organized as follows. In Sec. II A we provide
a description of the system that we study. In Secs. II B and II C
the eGPE and path-integral ground-state (PIGS) methods are
briefly described. PIGS results for the EOS are discussed in
Sec. III. In Sec. IV we explain how we use the EOS obtained
with the PIGS method to construct an eGPE-like density func-
tional, which we call the dysprosium density functional. The
accuracy of the Dy-DF is benchmarked using the available
experimental data for the critical atom numbers of 162Dy and
164Dy droplets [34] in Sec. V. In Sec. VI we use the Dy-DF
to study the BEC-supersolid transition, paying attention to
the different observables. We also discuss the differences that
emerge between the eGPE predictions and our theory. Finally,
in Sec. VII some conclusions are summarized.

II. METHOD

A. The dipolar system

We study a system of N 162Dy magnetic atoms with all
the magnetic moments aligned along the Z direction in space.
Such a system can be described by the following Hamiltonian:

Ĥ = T̂ + V̂trap + V̂2B, (1)

where T̂ = −∑N
i=1

h̄2∇̂2
i

2M is the quantum kinetic-energy op-
erator, with M being the mass of 162Dy; V̂trap is an external
trapping potential; and V̂2B = V̂SR + V̂dd is the two-body po-
tential, consisting of a short-range Lennard-Jones potential
V̂SR and a dipolar one V̂dd,

VSR(R) =
N∑

i< j

C12

r12
i j

− C6

r6
i j

, (2)

Vdd(R) =
N∑

i< j

Cdd

4π

1 − 3 cos2 θi j

r3
i j

, (3)

with R = (r1, r2, . . . , rN ) being the set of 3N coordinates, ri

being the position of the ith particle, ri j = ri − r j , (ri j, θi j )
being the polar coordinates of the vector ri j , and the Ci con-
stants determining the strength of the different contributions
to V2B. The C12 value is chosen so that the total interaction
potential has the desired s-wave scattering length as by solv-
ing the Lippmann-Schwinger equation associated with the T
matrix of the full interaction [34], the van der Waals C6 coef-
ficient is fixed to the dysprosium experimental value [48], and
Cdd = μ0m2, with μ0 being the vacuum magnetic permeabil-
ity and m ≈ 10μB being the magnetic moment of 162Dy. The
trapping potential V̂trap is chosen to be a one-body harmonic
potential. To evaluate the properties of a bulk, infinite system,
the external potential is set to zero. The results presented in
this work are in units of the dipolar length r0 = CddM

4π h̄2 and

the corresponding dipolar units of energy E0 = h̄2

Mr2
0
, unless

otherwise stated.

B. The Gross-Pitaevskii equation

The Gross-Pitaevskii equation is a nonlinear differential
equation that allows us to describe a bosonic system at zero

temperature. It provides a mean-field description assuming
that almost all of the system remains in the condensate. When
quantum correlations in the LHY form are included, it is
usually referred to as the extended Gross-Pitaevskii equation,
which in the case of a dipolar system reads [21,22,24–26]

ih̄
∂

∂t
�(r, t ) = μ�(r, t ), (4)

where � is the one-body mean-field wave function and μ is
the chemical potential, which reads

μ = − h̄2∇2

2M
+ Vtrap + g|�|2 + �QF|�|3 + �dd, (5)

with g = 4π h̄2as/M being the coupling constant and �QF|�|3
being the LHY correction including quantum correlations
[20–22],

�QF|�|3 = 32g
√

a3
s

3
√

π
Q5(εdd )|�|3, (6)

with εdd = add/as, add = r0/3 = Cd dM
12π h̄2 , and Q5(εdd ) =

1
2

∫ π

0 dα sin α[1 + εdd(3 cos2 α − 1)]5/2; the last term in
Eq. (5) is a nonlocal term that accounts for the dipolar
interaction,

�dd(r) =
∫

dr′Vdd(r − r′)|�(r′, t )|2. (7)

At zero temperature, the chemical potential of Eq. (4) is
related to the internal energy U through the thermodynamic
relation

μ =
(

∂U

∂N

)
V

= ρ

N

(
∂U

∂ρ

)
V

=
(

∂E
∂ρ

)
V

, (8)

where V = N/ρ is the volume of the system, ρ is the density,
and E = ρU/N is the energy per unit of volume or the energy
density.

C. Path-integral ground state

PIGS is a stochastic method that allows us to evaluate the
properties of quantum many-body systems at zero temperature
[49–52]. In the case of bosonic systems it provides exact re-
sults within some statistical uncertainty. The method allows us
to sample the ground state of the system φ0 by propagating in
imaginary time τ a many-body trial wave function �T(R, τ ),

φ0 = lim
τ→∞ �(R, τ ) =

∫
lim

τ→∞ dR′G(R, R′; τ )�T (R′, 0),

(9)

where G(R, R′; τ ) is the propagator operator in the imaginary-
time interval τ .

In general, the many-body propagator is unknown, and
instead, one uses a short-time approximation δτ and iterates
Eq. (9). To achieve large imaginary times, a set of Mb interme-
diate coordinates (beads) {Ri} is introduced in Eq. (9), which
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FIG. 1. PIGS results for (a) energy per particle E , (b) energy per particle without a dipolar contribution E − 〈V̂dd〉φ0 , (c) dipolar energy
per particle 〈V̂dd〉φ0 , and (d) correlation energy per particle 〈T̂ 〉φ0 as a function of the density ρr3

0 . Results are shown for different values of the
scattering length. Lines are guides to the eye.

takes the form

φ0(RNb+1) = lim
δτ→0

Nb→∞
τ→∞

∫ Mb∏
i=1

dR1dR2 · · · dRNb

× G(Ri+1, Ri; δτ )�T(R1, 0). (10)

The method guarantees that the ground state is reached for
sufficiently small δτ and sufficiently large Nb, with τ =
δτMb → ∞, as long as the trial wave function is not or-
thogonal to the actual ground state of the system. We use a
fourth-order Chin action propagator [53,54], and permutations
are sampled with the efficient worm algorithm [55,56]. In the
calculations presented in this work the trial wave function is
chosen to be a constant, which has been demonstrated to be
sufficient even for correlated systems such as 4He [57].

III. EQUATION OF STATE

The bulk dipolar system is simulated by considering N =
512 162Dy atoms in a cubic box of length L = √

N/ρ with
fixed density ρ and periodic boundary conditions. We con-
sider values of the scattering length that cover the whole range
of state-of-the-art experiments with 162Dy and 164Dy atoms:
as = {60, 70, 80, 90, 101.57, 110}aB, with aB being the Bohr
radius. The energy per particle E (ρ) of Fig. 1(a) corresponds
to the EOS of a liquid; i.e., it exhibits a minimum in the energy
per particle at the equilibrium density ρeq. The values of the
equilibrium density ρeq and the binding energy per particle
Eb are shown in Table I. For small values of the scattering
length the dipolar interaction dominates, and the system forms
a denser liquid with a larger binding energy. The formation of

the liquid arises from the balance between dipolar attraction
and the repulsion coming from quantum correlations.

To give further insight into the energetic balance of the
dipolar system, in Fig. 1(b) the dipolar energy contribution
to the energy per particle 〈V̂dd〉φ0 is subtracted from E , and
Fig. 1(c) plots 〈V̂dd〉φ0 . In the above expressions 〈Ôdd〉φ0 stands
for the expectation value of the operator Ô in the ground
state of the system. Results in Figs. 1(b) and 1(c) show that
the binding of the dipolar systems is entirely caused by the
dipolar attraction. In this respect, it is worth remarking that
E arises from a large cancellation between these two terms,
which hints at the subtle energetic balance that exists between
short-range repulsion, quantum correlation energy, and dipo-
lar interaction in the ultracold regime. To elucidate the role
that quantum correlations play, in Fig. 1(d) we show explicitly
the kinetic (correlation) energy 〈T̂ 〉φ0 . Comparing Figs. 1(b)
and 1(d) clearly shows that quantum correlations dominate
the repulsive contribution to E and thus play a major role in
the stabilization of the system. This is a well-known fact in the
ultracold-gas community, although an accurate quantitative

TABLE I. PIGS results for the equilibrium density ρeq and bind-
ing energy per atom Eb at that density for a bulk 162Dy system.

as/aB ρeqr2
0 Eb/E0

60.00 0.068 −0.045
70.00 0.051 −0.033
80.00 0.039 −0.024
90.00 0.029 −0.018
101.57 0.023 −0.013
110.00 0.018 −0.011
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evaluation of quantum correlations for realistic experimental
parameters has been lacking. From the theoretical side, the
inclusion of quantum correlations in the form of a LHY term
in the Gross-Pitaevskii equation allows us to stabilize the
droplets and has allowed us to describe the mechanism of
droplet formation (see, for example, Ref. [23]). In the next
section we construct an eGPE density functional by replacing
the LHY term by the quantum correlations evaluated with
PIGS.

IV. DIPOLAR DENSITY FUNCTIONAL

The eGPE equation introduced in Sec. II B can be de-
rived from the minimization of the following functional for
the internal energy by imposing the usual energy variational
principle δ(E − μN ) = 0 [43,58]:

ULHY =
∫

ELHY[�]dr

=
∫ [

h̄2

2m
|∇�|2 + Vtrap|�|2 + 1

2
g|�|4 + 2

5
�QF|�|5

+1

2

∫
dr′Vdd(r − r′)|�(r′, t )|2|�(r, t )|2

]
dr. (11)

Using the local-density approximation (LDA), that is, setting
ρ = |�|2, one can rewrite the LHY-DF ELHY as

ELHY[ρ] = h̄2

2m
|∇√

ρ|2 + Vtrapρ + 1

2
gρ2 + 2

5
�QFρ

5/2

+ 1

2

∫
dr′Vdd(r − r′)ρ(r′)ρ(r). (12)

Note that in the case of a uniform bulk system [ρ(r) ∼
const, Vtrap = 0], the first two terms and the last one in Eq. (12)
vanish, and one obtains a functional for the energy density of
the uniform dipolar bulk system that reads

EBULK
LHY [ρ] = 1

2 gρ2 + 2
5�QFρ

5/2. (13)

On the other hand, using the PIGS method, one can com-
pute the EOS of the dipolar bulk system from the energy
per particle EQMC(ρ) = UQMC(ρ)/N for a given value of the
s-wave scattering length. For the system described by the
Hamiltonian in Eq. (1) it reads

EBULK
QMC (ρ = |φ0|2) = 〈T̂ 〉φ0 + 〈V̂SR〉φ0 + 〈V̂dd〉φ0 , (14)

which is a sum of three contributions: correlation energy,
short-range interaction, and dipolar interaction. As has been
done in the context of helium [46,47] and Bose-Bose mix-
tures [42–44], one could study the nonuniform system, e.g.,
confined BEC, droplets, etc., under the LDA approximation
with a functional of the form

EQMC[ρ] = h̄2

2m
|∇√

ρ|2 + Vtrapρ + EBULK
QMC [ρ], (15)

with EBULK
QMC = ρEBULK

QMC . However, it is important to note that
the functional in Eq. (15) is isotropic, and thus, it is not a good
functional to describe dipolar systems, in which the anisotropy
introduced by the dipolar interaction plays a major role. In
the LHY functional the anisotropy is naturally included in the
nonlocal dipolar potential Vdd.

FIG. 2. Solid and dashed lines show the quantum fluctuation
terms of the Dy-DF and the LHY-DF as a function of the density for
different values of the scattering length, respectively. In the former
case it corresponds to the nonlinear term (βργ ) in Eq. (16), and in
the latter it corresponds to Eq. (6).

In this work we construct an eGPE-like density functional
for dysprosium dipolar systems, replacing the quantum fluctu-
ations term in Eq. (12) with the nonlinear contribution to the
quantum kinetic energy. To do so, we fit 〈T̂ 〉φ0 (ρ) evaluated
with PIGS with a function of the form of (13). Explicitly,

〈T̂ 〉φ0 = αQMCρ + βQMCργQMC . (16)

This approach implies assuming that the linear term in the
usual eGPE description is accurate enough and that only a
modification in the quantum correlation term is needed in
order to include beyond-LHY effects. In a different approach,
small modifications to the LHY-DF were proposed in order to
improve the accuracy in the description of quantum dipolar
systems (see Ref. [37]). Due to the stochastic nature of the
PIGS method, statistical uncertainties are present in our data.
Details of the fitting procedure are given in Appendix A,
and the specific values of {β(as), γ (as}) are summarized in
Table II. To facilitate the use of the Dy-DF for any value of
as in the interval as ∈ [60, 110]aB, the values {β(as), γ (as})
are interpolated in terms of as with a linear function. The
parameters for these fits are summarized in Table III in
Appendix B. This interpolation allows us to use the Dy-DF by
introducing a minimal correction in the LHY term in Eq. (12):
2
5�QF|�|3 → βQMC|�|γQMC+1; thus, its implementation in any
existing eGPE code is straightforward. It is worth remarking
that the computational cost of the Dy-DF is exactly the same
as that of the LHY-DF one. The quality of this approach is
discussed in the next section.

In Fig. 2 we compare the quantum correlation term of the
Dy-DF with that of the LHY-DF as a function of density. The
values of the scattering length that are considered (as = 60aB,
80aB, and 110aB) cover the whole range of experimental
values. As can be observed in Fig. 2, the Dy-DF is always
less repulsive than the LHY one. Differences between the two
functionals are larger when the scattering length is smaller,
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FIG. 3. Critical atom number to form a dysprosium dipolar
droplet. Green and black lines are Dy-DF and LHY-DF predictions,
respectively. Black squares and blue dots are experimental measure-
ments for 164Dy and 162Dy, respectively [34]. Red points are obtained
by direct calculations of quantum droplets with PIGS [34].

which hints at a large beyond-mean-field correction when the
dipolar interaction dominates.

V. CRITICAL ATOM NUMBER

The resulting Dy-DF is less repulsive than the LHY one;
thus, it is expected to predict a smaller critical atom number
for droplet formation. As shown in Fig. 3, the Dy-DF (green
line) reproduces with remarkable accuracy the available ex-
perimental data for the critical atom number of Dy atoms
(black and blue dots). This improvement over the LHY-DF
description (black line), which systematically overestimates
this quantity, highlights the accuracy of the Dy-DF functional.
Although our functional is designed for 162Dy, it also repro-
duces the experimental data for 164Dy, which suggests a minor
isotopic effect in dysprosium droplets (note that the difference
in mass and magnetic moment between the two atoms is
about 1%).

For the sake of comparison, we also include in Fig. 3 the
PIGS results obtained by direct computation of small dipolar
droplets [34]. PIGS results are compatible with the experi-
mental values in the range as ∈ [70, 90]aB, where both PIGS
calculations and experimental data are available. However, for
as = 60aB, the Dy-DF and PIGS predictions are in clear dis-
agreement. This difference can be attributed, at least in part,
to the different methods used in both theories to estimate Nc.
With Dy-DF, Nc is calculated as the atom number for which
the radius of the dipolar droplet starts to diverge in the absence
of a trapping potential. This facilitates the direct comparison
with experiments, where the same criteria to determine Nc are
used. In the case of the direct PIGS calculations, using the
size criteria is unfeasible. In that case, Nc was determined as
the minimum atom number for which E < 0 [34]. Appendix B
shows that the energy criterion provides critical atom numbers
that are slightly larger than the ones obtained with the droplet-
radius criterion.

VI. BEC-SUPERSOLID TRANSITION

The BEC-supersolid transition, which arises in dipolar sys-
tems trapped in a quasi-one-dimensional configuration, has
been studied extensively [8,10,11,15,16,18,30,59,60]. Here,
we focus on the experimental setup of Refs. [9,10,16], where
the trapping frequencies are ωx,y,z = 2π (18.5, 53, 81) Hz and
the dipoles are aligned along the Z axis with N = 3.5 × 104

atoms. Similar to what happens with droplet formation, the
modulational instability that gives rise to the supersolid phase
emerges from the balance between dipolar attraction and
quantum correlations. Thus, the supersolid window, namely,
the interval of scattering-length values in which this phase
is observed, is quite sensitive to the details of the theoretical
description. In this respect, as previously mentioned, the Dy-
DF is more attractive than the usual LHY-DF, so the supersolid
phase is expected to appear for larger values of the scattering
length (lower εdd = add/as).

Figures 4(a) and 4(c) show the density profiles ρ(x) along
the X direction, where the confinement is weaker, calculated
with Dy-DF and LHY-DF, respectively. The Dy-DF (LHY-
DF) predicts a BEC state for εdd < 1.27 (1.37), while for
larger values of εdd, a density stability emerges, resulting
in a modulated ρ(x) distribution. Both functionals predict
the formation of two large clusters in the center of the trap
accompanied by two smaller satellite ones. As εdd is further
increased, the intercluster density vanishes, and a transition
to a third regime occurs, where only two insulating droplets
are present. This intermediate state is termed supersolid, as
it exhibits spatial order and phase coherence simultaneously.
Similarly, the system of insulating droplets constitutes a solid
of droplets.

To characterize the transition between the three afore-
mentioned regimes, namely, BEC, supersolid, and solid, we
evaluate the superfluid fraction fs and the intensity of the
density modulations. Leggett’s upper bound [61,62] for the
superfluid fraction is given by

fs � (2L)2

[(∫ L

−L
dxρ(x)

)(∫ L

−L

dx

ρ(x)

)]−1

, (17)

where the distance 2L encloses the central part of the trap,
where the droplets form. Recently, the quality of Leggett’s
upper bound was studied, showing that it provides accurate
results for dilute gases [63]. To evaluate the spatial structure
of the modulated phases, we compute the contrast C between
the height of the central peaks and the depletion of density
around them as

C = max[ρ(x)] − min[ρ(x)]

max[ρ(x)] + min[ρ(x)]
. (18)

The superfluid fraction and contrast are computed for the
ground state predicted by the LHY and Dy-DF functionals. As
we are dealing with a trapped system, we compute Eqs. (17)
and (18) in the central region of the trap, which is delimited
by the gray vertical lines in Figs. 4(a) and 4(c).

Figures 4(b) and 4(d) summarize the Dy-DF and LHY-DF
results for the superfluid fraction and the contrast as a function
of εdd. The critical value of εdd at which the transition from
a BEC to a supersolid phase occurs is εcrit

dd = 1.28 (1.38) for
the Dy-DF (LHY-DF). Below this critical value, fs = 1 (and
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FIG. 4. Properties evaluated along the BEC-supersolid transition with the Dy-DF (top) and LHY (bottom) functionals. (a) and (c) contain
the density profiles along the X direction for different values of εdd. (b) and (d) depict the superfluid fraction fs [blue squares; see Eq. (17)]
and contrast C [orange circles; see Eq. (18)] computed with the LHY-DF (left) and Dy-DF (right) as a function of εdd. Dashed lines are
guides to the eye. Note that the scales in (b) and (d) are different. Gray vertical lines in (a) and (c) delimitate the region where fs and C
are computed.

C = 0). In the supersolid region, the superfluid density rapidly
drops to values lower than 1, and the contrast increases. Note
that values of C close to 1 are obtained before the superfluid
signal completely vanishes. For εdd > 1.32 (1.48), Dy-DF
(LHY-DF) predicts an insulating droplet array ( fs = 0 and
C = 1).

In Ref. [16], the axial mode frequencies were measured
across the BEC-supersolid transition in the configuration that
we study here. The authors showed that two modes can be
excited in the supersolid regime. The high-energy one is
related to the lattice-site vibrations, while the lower one is
related to the droplet-coherence oscillations. To compute the
axial mode frequencies, we introduce a perturbative potential
Hpert = −λx2, with λ being a small parameter. Once it is
equilibrated, the perturbation is switched off, and the solution
is propagated in real time, computing 〈x2(t )〉. The axial mode
frequencies are obtained by performing a Fourier transform of
〈x2(t )〉.

The axial mode frequencies computed with the Dy-DF are
shown in Fig. 5 (blue and brown circles). For εdd < 1.27,
the system is in the BEC regime, and a single frequency
is observed (ω/ωx ≈ 1.47). In the region 1.27 < εdd < 1.34,
where the system is modulated (see Fig. 4), two frequencies
appear in the Fourier spectra. The magnitude of the higher-
energy mode is larger than the value of the single mode in
the BEC regime, while the superfluid mode decreases quickly
with εdd and vanishes for εdd > 1.34. This ending point sig-
nals the transition from the supersolid state to the normal solid
one. In this phase, only the upper frequency branch appears
with a value ω/ωx ≈ 2.0.

In Fig. 5, we also show the experimental measurement and
LHY-DF prediction for these two frequencies as reported in
Ref. [16]. Note that the uncertainty in the measurement of as,
which can be of the order of 10aB, results in an uncertainty of

0.12 in the value of εdd. More refined experimental measure-
ments would be needed in order to determine precisely the
supersolid transition point and to discern between the Dy-DF
and LHY-DF predictions. Despite that, let us analyze the dif-
ferences between the two functionals. In the BEC regime both
functionals reproduce the experimental value ωx/ω ≈ 1.47
within a 3% of error. In the supersolid regime the behavior of
the LHY-DF modes is similar to that of the Dy-DF, but it is no-
ticeable that the interval in which the two frequencies appear
is larger in the former case. The LHY superfluid frequency is

FIG. 5. Axial mode frequencies in units of the trapping fre-
quency ωx across the BEC-to-supersolid transition for the trap
system of Fig. 4. Circles connected by brown and blue lines are
the Dy-DF predictions for the superfluid and solid frequencies. Blue
and red points with error bars are the corresponding experimental
measurements of Ref. [16]. Pink and blue squares are LHY results
from Ref. [16].
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close to the experimental one, but it underestimates the value
of the lattice frequency. On the contrary, the Dy-DF prediction
reproduces the frequency of the experimental lattice mode but
underestimates the superfluid one. In the solid regimes the
functionals predict a single frequency mode at ω/ωx = 2.00,
1.85 for Dy-DF and LHY-DF, respectively.

An important difference between the two theoretical ap-
proaches is the difference in the width of the supersolid
window in terms of the scattering length �SS. The exper-
imental estimation of the supersolid window for the same
setup given in Ref. [10] was obtained by measuring in situ
modulations and phase coherence between the different drops.
The reported value is �SS

exp ≈ 6aB. It is worth noticing that
for both the Dy-DF and LHY-DF the prediction for �SS is
rather different if it is evaluated in terms of the values of fs

from Fig. 4 or the excitation spectra in Fig. 5. The second
choice provides slightly larger values. The LHY-DF predic-
tion for the supersolid window attending to fs is �SS

LHY ≈
7.6aB, while the width of the interval in which two fre-
quencies appear in the Fourier spectra in Fig. 5 is 8.8aB. In
the case of the Dy-DF functional, the first (second) crite-
rion gives �SS

Dy−DF ≈ 3.1aB (5.3aB). Thus, the experimental
measurement of Ref. [10] lies in between the results of the
two functionals.

VII. DISCUSSION AND CONCLUSIONS

In summary, the dysprosium density functional that we
presented in this work allows us to study Dy dipolar sys-
tems and the rich phenomena that they exhibit, such as
droplet formation and supersolidity. We evaluated the prop-
erties of a bulk dipolar system made of 162Dy atoms using
first-principles quantum Monte Carlo. The functional was
constructed under the local-density approximation by re-
placing the usual LHY term, which accounts for quantum
correlations in the standard eGPE, with exact quantum cor-
relations computed with QMC. To benchmark our functional,
we computed the minimum (critical) atom number that is
needed to form a droplet and showed that our theory re-
produces the experimental measurements for this quantity in
spite of the large uncertainties in the experimental determi-
nation of the scattering lengths. The critical atom number is
a challenging observable from a theoretical point of view, as
it arises from a delicate energy balance between two similar
(and opposite-sign) quantities: the interatomic dipolar inter-

action and the contribution from quantum correlations. On
the contrary, the LHY theory provides only a qualitative de-
scription of the droplet formation mechanism. Furthermore,
we demonstrated the suitability of our functional to study the
BEC-to-supersolid phase transition and discussed the small
discrepancies that appear between the LHY theory and our
functional. Importantly, the Dy-DF improves the accuracy of
the widely used eGPE without increasing the computational
cost. A lot of work has been done in the last few years to
achieve condensates of dipolar molecules that have a large
electric moment [64–67] and for which the intermolecular
interaction is known with spectroscopic precision [68]. Re-
cently, the formation of a Bose-Einstein condensate of dipolar
molecules was reported [19], what constitutes a breakthrough
that opens the door to study new physics in dipolar systems.
We hope that the approach presented here will also be useful
for the study of such condensates of dipolar molecules in
the future.

The code to reproduce the fitting procedure is available
from GitHub [69].
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APPENDIX A: FITTING PROCEDURE

The Dy-DF is constructed by replacing the LHY term,
accounting for quantum correlations in the eGPE description,
with the nonlinear contribution of the quantum kinetic energy,
namely, quantum correlations. Although QMC provides us
with exact results for bosonic systems, they are accompa-
nied by a certain variance due to the stochastic nature of
the method. To deal with it we make linear fits of 〈T̂φ〉0 to

FIG. 6. Energy landscape in terms of the Gaussian widths σz and σr for as = 90a0 and various N/Nc ratios. The red markers indicate local
minima. The values of the N/Nc ratios and the energy of the local minima are indicated on each panel.
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TABLE II. Parameters for the quantum fluctuation term in the
energy per particle at the LHY-DF level and as extracted from
Eq. (16) to construct the Dy-DF. In the LHY case βLHY = 2

5 �QF,
and γLHY = 1.5 [see Eq. (5)]. The Dy-DF values are obtained after
averaging different fits, where the fitting interval of the PIGS data
is slightly varied and the number in parentheses corresponds to the
standard deviation; see the text for details.

LHY-DF Dy-DF

as/aB β = 2
5 �QF[E0r3

0 ] γ β[E0r3
0 ] γ

60 2.269 1.5 3.0(3) 2.00(6)
70 2.562 1.5 1.93(15) 1.53(7)
80 2.876 1.5 3.35(8) 1.80(1)
90 3.215 1.5 3.3(9) 1.65(13)
101.57 3.583 1.5 3.4(5) 1.62(7)
110 3.984 1.5 5.0(7) 1.73(6)

a function of the form αρ + βργ in different intervals of
the density [ρmin, ρmax] around the equilibrium density ρeq

(see Table I). We consider all the possible combinations of
ρmin and ρmax such as ρmin/ρeq ∈ [0.4, 0.7] and ρmax/ρeq ∈
[1.5, 2.5], considering increments of 0.1 and 0.3, respectively.
The resulting mean values of β and γ are listed in Table II,
with their variance indicated in parentheses. Note that the
parameter α in Eq. (16) is not used for the construction of the
functional and thus is not given in Table II to avoid confusion.
The values of α in the fit of the kinetic energy are 249(6),
760(13), 924(15), 2818(695), 8715(1537), 21185(3407) for
as = 60aB, 70aB, 80aB, 90aB, 101aB, 110aB, respectively.

We perform a linear interpolation of the values of β and
γ in Table II to create a functional dependence on as. The
parameters for the linear fits of β and γ in terms of as are
given in Table III. This procedure allows to use the Dy-DF for
any value of the scattering length in the interval [60, 110]aB.
It also allows to implement straightforwardly the Dy-DF in
existing eGPE code.

TABLE III. The parameters β and γ from Table II are inter-
polated in terms of the scattering length as with a linear function
mas + n. The values of m and n for the two parameters are given.

m[E0r2
0 ] n[E0r3

0 ]

β 0.03935 −0.01422

m[r−1
0 ] n

γ −0.003434 2.0182

APPENDIX B: EVALUATION OF CRITICAL
ATOM NUMBER

We evaluate the critical atom number within the density-
functional formalism. To this end, we employ a Gaussian
ansatz parametrized in the radial and axial directions with the
widths sr and sz, respectively. The normalized density of a
given Gaussian wave function is given by

ρ(r, z) = N√
πs2

r sz

e
− r2

2s2
r
− z2

2s2
z , (B1)

where N is the total number of atoms. With this ansatz, the
energy of the system can be calculated after plugging it into
Eq. (12). We define the critical atom number as the number of
atoms under which the local minimum of the energy landscape
E (sr, sz ) vanishes. Notice that the energy can be positive,
signaling a metastable state. To give further insight into this, in
Fig. 6, we plot the energy landscape for as = 90a0 for various
N/Nc ratios. For this purpose, the Dy-DF parameters taken
from Table III are used. It is evident that the energy of a
local minimum decreases with a decrease in N/Nc. Notably,
at around N/Nc = 1.2, the energy becomes positive, meaning
that the global minimum vanishes for finite sr and sz values.
Despite this, a local minimum persists, indicating the presence
of a metastable minimum. This metastable state ceases to exist
when N/Nc drops below 1. The red markers in Fig. 6 serve to
highlight the points of local minima. Obviously, for N/Nc < 1
no local minima are observed.
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