
PHYSICAL REVIEW A 109, 033311 (2024)

Dynamics of an ultracold weakly bound heteronuclear diatomic molecule
in an ultrashort laser pulse
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We propose a theoretical model used for dynamically manipulating an ultracold weakly bound heteronuclear
alkali-metal diatomic molecule by a nonresonant single-cycle THz laser pulse. Taking the 6Li 23Na molecule
as an example, we first calculate the variation of the weakly bound state and quasibound state as a function
of external electric field, and then reveal abundant interference patterns during and after the laser pulse due
to the superpositions between states involving weakly bound state, scattering state, and quasibound state.
Moreover, one can map out the nodes of the probability density of the weakly bound molecules by measuring
the wavepacket dynamics.
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I. INTRODUCTION

The molecules just below the scattering threshold pos-
sess unique properties [1]. These weakly bound molecules
are bridges between atoms and the deeply bound molecules
[2]. Due to the tiny binding energy, the weakly bound
molecules are fragile at room temperature. As a result, ul-
tracold quantum gas is an ideal platform to study weakly
bound molecules. One can produce weakly bound molecules
out of ultracold quantum gas via two-photon photoassociation
[3], microwave photoassociation [4,5], magnetoassociation
[6,7], or electroassociation [8]. Currently, ultracold weakly
bound molecules consisting of two atoms [3–7], an atom
and a ground-state diatomic molecules [9], or two diatomic
molecules [10] have been produced, respectively. The avail-
ability of these weakly bound molecules enabled many
intriguing applications. A molecular version of intensity in-
terferometry has been realized with weakly bound molecules
and the density-density correlations were measured [11]. The
weakly bound molecules were prepared in the second Bloch
band of an optical lattice which can simulate exotic or-
bital physics [12]. In addition, the weakly bound molecules
were used to study controlled state-to-state reaction dynam-
ics [13,14], investigate the ionization dynamics [15], achieve
molecular clock [16,17], search for new gravitylike forces
[18], and so on.

The control of the weakly bound molecules via exter-
nal fields has attracted much attention. The properties of
the weakly bound molecule in a static electric field [19,20],
static magnetic field [6], or continuous-wave nonresonant
laser field [21] have been analyzed. Recently, the dynamics
of weakly bound 4He2 molecules induced by an ultrafast laser
pulse were studied theoretically [22] and experimentally [23].
Alignment signals have been observed and the wavepacket
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dynamics of the weakly bound state in the ultrafast laser
field is significantly different from widely studied wavepacket
dynamics of the rigid-rotor-like molecules [22,23]. Inspired
by these works, we study the dynamics of the weakly bound
heteronuclear diatomic molecules composed of alkali-metal
atoms in the ultrafast laser field. Various kinds of weakly
bound heteronuclear alkali-metal diatomic molecules have
been prepared experimentally [7,24–31]. The heteronuclear
molecule has permanent dipole moment, while the homonu-
clear molecule 4He2 did not. As a result, orientation signals, in
addtion to the alignment signals, were observed for heteronu-
clear molecules. Moreover, the heteronuclear alkali-metal
diatomic molecule has more than one bound state. In contrast,
the 4He2 molecule has only one bound state. The influence of
these bound states on the wavepacket dynamics are explored
in this work. In addition, the influence of the laser parame-
ters, such as electric field amplitude and duration time on the
dynamics are studied.

This paper is organized as follows. In Sec. II, the the-
oretical methods are described. In Sec. III, the results and
discussions are given. A conclusion is drawn in Sec. IV.

II. THEORETICAL METHODS

In this work, we take the weakly bound 6Li 23Na molecules
as an illustration, which have been produced in the vicin-
ity of Feshbach resonances [30]. To fully describe the
weakly bound 6Li 23Na molecules, an intrinsic multichan-
nel interaction needs to be considered [32]. Nevertheless,
the single-channel approximation is often applied [33]. The
weakly bound 6Li 23Na molecule has mainly a triplet char-
acter [34]. In the following, the 6Li 23Na molecule in a3�+
state is chosen as a prototype. A nonresonant laser pulse is
applied to induce the wavepacket dynamics. Within the Born-
Oppenheimer approximation, the interaction of the 6Li 23Na
molecule and a nonresonant laser pulse can be described by
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the Hamiltonian [20,35,36]

Ĥ = − 1

2μR

∂2

∂R2
R + V̂ (R) + l̂2

2μR2
+ V̂ε(R, t ), (1)

where μ is the reduced mass and R is the internuclear dis-
tance. V̂ (R) denotes the interatomic potential-energy operator.
l̂ denotes the partial-wave operator and the third term of the
Hamiltonian describes the rotation energy of the system. The
average effect of the interaction V̂ε(R, t ) between the perma-
nent dipole moment of the heteronuclear diatomic molecule
D(R) and the time-dependent electric field of a nonresonant
laser pulse ε(t ) is negligible if the duration of the laser pulse
is much larger than the circle of the laser pulse [37,38]. In this
work, a nonresonant single-cycle THz pulse is adopted and
the laser duration is comparable to its cycle. Hence, the effect
of V̂ε cannot be ignored. The expression of V̂ε is given by

V̂ε(R, t ) = −ε(t )D(R) cos θ, (2)

where the direction of the electric field is set to be the space-
fixed z axis and θ is the angle between the interatomic axis
and the z axis.

The electric field strength of the nonresonant THz laser
pulse is defined by [39,40]

ε(t ) = ε[1 − 2κ (t − t0)2]e−κ (t−t0 )2
, (3)

where ε is the electric field amplitude. κ is related to the
pulse duration δ by κ = 6/δ2 [40]. The parameter δ is the time
difference between the two values of t at which ε(t ) is mini-
mum. t0 is the central time. In the following, the quasibound
and bound states in the static electric field are calculated and
ε(t ) is set to be a constant ε in this case. The effect of the
polarizability, which was commonly involved in the studies
of homonuclear molecules [22,23,41,42], is expected to be
much smaller than that of the dipole moment and is omitted
[19,20,35,36,43,44].

In the realistic system, the energy of the weakly bound
molecule can be tuned by an external magnetic field in the
vicinity of a Feshbach resonance. To mimic the tuning of
the weakly bound molecule, the interatomic potential V (R)
is set to be V (R) = Va3�+ (R) + Vα (R), where Va3�+ (R) is the
potential curve of the a3�+ state

Vα (R) =
{

α(R − Re)2 R < Re,

0 R � Re,
(4)

where Re = 4.63 Å is the equilibrium internuclear distance of
the a3�+ state [45] and α is the modification factor. The last
s-wave bound state supported by potential V (R) is the weakly
bound state we are interested in. By varying the value of α,
the energy of the weakly bound state changes. The potential
energy curve Va3�+ (R) [45] and the permanent dipole moment
D(R) [46] are shown in Fig. 1. In Ref. [22], it was found that
the quasibound state can turn into a field-induced bound state,
and has a significant influence on the wavepacket dynamics.
In the following, α is set to be −1.58307 × 108 GHz/Å2 and
the potential V (R) supports an s-wave least bound state at
340 MHz, and a p-wave quasibound state at 0.5 MHz.

To calculate the bound and quasibound states in static
electric field, we set ε(t ) to be a constant. The correspond-
ing stationary Schrödinger equation with Hamiltonian Eq. (1)

V(R)

D(R)

FIG. 1. The potential energy curve V (R) (black solid line) [45]
and the permanent dipole moment D(R) (red dotted line) [46] as a
function of the internuclear distance R of the 6Li 23Na molecule in
a3�+ state.

is solved by the mapped Fourier grid Hamiltonian method
(MFGH) [47,48] to obtain the bound-state energies. To deter-
mine the positions of the quasibound states, the elastic cross
section is calculated by the log-derivative method [49].

To calculate the wavepacket dynamics of the system in
laser field, the time-dependent Schrödinger equation with
Hamiltonian Eq. (1) is solved. The molecule is supposed to be
prepared in the s-wave least bound state initially. The evolu-
tion operator is expanded in Chebyshev polynomials [50,51].

In previous studies of the homonuclear molecule 4He2

[22,23], the laser field induces wavepacket dynamics via the
interaction with the polarizability. Thus, the l-wave state can
be coupled with the l ′-wave state, where l ′ equals l-2, l , or
l + 2. So alignment C2(R, t ) is calculated to visualize the
dynamics, which is defined as [22]

C2(R, t ) =
∫ π

0 
∗(R, θ, t ) cos2 θ
(R, θ, t ) sin θdθ∫ π

0 |
(R, θ, t )|2 sin θdθ
, (5)

where 
(R, θ, t ) denotes the time-dependent wave func-
tion. In this work, we investigate the heteronuclear 6Li23Na
molecule. The laser field interacts mainly with the permanent
dipole moment. Thus, the l-wave state can be coupled with
the l ′-wave state, where l ′ equals l-1, or l + 1. In addition
C2(R, t ), we can also use orientation C1(R, t ) to visualize
dynamics, which is defined as

C1(R, t ) =
∫ π

0 
∗(R, θ, t ) cos θ
(R, θ, t ) sin θdθ∫ π

0 |
(R, θ, t )|2 sin θdθ
. (6)

C2(R, t ) and C1(R, t ) are functions of the internuclear distance
R and time t and reflect the population distribution of the
wavepacket in different partial-wave states. It has been shown
that C2(R, t ) can be measured experimentally by the Coulomb
explosion imaging [23]. The angular distribution of the initial
s-wave weakly bound state is isotropic, the corresponding
C2(R, t ) is equal to 1/3, and C1(R, t ) is equal to 0. When the
laser pulse is turned on, part of the population will be trans-
ferred to the high-partial-wave states. Accordingly, C2(R, t )
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and C1(R, t ) will deviate from 1/3 and 0, respectively, which
indicates the response of the weakly bound 6Li 23Na molecule
to the nonresonant laser pulse.

In the calculation, the lowest ten partial-wave states are
included to obtain convergent results. In an electric field,
different partial-wave states are coupled, and the rational
quantum number l is not a good quantum number. Neverthe-
less, each eigenstate at ε �= 0 can be associated with a state
described by quantum number l at ε = 0. Hence, we use l̃
to label the states at ε �= 0 in the following. The magnetic
quantum number m is conserved. Moreover, the ±m states are
degenerated in an electric field. In the following, we will label
the state by the absolute value of m.

III. RESULTS AND DISCUSSIONS

A. Variation of quasibound state with electric field

In this subsection, we calculate the variation of a p-wave
quasibound state with a static electric field and show when
the quasibound state turns into a field-induced bound state.

Figure 2(a) shows the p-wave elastic cross sections σ |m|=1
p

versus the collision energy Ecol at different electric field
strengths. In the calculation, |m| equals 1. As shown by the
black solid line in Fig. 2(a) the cross section calculated at
ε = 0 has a peak at Ecol = 0.5 MHz which implies the exis-
tence of a p-wave quasibound state. As the strength of the
external electric field becomes larger, the peak of the cross
section σ |m|=1

p shifts to smaller collision energy. The variation
of the peak position of cross sections σ |m|=1

p as a function
of the electric field is shown in Fig. 2(b) by the black dots.
It is indicated that the energy of the p-wave quasibound
state with |m| = 1 decreases with the increase of the electric
field strength. If the electric-field strength is increased to
ε = 5.8 × 10−5 a.u., the p-wave quasibound state crosses the
threshold, and a field-induced zero-energy resonance occurs.
If the electric-field strength is larger than ε = 5.8 × 10−5 a.u.,
the p-wave quasibound state turns into a field-induced bound
state. The p-wave field-induced bound states are shown by
black solid line in Fig. 2(b).

Figure 3(a) shows the p-wave elastic cross sections σ m=0
p

versus the collision energy Ecol at different electric-field
strengths. In the calculation, m equals 0. In the absence of
the external electric field, the peak of the p-wave cross sec-
tion σ m=0

p occurs at Ecol = 0.5 MHz as shown by the black
solid line in Fig. 3(a), which indicates the presence of a
p-wave quasibound state with m = 0. The peak positions
of cross sections σ m=0

p as a function of the electric field
in the range ε = 0 − 1.5 × 10−4 a.u. are shown by black
dots in Fig. 3(b). Different from the case with |m| = 1, the
peak positions with m = 0 increase with the increase of the
electric-field strength in such a strength range. However, when
the electric-field strength is increased to 2.0 × 10−4 a.u., the
cross section has no distinct peak, as shown by the purple
double-dot-dashed line in Fig. 3(a). Thus it is difficult to
locate the position of the p-wave m = 0 quasibound state
precisely. This is the result of the strong coupling between
the p-wave channel and the s-wave channel in such a strong
electric field. The s-wave channel has no rotational barrier
and does not support quasibound states. Nevertheless, the
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the peak position of cross section

FIG. 2. (a) The p-wave cross sections σ |m|=1
p as a function of

collision energy Ecol at ε = 0 (black solid line), 1.0 × 10−5 a.u. (red
dotted line), 2.0 × 10−5 a.u. (blue short-dashed line), 3.0 × 10−5 a.u.

(green dot-short-dashed line), 4.0 × 10−5 a.u. (purple double-dot-
short-dashed line), 5.0 × 10−5 a.u. (yellow dashed line), and 5.6 ×
10−5 a.u. (light blue dot-dashed line). (b) The peak positions of
p-wave cross sections σ |m|=1

p (dots) and the p-wave field-induced
bound state energy (line) as a function of the electric field strength ε.

energy of the p-wave electric-field-induced bound state can be
calculated by the MFGH method and is shown by the black
solid line in Fig. 3(b). The zero-energy resonance occurs at
ε = 6.0 × 10−4 a.u.

The behaviors of the higher-partial-wave quasibound states
with |m| �= 0 and m = 0 in an external static electric field are
similar to those of p-wave quasibound state with |m| = 1 and
m = 0.

B. Wavepacket dynamics induced by a nonresonant
single-cycle THz laser pulse

Now, we calculate the wavepacket dynamics of the weakly
bound 6Li23Na molecule induced by nonresonant THz pulses,
which are shown in Fig. 4. m is set to be 0. The nores-
onant laser pulse couples different partial-wave states and
transfers the population from the initial s-wave state to higher-
partial-wave states. Different partial-wave states evolve with
different spatially dependent phases. These phase factors
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FIG. 3. (a) The p-wave cross sections σ m=0
p as a function of

collision energy Ecol at ε = 0 (black solid line), 5.0 × 10−5 a.u.

(red dotted line), 1.0 × 10−4 a.u. (blue dashed line), 1.5 × 10−4 a.u.

(green dot-dashed line), and 2.0 × 10−4 a.u. (purple double-dot-
dashed line). (b) The peak positions of p-wave cross sections σ m=0

p

(dots) and the p-wave field-induced bound state energy (line) as a
function of the electric field strength ε.

imprint a time-dependent and R-dependent oscillatory pattern
on C2(R, t ) [22,23] and C1(R, t ).

To interpret the oscillating pattern in C2(R, t ) and C1(R, t ),
we derive the approximate expressions for C2(R, t ) and
C1(R, t ). The wave function of the system 
(R, θ, t ) can be
divided into two parts


(R, θ, t ) = 
even(R, θ, t ) + 
odd(R, θ, t ), (7)

where


even(R, θ, t ) =
+∞∑
l=0


2l (R, θ, t ) = 1

R

+∞∑
l=0

u2l (R, t )Y2l,0(θ ),

(8)
and


odd(R, θ, t ) =
+∞∑
l=0


2l+1(R, θ, t )

= 1

R

+∞∑
l=0

u2l+1(R, t )Y2l+1,0(θ ). (9)

ε=1.9×10-4 a.u., κ=1 ps-2

ε=7.8×10-4 a.u., κ=1 ps-2

ε=1.9×10-4 a.u., κ=10 ps-2

FIG. 4. The nonresonant THz laser pulses with ε = 1.9 ×
10−4 a.u. (about 1 MV/cm), κ = 1 ps−2, and the duration time δ =
2.45 ps (the black solid line), ε = 7.8 × 10−4 a.u., κ = 1 ps−2, and
δ = 2.45 ps (the red dotted line), ε = 1.9 × 10−4 a.u., κ = 10 ps−2,
and δ = 0.77 ps (the blue dashed line). The center time t0 is 5 ps.

In Eqs. (8) and (9), ul (R, t ) is l-wave radial wave func-
tion and Yl0 is the spherical harmonic. 
even(R, θ, t ) and

odd(R, θ, t ) contain the wave functions of all even and
odd partial-wave channels, respectively. Inserting Eq. (7) into
the numerator of Eq. (5) and considering

∫ π

0 
even∗(R, θ, t )
cos2 θ
odd(R, θ, t ) sin θdθ = 0, C2(R, t ) can be written as

C2(R, t ) = Ceven
2 (R, t ) + Codd

2 (R, t ), (10)

where

Ceven
2 (R, t ) =

∫ π

0 
even∗(R, θ, t ) cos2 θ
even(R, θ, t ) sin θdθ∫ π

0 |
(R, θ, t )|2 sin θdθ
,

(11)
and

Codd
2 (R, t ) =

∫ π

0 
odd∗(R, θ, t ) cos2 θ
odd(R, θ, t ) sin θdθ∫ π

0 |
(R, θ, t )|2 sin θdθ
.

(12)
It is noted that Ceven

2 (R, t ) defined above is identical to the
C2(R, t ) defined in Refs. [22,23]. When the laser intensity
is low, the vast majority of the population remains in the
s-wave channel. Moreover, the wave function u0(R, t ) in the
s-wave channel is nearly the same as the initial wave function
ueigen

0 (R) [23]. If we omit the component ul (R, t ) with l > 2
and set u0(R, t ) ≈ ueigen

0 (R), we obtain


even(R, θ, t ) ≈ 1

R
ueigen

0 (R)Y0,0 + 1

R
u2(R, t )Y2,0, (13)


odd(R, θ, t ) ≈ 1

R
u1(R, t )Y1,0, (14)

and


(R, θ, t ) ≈ 1

R
ueigen

0 (R)Y0,0 + 1

R
u1(R, t )Y1,0 + 1

R
u2(R, t )Y2,0.

(15)
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FIG. 5. (a) The absolute value of the wave function |ueigen
0 (R)| (the black solid line), |u1(R, t )| (the red dotted line), and |u2(R, t )| (the blue

dashed line) as a function of R at t = 15 ps. The inset shows details of |u1(R, t )| and |u2(R, t )| in the internuclear distances ranging from 35 to
100 a.u. (b) cos[γ2(R, t )] and (c) cos[γ1(R, t )] as a function of R at t = 15 ps. In the calculation, the parameters of the laser field are set to be
ε = 1.9 × 10−4 a.u., κ = 1 ps−2, t0 = 5 ps.

Inserting Eqs. (13), (14), and (15) into Eqs. (11), (12), and
(6), and omitting the terms on the order of |u2(R, t )|2 and
|u1(R, t )||u2(R, t )|, we obtain

Ceven
2 (R, t )

≈
1
3 ueigen

0 (R)2 + 4
3
√

5
ueigen

0 (R)|u2(R, t )|cos[γ2(R, t )]

ueigen
0 (R)2 + |u1(R, t )|2 ,

(16)

Codd
2 (R, t ) ≈

3
5 |u1(R, t )|2

ueigen
0 (R)2 + |u1(R, t )|2 , (17)

and

C1(R, t ) ≈
2√
3
ueigen

0 (R)|u1(R, t )|cos[γ1(R, t )]

ueigen
0 (R)2 + |u1(R, t )|2 , (18)

where |ul (R, t )| is the absolute value of ul (R, t ) and γl (R, t )
is the phase of ul (R, t ). The initial wave function ueigen

0 (R) is
chosen to be a real function.

In the internuclear distances ranging from 35 to 100 a.u.,
ueigen

0 (R) has no zero points and is much larger than u1(R, t )
as shown in Fig. 5(a). Therefore, we can further neglect the
|u1(R, t )|2 term in the denominator of Eqs. (16), (17), and
(18), and we have

Ceven
2 (R, t ) ≈ 1

3
+ 4

3
√

5
cos[γ2(R, t )]

|u2(R, t )|
ueigen

0 (R)
, (19)

Codd
2 (R, t ) ≈ 3

5

|u1(R, t )|2
ueigen

0 (R)2
, (20)

C1(R, t ) ≈ 2√
3

cos[γ1(R, t )]
|u1(R, t )|
ueigen

0 (R)
. (21)

The approximation expression of Ceven
2 (R, t ) Eq. (19) has been

obtained in Ref. [23].
Figures 6(a) to 6(d) show numerically calculated C2(R, t ),

Ceven
2 (R, t ), Codd

2 (R, t ), and C1(R, t ) in the internuclear dis-
tances ranging from 35 to 100 a.u., respectively. The pa-
rameters of the laser field are ε = 1.9 × 10−4 a.u. (about 1

MV/cm), κ = 1 ps−2, t0 = 5 ps and the laser field is shown
by the black solid line in Fig. 4. For comparison, Figs. 6(e) to
6(h) show the results calculated according to Eqs. (10), (19),
(20), and (21). The ueigen

0 (R), u1(R, t ), and u2(R, t ) needed
in Eqs. (19), (20), and (21) are obtained from the fully nu-
merical calculation. Comparing the upper and lower panels
of Fig. 6, it can be seen that the approximate expressions
reproduce the numerical results. From Figs. 6(b) and 6(f) we
observe an outgoing oscillatory pattern in Ceven

2 (R, t ). Similar
oscillatory patterns of C2(R, t ) were observed in the studies
with 4He2 molecules, and were found due to the interference
between the remaining portion of the initial s-wave state and
the d-wave dissociating wavepacket induced by the laser pulse
[22,23]. In this range of internuclear distance, ueigen

0 (R) and
|u2(R, t )| do not oscillate as shown in Fig. 5(a). Thus, ac-
cording to Eq. (19), we attribute the oscillatory pattern to
the oscillations in cos[γ2(R, t )], as shown in Fig. 5(b). For
homonuclear molecules, one can extract the phase γ2(R, t )
of the wave function u2(R, t ) in the d-wave channel by mea-
suring Ceven

2 (R, t ) [23]. From Figs. 6(c) and 6(g) we observe
an outgoing pattern in Codd

2 (R, t ). However, there is no os-
cillation in this outgoing pattern. This is because, of all the
odd-partial-wave channels, the vast majority of the popula-
tion is present in the p-wave channel. Therefore, there is no
notable interference between the wave function in p-wave
channel and the wave functions in other higher odd-partial-
wave channels. Codd

2 (R, t ) in Figs. 6(c) and 6(g) is small. This
is due to the fact that Codd

2 (R, t ) is proportional to the ratio of
|u1(R, t )| and ueigen

0 (R) according to Eq. (20), and |u1(R, t )|
is smaller compared with ueigen

0 (R) as shown in Fig. 5(a).
Since Ceven

2 (R, t ) is much larger than Codd
2 (R, t ), C2(R, t ) is

mainly determined by Ceven
2 (R, t ), as shown in Figs. 6(a) and

6(e). For heteronuclear molecules, one can extract the phase
γ2(R, t ) of the wave function u2(R, t ) in the d-wave channel
by measuring C2(R, t ). Similar to Ceven

2 (R, t ), we observe the
outgoing oscillatory pattern in C1(R, t ), as shown in Figs. 6(d)
and 6(h). According to Eq. (21), we attribute the oscillatory
pattern in C1(R, t ) to the interference between the remaining
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FIG. 6. (a), (e) C2(R, t ), (b), (f) Ceven
2 (R, t ), (c), (g) Codd

2 (R, t ), (d), (h) C1(R, t ) as functions of R and t in the internuclear distances ranging
from 35 to 100 a.u. (a)–(d) are from full quantum calculation, (e)–(h) are calculated with Eqs. (10), (19), (20), and (21). In the calculation, the
parameters of the laser field are set to be ε = 1.9 × 10−4 a.u., κ = 1 ps−2, t0 = 5 ps.

portion of the initial s-wave state and the p-wave dissociating
wavepacket. In the range of internuclear distance considered
in Fig. 6, ueigen

0 (R) and |u1(R, t )| do not oscillate as shown
in Fig. 5(a). The oscillatory pattern of C1(R, t ) is due to
the oscillations in cos[γ1(R, t )], as shown in Fig. 5(c). As a
result, one can extract the phase γ1(R, t ) of the wave function
u1(R, t ) in p-wave channel by measuring C1(R, t ).

Figures 7(a) to 7(d) show numerically calculated
C2(R, t ), Ceven

2 (R, t ), Codd
2 (R, t ), and C1(R, t ) in the

internuclear distances ranging from 5 to 35 a.u., respectively.

As shown in Fig. 5(a), ueigen
0 (R) has nodes in the range of R

from 5 to 35 a.u. The approximate expressions (19), (20),
and (21) fail in this region, while Eqs. (16), (17), and (18)
are still valid. The results calculated with Eqs. (10), (16),
(17), and (18) are presented in Figs. 7(e) to 7(h), respectively.
Comparing the upper and lower panels of Fig. 7, it can be
seen that the approximate expressions reproduce the fully
numerical results. When R is far away from the nodes of
ueigen

0 (R), u1(R, t ), and u2(R, t ) are small quantities compared
with ueigen

0 (R) as shown in Fig. 5(a), and is approximated

FIG. 7. (a), (e) C2(R, t ), (b), (f) Ceven
2 (R, t ), (c), (g) Codd

2 (R, t ), (d), (h) C2(R, t ) as functions of R and t in the internuclear distances ranging
from 5 to 35 a.u. (a)–(d) are from full quantum calculation, (e)–(h) are calculated with Eqs. (10) (16), (17), and (18). In the calculation, the
parameters of the laser field are set to be ε = 1.9 × 10−4 a.u., κ = 1 ps−2, t0 = 5 ps.
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FIG. 8. (a) C2(R, t ) and (c) C1(R, t ) as a function of R and t calculated with ε = 7.8 × 10−4 a.u., (b) C2(R, t ), and (d) C1(R, t ) calculated
with ε = 1.6 × 10−3 a.u.. κ is 1 ps−2, the duration time δ is 2.45 ps, and the central time t0 is 5 ps.

to be 0. According to Eqs. (16) and (17), Ceven
2 (R, t ) and

Codd
2 (R, t ) approximately equal 1/3 and 0, respectively.

C2(R, t ) approximately equals 1/3, which is the sum of
Ceven

2 (R, t ) and Codd
2 (R, t ). According to Eq. (18), C1(R, t )

approximately equals 0. At the nodes of ueigen
0 (R), ueigen

0 (R)
is 0. According to Eqs. (16) and (17), Ceven

2 (R, t ) is zero,
and Codd

2 (R, t ) is 3/5. C2(R, t ) approaches the extreme value
of 3/5. According to Eq. (18), C1(R, t ) is zero. When R
is slightly away from the nodes of ueigen

0 (R), ueigen
0 (R), and

u1(R, t ) have the same order of magnitude. Then C1(R, t )
deviates from 0, and takes extreme value when ∂C1(R,t )

∂R = 0.
The above analyses have been confirmed in Fig. 7, and suggest
that we can map out the nodes of the initial wavefunction by
experimentally measuring C2(R, t ) or C1(R, t ). In the previous
studies with 4He2 molecule [22], C2(R, t ) does not possess
similar structures since the potential curve of 4He2 molecule
supports only one bound state and the wave function of the
initial bound state has no nodes.

As shown in Figs. 7(c) and 7(g) and 7(d) and 7(h),
Codd

2 (R, t ) and C1(R, t ) oscillate over time t when R is fixed
near the nodes of ueigen

0 (R), and the period of this oscillation
is about 3.2 ps. This oscillation is due to the superposition of
the v = 7 and v = 8 vibrational states in the p-wave channel,

which are the most populated states in the p-wave channel
after the laser pulse is applied. Energies of these two states
are 9.58 × 10−5 a.u. and 4.69 × 10−5 a.u., respectively. The
timescale determined by the energy difference between these
two p-wave states is 3.1 ps, which is close to the period of
the oscillations 3.2 ps. Ceven

2 (R, t ) also oscillates over time t
as shown in Figs. 7(b) and 7(f). However, this oscillation is
multifrequency. This is because multiple vibrational states in
the d-wave channel are populated, and the population of these
states are comparable. C2(R, t ) is the sum of Ceven

2 (R, t ) and
Codd

2 (R, t ), So the oscillation over time t in C2(R, t ) is also
multifrequency, as shown in Figs. 7(a) and 7(e).

The parameters of the laser pulse will affect the dynamics.
We first discuss the influence of electric-field amplitude ε on
C2(R, t ) and C1(R, t ). Figures 8(a) and 8(c) show C2(R, t ) and
C1(R, t ) as a function of R and t with ε = 7.8 × 10−4 a.u.,
Figs. 8(b) and 8(d) show C2(R, t ) and C1(R, t ) with ε =
1.6 × 10−3 a.u.κ is 1 ps−2 and the duration time δ is 2.45 ps.
As ε increases, more population is transferred from the initial
s-wave channel to high-partial-wave channels, and the max-
ima of C2(R, t ) and C1(R, t ) deviate more from their initial
values 1/3 and 0, respectively. As shown in Fig. 4, there are
secondary peaks in the laser pulse besides the main peak.
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FIG. 9. (a) C2(R, t ) and (c) C1(R, t ) calculated with κ = 10 ps−2, δ = 0.77 ps, and t0 = 5 ps. (b) C2(R, t ) and (d) C1(R, t ) calculated with
κ = 0.1 ps−2, δ = 7.8 ps, and t0 = 10 ps. The electric field amplitude of the laser pulse is ε = 1.9 × 10−4 a.u.

When ε is 7.8 × 10−4 a.u., only the main peak can induce
dissociating wavepacket, as shown in Figs. 8(a) and 8(c).
When ε is 1.6 × 10−3 a.u., the secondary peaks are strong
enough to induce dissociating wavepacket, as shown in
Figs. 8(b) and 8(d).

The duration of the laser pulse also affects the dynamics.
Figures 9(a) and 9(c) show C2(R, t ) and C1(R, t ) calculated
with κ = 10 ps−2, δ = 0.77 ps, and t0 = 5 ps. Figures 9(b) and
9(d) show C2(R, t ) and C1(R, t ) calculated with κ = 0.1 ps−2,
δ = 7.8 ps, and t0 = 10 ps. The electric-field amplitude of the
laser pulse is ε = 1.9 × 10−4 a.u. As δ increases, the energy
of laser pulse increases. More population is transferred from
the initial s-wave channel to high-partial-wave channels, and
the maxima of C2(R, t ) and C1(R, t ) deviate more from their
initial values 1/3 and 0, respectively. Meanwhile, as δ in-
creases, the variation of the laser field is less intense, as
shown in Fig. 4. There will be less bound and scattering
states populated in the high-partial-wave channels. This is re-
flected by the following two facts. In the internuclear distances
ranging from 5 to 35 a.u., the oscillations of C2(R, t ) and
C1(R, t ) over time in Figs. 9(b) and 9(d) are simpler than those
in Figs. 9(a) and 9(c). In the internuclear distances ranging
from 35 to 100 a.u., the interference fringes are broad in
Figs. 9(b) and 9(d).

C. Effect of the quasibound state on the wavepacket dynamics

In this section, we investigate the influence of a quasi-
bound state on the wavepacket dynamics of a weakly bound
molecule. ε is set to be 2.0 × 10−3 a.u., and the peak electric

s wave

p wave

~
~

Electric field strength ε [a.u.]

FIG. 10. The energy of the s̃-wave bound state (squares) and the
p̃-wave electric-field-induced bound state (dots) as a function of the
electric field strength ε.
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FIG. 11. (a) C1(R, t ) as a function of the internuclear distance R and time t . (b) The details of C1(R, t ) in the small internuclear distance
after the laser pulse finished, i.e., t > 200 ps. In the calculation, ε = 2.0 × 10−3 a.u., κ = 10−3 ps−2, and the according duration time δ = 77 ps.

field is strong enough to tune the p-wave quasibound state
into an bound state, as indicated in Fig. 10. κ is chosen to be
10−3 ps−2 and the corresponding duration time δ is 77 ps. The
laser field varies slowly as a function of time and the pop-
ulations in the high-partial-wave channels are concentrated
in a few bound and scattering states. We choose C1(R, t ) to
visualize the dynamic process, which is shown in Fig. 11.
In the internuclear distances ranging from 5 to 35 a.u., the
oscillations of C1(R, t ) as a function of t are observed when
the THz pulse is applied, i.e., from 0 to 200 ps, as shown
in Fig. 11(a). In Ref. [22], similar oscillations of C2(R, t )
were observed. During the plateau of the stretched Gaussian
pulse adopted in Ref. [22], the period of the oscillation is
precisely inversely proportional to the energy difference be-
tween the intrinsic bound state and the field-induced bound
state. In our case, the electric field of the laser field is time
dependent during the whole period of the THz pulse, as shown
in Fig. 4. The energies of the intrinsic s̃-wave bound state
and the field-induced p̃-wave bound state varies with electric
field, as shown in Fig. 10. As a result, the period of the

oscillation observed in Fig. 11 cannot be simply determined
as in Ref. [22].

For clarity, the C1(R, t ) in short-range region is shown in
Fig. 11(b). It is seen that C1(R, t ) oscillates as a function of
time after the laser pulse finished at t = 200 ps. To interpret
these oscillations, the probability densities of s- and p-wave
states are shown in Fig. 12. As shown in Fig. 12, the s-wave
probability density is dominant after the laser pulse finished.
This is due to the fact that the initial state is an s-wave bound
state. Nevertheless, the p-wave probability densities do not
vanish in the short-range region at the end of the laser pulse,
as shown in Figs. 12(b). Moreover the s-wave and p-wave
probability densities in the short-range region show clear os-
cillations after t = 200 ps. This results in the oscillations of
C1(R, t ).

We further calculate populations of the vibrational levels
and scattering levels at the end of laser pulse, which are shown
in Fig. 13. For the s-wave channel, the last bound level with
vibrational quantum number v = 11 (the initial state) and the
last but second bound level with v = 10 are populated, as

FIG. 12. The (a) s- and (b) p-wave probability densities as a function of the internuclear distance R and time t .
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FIG. 13. The population as functions of the vibrational quantum
number v for the bound states and the collision energy Ecol for the
scattering states at the end of laser pulse in (a) s- and (b) p-wave
channels.

shown in Fig. 13(a). The oscillations of the s-wave prob-
ability density in the short-range region after t = 200 ps is
attributed to the superposition of these two vibrational levels.
The period of the oscillations in Fig. 12(a) is 45.2 ps, which
is close to the timescale of 45.3 ps determined by the energy
difference between the two s-wave vibrational levels. Among
all the p-wave bound levels, only the last bound level with
v = 10 is notably populated as shown in Fig. 13(b). For the
population of the scattering state there is a peak at collision
energy Ecol = 0.5 MHz, which is exactly the position of the
quasibound state in the absence of laser field. It is noted that
the box-normalized wave function [52] is adopted to describe
the scattering state. The oscillations of the p-wave probability
density after t = 200 ps observed in Fig. 12(b) is attributed
to the superposition of the last vibrational level with v = 10
and the quasibound state at Ecol = 0.5 MHz. The period of the
oscillation in Fig. 12(b) is 50.2 ps, which is roughly close to
the timescale of 49.0 ps determined by the energy difference
between the last p-wave bound state and the quasibound state.
For the 4He2 molecule studied in Ref. [22], there is only one
s-wave bound state in the absence of laser field. As a result,
there is no superposition between bound states and there is no
superposition between the bound state and quasibound state
of the same partial-wave channel at the end of the laser pulse.

IV. CONCLUSION

In this work, a 6Li23Na molecule in a a3�+ state is chosen
as a prototype to investigate the control of a weakly bound
heteronuclear molecule by an external static electric field as

well as a nonresonant single-cycle THz pulse. We find that
the energy of the high-partial-wave quasibound states with
m = 0 increases initially with the increase of the electric
field strength and finally becomes a field-induced bound state
when the electric field is strong enough. The energies of the
states with |m| �= 0 decrease monotonically with the increase
of the electric field. Both the m = 0 and |m| �= 0 quasi-
bound state can cross the threshold and produce a zero-energy
electric-field-induced resonance. These calculations complete
the theory about the properties of bound and scattering states
of a heteronuclear alkali-metal two-body collision complex in
a static electric field [20].

After that, we investigate the dynamics of a 6Li23Na
molecule in the weakest s-wave bound state induced by a
nonresonant THz laser pulse. We show that the orientation
signals, in additon to the alignment signals, can be mea-
sured to study the dynamics of weakly bound heteronuclear
molecules. The interferences between the initial s-wave bound
state and the p-wave dissociating wavepacket can be indicated
by the orientation signals, and one can extract the phase of
the wavepacket in the p-wave channel from the orientation
signals. After the laser pulse is finished, interferences between
bound states and between the bound state and quasibound
state are observed for the 6Li23Na molecule, which is ab-
sent in the study with the 4He2 molecule [22]. The effects
of the electric-field amplitude and the duration time of the
laser pulse on the wavepacket dynamics are investigated.
Furthermore, we show that one can map out the nodes of
the probability density of weakly bound 6Li23Na molecules
by measuring the wavepacket dynamics. Our results provide
compelling evidence for the feasible tunability of the weakly
bound heteronuclear alkali-metal diatomic molecules by a
well-designed nonresonant laser pulse.

Currently, the electric-field amplitude of the THz laser
pulse can reach several MV/cm (10−3 a.u.) in a broad
spectrum range [53,54], which is on the same order of the
electric-field amplitude used in this work. In Ref. [15], an
experimental apparatus combining an optical dipole trap with
a reaction microscope was presented. Adding the THz laser
pulse in such an apparatus will allow one to observe experi-
mentally the dynamics discussed in this work.
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