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Fate of localization in a coupled free chain and a disordered chain
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It has been widely accepted that almost all states in one-dimensional disordered systems with short-range
hopping and uncorrelated random potential are localized. Here, we consider the fate of these localized states
by coupling between a disordered chain (with localized states) and a free chain (with extended states), showing
that states in the overlapped and un-overlapped regimes exhibit totally different localization behaviors, which
is not a localization-delocalization transition. In particular, while states in the overlapped regime are localized
by resonant coupling, in the un-overlapped regime of the free chain the localization length is extremely large,
which can be beyond the capability of state-of-art numerical methods, due to the prefactor t4

v /�4, where tv

is the interchain coupling strength and � is the band center offset between them. We confirm these results
using the transfer-matrix method and sparse-matrix method for systems L ≈ 106–109. These findings extend our
understanding of localization in low-dimensional disordered systems and provide a concrete example, which
may call for much more advanced numerical methods in high-dimensional models.

DOI: 10.1103/PhysRevA.109.033310

I. INTRODUCTION

Anderson localization (AL), which describes the phe-
nomenon that the disorder totally suppresses the diffusion
of the system, has attracted a great deal of attention for
many decades [1–6]. It has been found that the spatial
dimension plays an essential role in AL [7–11]. In the higher-
dimensional models, a finite disorder strength is required
for AL. However, in the one-dimensional (1D) tight-binding
model with any weak random potential, almost all states
are localized with spatial extension of the wave function as
|ψ (x)| ∼ exp[−|x − x0|/ξ0(E )], with E the corresponding en-
ergy. In a one-dimensional tight-binding model

H = −t
∑

i

c†
i ci+1 + H.c. +

∑
i

vic
†
i ci, (1)

where t (assuming t > 0) is the hopping strength between the
neighboring site, and vi is the on-site random potential. The
localization length is given by [12,13]

ξ−1
0 (E ) = v2

8t2 − 2E2
= V 2

96t2 − 24E2
, (2)

where v2 = 〈v2
i 〉 is the variance of potential vi ∈

U (−V/2,V/2) (U denotes a uniform distribution) and E
is the eigenvalue. The details of Eq. (2) can be seen from
Eq. (14) in Ref. [12]. This result means that the states with the
largest or lowest eigenvalues are more likely to be localized
and that in the presence of any weak disorder, 0 < V � t ,
with |E | � 2t , all states should be localized with ξ−1

0 > 0. For
example, when V ≈ 0.1t , E = 0, we have ξ0 ≈ 104, which
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can be directly confirmed by numerical simulation. The fate of
the states in 1D systems will be changed fundamentally with
incommensurate potentials [14–17], long-range correlated
disorders [18–22], and many-body interactions [23–27],
in which the localization-delocalization transition can be
realized by tuning of disorder strengths. These physics have
been intensively explored in experiments [28–31].

While the physics of disordered models have been widely
discussed [3,9,13,32], the fate of localization by the coupling
of extended and localized states is less investigated. We are
interested in this issue due to the following dilemmas.

(i) The random uncorrelated potential induces localization
for almost all states in 1D systems [8].

(ii) The hybridization between localized and extended
states may lead to delocalization [33].

These two mechanisms lead to completely different
physics, and their interplay should cause many intriguing phe-
nomena. In this paper, we propose a coupled disordered model
(Fig. 1) to address this problem. Our model is constructed
from one free chain (with all states extended) and one dis-
ordered chain (with all states localized). This model can also
be viewed as an alternative platform for the research of the
localized insulator-bath problem. In the previous research, the
bath is usually modeled as a k level quantum dot [34–36]. It
is found that the bath can even induce a Zeno-like localization
in the strong-coupling limit [34]. However, since the quantum
dot does not have spatial structure, the feedback effect of
the localized insulator on the bath has been neglected. In our
model, we can investigate both the effect of the bath and the
effect of the localized insulator, which support some different
physics. Furthermore, our model is much more experimen-
tally feasible and can be realized in ultracold atom gas with
hyperfine structure [37] and an optical lattice with different
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FIG. 1. (a) The realization of the coupled disordered model. The
free chain (denoted as H0) does not have random potential, thus
all states are extended; yet in the disordered chain (denoted by
H1) with random potential, all states are localized. The coupling
between them is the major concern of this paper. (b) The over-
lapped and un-overlapped spectra when tv = 0, for eigenstates with
E1,min � E � E0,max, with Ei,max and Ei,min being the maximal and
minimal eigenvalues of Hi. ρ(E ) = ∑

i δ(E − Ei,σ )/L is the density
of states for chain σ , with L the number of states. The value of E1,min

or E1,max is determined numerically using ρ(E1,min), ρ(E1,max) ≈
0.01 max[ρ(E )]. When tv �= 0 and weak, we can still use this defi-
nition for the overlapped and un-overlapped spectra approximately.
In this paper, the un-overlapped regime from the free and disordered
chains will be abbreviated as UO-F and UO-D, respectively.

disordered strengths [26]. Two major conclusions have been
reached in this paper. First, we find that while all states ex-
hibit localization in the presence of weak interchain coupling,
their localization lengths exhibit distinct differences in the
overlapped spectra and un-overlapped spectra. Secondly, the
localization length for states in the un-overlapped regime from
the free chain (UO-F) [see Fig. 1(b)] is given by

ξ−1(E ) 	 t4
vV 2

[96t2 − 24(E − �)2]�4
= t4

v

�4
ξ−1

0 (E − �), (3)

in the limit when |�| 
 |V |. Here, tv is the interchain cou-
pling, � is the band center offset between the free and
disordered chains, and the argument E − � in ξ0 is induced by
the offset � between the two chains. This localization length
can be much longer than the available system size in numer-
ical calculation, exhibiting features resembling those in the
extended phase. For instance, when tv = 0.1t and � = 10t ,
the localization length can be ξ ≈ 108ξ0. We examine the
above conclusions using the transfer-matrix method and the
sparse-matrix method with system sizes L ≈ 106–109. Our
results show that the interchain coupling, disorder strength,
and band center offset are the three major factors influencing
the localization length of states in the UO-F regime. In the
regime when ξ � L, we can understand the localization of

wave functions with the following general theorem based on
a large amount of research; see review articles [3,9,38,39].

Theorem. In 1D disordered systems with short-range hop-
ping and uncorrelated random potential, almost all states are
localized in the thermodynamic limit (L → ∞).

This theorem can be understood intuitively from the result
by Mott and Twose [7], the argument by Thouless [40], and
the scaling analysis by Abrahams et al. [8]. In the 1D disorder
models, the β function is always negative for localization [8].
This theorem is also addressed by the celebrated Dorokhov-
Mello-Pereyra-Kumar equation [38] and the nonlinear sigma
model [41]. Here, not all states are localized because, in the
1D model with off-diagonal random hoppings, the state with
E = 0 is extended while all the other states are localized [42].
Mathematicians have great interest in this problem and have
proved this theorem with random potentials [43–46], showing
no absolutely continuous spectra for extended states. This
theorem will play a deterministic role for localization when
ξ � L, which is beyond the capability of the current numerical
simulations.

The present paper is organized as follows. In Sec. II, we
present the physical model and the numerical methods. In
Sec. III, we discuss the different localization for states in the
overlapped and un-overlapped spectra. In Sec. IV, a simple
picture for understanding the localization in the un-overlapped
spectra is discussed, and an analytical expression for its lo-
calization length is presented. In Sec. V, we summarize our
primary conclusion and discuss the possible observations in
experiments. Finally, in the Appendix, we present a discussion
of the physics of the coupled disordered model in the strong-
coupling limit.

II. PHYSICAL MODEL AND METHODS

We consider the following coupled disordered model (see
Fig. 1):

H = H0 + H1 +
∑
m,σ

tva†
m,σ am,σ̄ , (4)

where

H0 =
∑

m

t0a†
m,0am+1,0 + H.c. + Vm,0a†

m,0am,0, (5)

H1 =
∑

m

t1a†
m,1am+1,1 + H.c. + Vm,1a†

m,1am,1, (6)

with σ = 0, 1 [see Fig. 1(a)]. We set Vm,0 = � for the offset
of the free chain H0 with Vm,1 ∈ U (−V/2,V/2) being the
random potential for the disordered chain H1. In the absence
of interchain coupling (i.e., tv = 0), the whole system can be
decoupled into a free chain H0 with all states extended, and
a disordered chain H1 with all states localized. Moreover, the
energy spectra of each chain can be calculated individually
with Ej,0 ∈ [E0,min, E0,max] = [−2t0 + �, 2t0 + �] for H0 and
Ej,1 ∈ [E1,min, E1,max] for H1 [see Fig. 1(b)]. Thus, it is ex-
pected that these two energy spectra can be overlapped in
the regime [E1,min, E0,max], when E0,min < E1,max and E1,min <

E0,max, which can be realized when � is negative enough.
Based on this, we define the three regimes as (1) UO-F,
with E ∈ [E0,min, E1,min]; (2) the overlapped regime between
both chains, with E ∈ [E1,min, E0,max], if it exists; and (3) the
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un-overlapped regime from the disordered chain (UO-D), with
E ∈ [E0,max, E1,max].

The notations of UO-F and UO-D are used in the figures for
convenience. Then, if we switch on the interchain coupling
(tv �= 0), assuming |tv| � tσ , the eigenstates of H would be
the hybridization of the states from H0 and H1. We may expect
all states to be exponentially localized due to the quasi-1D
feature of the model. However, the localization behaviors
should be different in the overlapped and un-overlapped spec-
tra, which can be understood from the perturbation method.
We term the zeroth-order states |ψ (0)

j,σ 〉 = | j, σ 〉 as

∣∣ψ (0)
j,0

〉 =
∑

m

eik j m

√
L

a†
m,0|0〉, ∣∣ψ (0)

j,1

〉 =
∑

m

φ(m)a†
m,1|m〉, (7)

with k j = 2π j/L, φ(m) ∼ e−|m−mj |/ξ . Then the new eigen-
states at tv �= 0 can be written as

∣∣ψnew
j,σ

〉 = | j, σ 〉 + tv
∑

i

〈i, σ̄ |Hc| j, σ 〉
Ej,σ − Ei,σ̄

|i, σ̄ 〉 + · · · , (8)

with Hc = ∑
m,σ a†

m,σ am,σ̄ . Therefore, when Ej,σ is in the
overlapped spectra, the denominator for the first-order terms
as well as the higher-order terms can be extremely small,
yielding resonant hybridization. In contrast, this resonance
would not happen when Ej,σ is in the un-overlapped spectra.
This indicates that the physics in the overlapped and over-
lapped spectra are rather different. It would be essential to
characterize this difference during localization. When the cou-
pling becomes much stronger than the other parameters, the
concept of UO-F, UO-D, and overlapped is not well defined
anymore. We have presented a discussion of this physics in the
Appendix. In the main text, we focus on the weak-coupling
limit.

We apply the transfer-matrix and sparse-matrix meth-
ods, whose available size is L ≈ 106–109, to understand
the localization of wave functions in these regimes. In the
transfer-matrix method [47], the Lyapunov exponent γ (E ) =
ξ (E )−1 is defined as the smallest positive eigenvalue of the
matrix

�(E ) = lim
L→∞

1

2L
ln(T †

1 . . . T †
L TL . . . T1), (9)

where Tm is the transfer matrix at the mth site. In our model,
it is

Tm =

⎛
⎜⎜⎜⎜⎝

E−�
t0

− tv
t0

−1 0

− tv
t1

E−V1,m

t1
0 −1

1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎠. (10)

From the Oseledets ergodic theorem [48,49], the above
multiplication of transfer matrices is converged when L →
∞. When γ (E ) > 0, the state with eigenvalue E is local-
ized. In the sparse-matrix method, we use the shift-invert
method [50,51] to obtain the eigenvalues and eigenvectors of
H. We first map H to

Hshift-invert = 1

E − H , (11)

where E is the reference energy, and then perform the Lanczos
method to calculate the eigenstates with the absolute value of
the eigenvalues |λi| = 1/|E − Ei| being the largest. We keep
about NE = 20 eigenstates |ψEi〉 with eigenvalues Ei around
the given E and perform 103–104 realization for the ensemble
average. Furthermore, we characterize the structure of these
wave functions using the averaged inverse participation ratio
(IPR) as [3]

〈IPR〉E = 1

NE

NE∑
i=1

L−1∑
m=0

∑
σ

|ψEi (m, σ )|4. (12)

For the extended state, 〈IPR〉E ∝ L−1, and for the localized
state 〈IPR〉E is finite. Finally, it is expected that 〈IPR〉E ∼
L−D2 when L is sufficiently large. Finally, we define the fractal
dimension D2(E , L) = −d ln(〈IPR〉E )/d ln(L) and its limit
D2(E ) = limL→∞ D2(E , L) to characterize their physics in
the thermodynamic limit. We have D2(E ) = 0 for localized
states, D2(E ) = 1 for extended states, and 0 < D2(E ) < 1 for
critical states [3,52,53]. We note that the IPR should be pro-
portional to the Lyapunov exponent γ (E ) for an exponentially
localized state ψm ∼ e−|m|/ξ , with IPR ∝ ξ−1 = γ , in the limit
L 
 ξ .

III. LOCALIZATION IN THE OVERLAPPED
AND UN-OVERLAPPED REGIMES

Although all states are expected to be localized in our
model in Eq. (4), the effect of interchain coupling for states
in UO-F, overlapped, and UO-D regimes should be different,
leading to distinct localization behavior. To have an intuitive
picture of this difference, we consider two different cases,
which are shown in Figs. 2(a) and 2(b). In the first case, the
spectra in the two chains are largely separated to avoid the res-
onant hybridization between the extended and localized states,
while in the second case resonant hybridization is induced in
their overlapped regime. Furthermore, we present their typical
wave functions in each energy regime in Figs. 2(c)–2(f) with
tv = 0.1, in which the wave functions in the component of
H0 are presented in Figs. 2(c) and 2(d), and those from H1 are
presented in Figs. 2(e) and 2(f). The results show that the wave
functions in the UO-D regime are exponentially localized with
localization length around unity (see the state with E = 0,
ξ ≈ 1). The wave functions in the overlapped regime are also
exponentially localized [see E = −5 in Figs. 2(d) and 2(f)],
however, with localization length ξ ≈ 104, which is much
larger than the localized states in the UO-D regime. Strikingly,
the wave functions in the UO-F regime [see E = −10 in
Figs. 2(c) and 2(e) and E = −10 in Figs. 2(d) and 2(f)] are
extended even when the system size L = 106. Similar features
can be found when L is increased to L ≈ 109 for smaller
tv. These numerical evidences seem to contradict the general
theorem. This dilemma is the major motivation for this paper.

To further characterize this dilemma, we use the IPR to
describe the localization of wave functions quantitatively and
study their scaling behaviors, with the results presented in
Fig. 3. We obtain the eigenvalues using the shift-invert method
for L = 211 to 218 ≈ 2.6 × 106. It is found that the IPR of
states in the UO-D regime is around unity and does not change
with the increasing of system size L, indicating localization.
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FIG. 2. [(a), (b)] The averaged density of states ρ(E ) for the
free and disordered chains with tv = 0. [(c), (d)] ln[|ψE (m, 0)|2] vs
m with different E for the coupled disordered model (tv = 0.1) in
the first component σ = 0. The inset of (c) shows the detailed wave
function around its localized center. [(e), (f)] ln(|ψE (m, 1)|2) vs m
with different E for the coupled disordered model (tv = 0.1) in the
second component σ = 1. The parameters of the left column are
� = −10, V = 10, and t0 = t1 = 1, and those of the right column
are � = −6, V = 10, and t0 = t1 = 1. In (a) and (b) we use L = 103,
and in (c)–(f) we use L = 106.

The value of the IPR for states in the overlapped regime [see
Fig. 3(b)] is smaller than that in the UO-D regime, but we can
still find that the IPR is saturated with the increase of system
size L, indicating that the states in this energy regime are also
localized with much larger localization length. However, we
find the IPR of states in the UO-F regime exhibits features
the same as that in the extended states. Especially, we find
ln(〈IPR〉E ) = − ln(L) + AE , indicating these states to be ex-
tended even when the system size L ≈ 218, which is consistent
with the wave functions presented in Figs. 2(c)–2(f). This
corresponds to the dilemma presented above, coming from
the fact that ξ 
 L ≈ 105, which is a finite-size effect. The
localized behavior based on the general theorem can only
be reached when ξ � L, which clarifies the disagreement
presented in Fig. 2.

Next, we investigate the asymptotic behavior of the wave
function using the transfer-matrix method, which can access
the system with size L 
 218. In Figs. 4(a) and 4(b), we
present the Lyapunov exponent γ (E ) vs the energy E for

FIG. 3. [(a), (b)] ln(IPR) vs the energy E with (a) � = −10,
V = 6, and t0 = t1 = 1 and (b) � = −6, V = 6, and t0 = t1 = 1
at different system sizes. The vertical dashed lines in (a) denote
E = −8 and −6.4, and those in (b) denote E = −6.4 and −4. [(c),
(d)] ln(IPR) vs ln(L) for states belonging to different energy regimes.
The legends denote the corresponding energy. The parameters of
(c) are the same as (a), and those of (d) are the same as (b). The
slope of the black dashed lines is unity, which is a guide for the eye.

a system with size L = 109. When tv = 0, the states in the
free chain are extended and the states in the disordered chain
are localized. When tv = 0.1, all states become localized with
γ (E ) > L−1. However, there are three distinct energy regimes
for γ (E ), corresponding to the overlapped and un-overlapped
regimes. In the overlapped regime, we have γ (E ) ≈ 10−4,
while in the un-overlapped regime, we have γ (E ) ≈ 100 (UO-
D from the disordered chain) or γ (E ) ≈ 10−7 (UO-F from the

FIG. 4. The Lyapunov exponent γ (E ) vs the energy E for tv = 0
and 0.1, with system size L = 109. The offset is (a) � = −10 and
(b) � = −6. The vertical dashed lines in (a) denote E = −8 and
−6.4, and those in (b) denote E = −6.4 and −4. The red dashed
lines are estimated by Eq. (3).
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FIG. 5. (a) The schematic of the model in Eq. (13). The free
chain H0 (red) is coupled to a disordered chain H1 (blue) with t1 = 0.
(b) log10(IPR) vs log10(tv) for different band center offset � and
lattice size L with E = �. The colors represent � = −20 (red),
� = −10 (green), and � = −7 (blue). The system size is L = 104

(square), 105 (circular), and 106 (cross). The two black dashed lines
are linear fittings with log10(〈IPR〉E ) ≈ 4 log10(tv). (c) log10(IPR)
vs log10(|�|) for different tv. The meaning of symbols is the same
as in (b). The colors represent tv = 1.5 (red), tv = 1.0 (green), and
tv = 0.5 (blue), and the black dashed lines denote log10(〈IPR〉E ) ≈
−4 log10(|�|).

the free chain). These distinct behaviors are unique features
of the coupled disorder model, which should not be regarded
as some kind of localization-delocalization transition. From
the perturbation theory, these differences are rooted deeply
in the resonant coupling and un-resonant coupling of wave
functions, as discussed in Eq. (8).

IV. MECHANISM OF THE LOCALIZATION
IN THE UN-OVERLAPPED REGIME

The above results raise some fundamental questions that
need to be addressed much more carefully. In the over-
lapped regime, the localized states and extended states are
coupled through resonant coupling because their energy is
close to each other. From perturbation theory [see treatment
in Ref. [1]; see Eq. (8)], all the higher-order terms will be-
come important, leading to significant modification of the
wave functions for localization. In the un-overlapped regime
(regime UO-F) of the free chain, one also needs to consider
all the higher-order terms for wave-function localization, yet
with some different scattering processes. In the following,
following the spirit of Thouless and Kirkpatrick [12] and
Eq. (2), we derive a similar equation [see Eq. (3)] to describe
the localization in the UO-F regime.

A. Analytical results with t1 = 0

We first consider the limit with t1 = 0 and t0 = 1 (see
Fig. 5), thus the Hamiltonian in Eq. (4) becomes

H = H0 + (tva†
m,0am,1 + H.c.) + Vm,1a†

m,1am,1. (13)

As a consequence, the eigenstates of the disordered chain are
fully localized at one site with the eigenvalue distributed in
the interval [−V/2,V/2] when tv = 0. On the other hand,
the eigenstates of the free chain are plane waves with energy
spectra in [� − 2t0,� + 2t0]. It is expected that there will be
no overlapped regime when |�| > |V/2 + 2t0|. We focus on
the physics in this condition (with tv �= 0) for the character-
ization of the localization in the un-overlapped regime. This
corresponds to the physics discussed in Fig. 2(a). The validity
of this conclusion for the other conditions will be verified by
numerical calculations in the next subsection.

In this case, we can eliminate the interchain coupling tv and
decouple the freedom of the free chain and disordered chain,
which can be performed by the projection method. Then the
effective Hamiltonian of each component reads as

H0,eff =
∑

m

(t0a†
m+1,0am,0 + H.c.) + Mma†

m,0am,0, (14)

H1,eff = t2
v

∑
m,n

G(0)
mn(0)a†

m,1an,1 +
∑

m

Vm,1a†
m,1am,1, (15)

with Mm = � + Wm = � + t2
v /(� − Vm,1) and G(0)

mn(E ) the
Green’s function of H0. For the free chain, we have

G(0)
mn(E ) = 〈m| 1

E − H0
|n〉

= 1

|t0|
√

x2 − 4

(√
x2

4
− 1 − |x|

2

)|m−n|
, (16)

with |m〉 = a†
m,0|0〉 and x = (E − �)/t0. This result indicates

that the disordered chain gains a hopping term with exponen-
tial decay between distance sites from the free chain, which
increases the localization length. However, it could not drive
a localization-delocalization transition from the general theo-
rem. In contrast, the free chain gains a random potential term
from the disordered chain, which in principle will immedi-
ately drive all states in the free chain to be localized even
when t2

v � t0. Hereafter we focus on the physics in H0,eff, in
which Mm can be viewed as independently distributed random
potential

〈Wm〉 = 1

V

∫ V/2

−V/2
WmdVm,1 = t2

v

V
ln

(
2|�| + V

2|�| − V

)
,

〈WmWn〉 = 4t4
v

4�2 − V 2
δm,n, (17)

where 〈·〉 represents its disorder averaged value, and E ∈
[� − 2t0,� + 2t0]. The variance of Wm can be written as

v2 = 〈
W 2

m

〉 − 〈Wm〉2 = t4
v

(
4

4�2 − V 2
− f (�,V )

)
, (18)

with

f (�,V ) =
[

1

V
ln

(
2|�| + V

2|�| − V

)]2

. (19)

Using the Thouless formula in Eq. (2), we can obtain

ξ−1(E ) =
(

4

4�2 − V 2
− f (�,V )

)
t4
v

8t2
0 − 2(E − �)2

,

(20)
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FIG. 6. log10(〈IPR〉E ) vs log10(t1) for the model in Eq. (4) at dif-
ferent system sizes. The parameters are chosen as � = −10, tv = 1,
and E = −10, corresponding to the UO-F regime. The black dashed
lines are linear fittings with log10(〈IPR〉E ) ∼ ν log10(t1), with ν =
−0.0026 for L = 104, ν = −0.0066 for L = 105, and ν = −0.0075
for L = 105. Here, the wave functions are obtained using the shift-
invert method around a given E .

with E ∈ [� − 2t0,� + 2t0]. When � 
 t0 and V , we can
make use of Taylor expansion and it yields

v2 = t4
vV 2

12�4
+ 11t4

vV 4

360�6
+ O(�−6). (21)

The leading terms give the localization length in Eq. (3),
which is one of the central results in this paper and which has
been used in Fig. 4. The coefficient in this expression will be
slightly modified with a Gaussian distribution, with the major
conclusion unchanged.

With this theoretical treatment, we next verify these results
numerically. It should be noted that since the intrahopping
t1 of the disordered chain is set to zero, the transfer-matrix
method cannot be employed [see Eq. (10), with Tm being
singular]. Thus, we use the sparse-matrix method to examine
the physics of the model in Eq. (13), and the results for
states with E = � are presented in Fig. 5. It is found that
〈IPR〉E ∝ t4

v at intermediate tv and ξ < L. In the small tv
limit, we find the IPR will saturate to L−1 because ξ � L.
We expect the relation 〈IPR〉E ∝ t4

v can be approached when
L → ∞. In Fig. 5(c), we also examine the dependence of IPR
on the band center offset |�|, finding that IPR ∝ �−4 in the
large |�| limit. However, when tv/|�| � 1 we have ξ � L,
and saturation of IPR is found again for the same reason as
Fig. 5(b). Combining these two power-law dependences will
yield ξ−1 ∝ (tv/�)4 in Eq. (3), using IPR ∝ 1/ξ .

B. Applicability of the results to t1 �= 0

The previous conclusion is based on the model with t1 = 0.
However, our model in Eq. (4) has nonzero t1. Thus, it is
crucial to ask to what extent t1 can influence the localization
length ξ of the states in the free chain. To examine this effect,
we fix � = −10, tv = 1, and V = 10 and change the value of
t1. The results of the IPR for states with E ∼ � (belonging to
the un-overlapped spectra of the free chain) are presented in
Fig. 6, from which we find the IPR is nearly constant with the
increasing of t1, indicating that t1 is not the essential term for

FIG. 7. The logarithm of the Lyapunov exponent γ (E ) vs the
energy E . (a) Results for Eq. (1) with different disorder strengths
V (V = 0.05, 0.1, 0.5, 1.0), with corresponding localization length
by Eq. (2). (b) Results in the UO-F regime of the coupled disor-
dered model in Eq. (4) with different band center offsets � (� =
−16, −14, −12, −10) with t0 = t1 = 1. The localization length is
given by Eq. (20). In the transfer-matrix calculation, we have used
L = 2 × 109.

the localization of the free chain. Therefore, we expect Eq. (3)
to serve as a good approximation of localization length ξ

even with finite t1, which accounts for the excellent agreement
between the numerical and theoretical results in Figs. 4(a)
and 7. Finally, we present the relation between the localization
length as a function of energy E in a single disordered chain
and in a coupled disordered model in Fig. 7, which further
confirms the empirical formulas of Eqs. (2) and (3).

V. CONCLUSION AND DISCUSSION

In this paper, we present a coupled disordered model
by coupling a disordered chain with a free chain, where
the localization lengths in the overlapped and un-overlapped
regimes differ by several orders of magnitude. In the over-
lapped regime, the states from the free chain are localized
by resonant coupling between the localized and extended
chains. However, in the UO-F regime, while the states are still
localized by the general theorem, their localization lengths
are much larger, due to the prefactor t4

v /�4. We find that the
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interchain coupling, disorder strength, and band center offset
play a leading role in localization, yet the effect of intrachain
hopping t1 in the disordered chain is not significant. The re-
sults presented in this paper are in 1D disordered models, and
extending this research to higher-dimensional models [54–56]
and many-body models [57–59] is also intriguing, in which
we expect the overlapped regime and un-overlapped regime
will also exhibit totally different behaviors [60]. Furthermore,
for a system with a large localization length in the higher-
dimensional models, it may call for much more advanced
numerical methods.

These results can be readily confirmed in state-of-the-
art experiments with ultracold atoms [5,61–64], in which
the two chains can be realized by hyperfine states. The in-
terchain coupling can be realized by Raman coupling and
their band center offset is a natural consequence of detun-
ing and Zeeman field. In these systems, the wave functions
in each chain can be independently realized in the limit
tv ≈ 0, and their localization can be measured individually
using the time-of-flight imaging technique. In recent years,
AL in disordered systems has been an important direc-
tion in ultracold atoms and huge progress has already been
achieved [5,28,30,31,65–67], most of which have been fo-
cused on the physics of AL with incommensurate potentials
and topological phase transitions with commensurate po-
tentials. We expect our model can provide a platform for
exploring wave-function localization, and the experimental
confirmation of these results can provide perspicuous evi-
dences for dilemmas I and II.

Finally, it is necessary to emphasize that the disordered
potential (with short-range correlation) has totally different
features from the incommensurate potential. In the coupled
free chain and the incommensurate chain, without the guar-
antee of the general theorem, one can realize a critical phase
in the overlapped spectra [53], in which the overlapped and
un-overlapped spectra also exhibit distinct behaviors in lo-
calization. A similar critical phase by coupling of extended
and localized states in the Floquet model with incommen-
surate potential has also been presented by Roy et al. in
Ref. [68]. Here, we present a much-simplified model, which
can be solved analytically in the limiting condition, in the
hope that these intriguing results will be found in the more
complicated coupled many-body models and coupled random
matrices [69].
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APPENDIX: FATE OF LOCALIZATION IN THE PRESENCE
OF STRONG COUPLING

For the sake of being self-contained, we present a dis-
cussion of physics in the limit of strong coupling, where
the spectra are reconstructed. We still consider the Hamilto-
nian in Eq. (4) and set t0 = t1 = t , Vm,0 = M/4, and Vm,1 =
−M/4 + Km,1 with Km,1 being random entries in [−V/2,V/2].
Using a local unitary transformation cm = 1√

2
(am + bm) and

FIG. 8. (a) The schematic of the coupled chain via local trans-
formation, in which the coupling tv induces an energy offset in the
c chain and d chain. (b) The Lyapunov exponent γ (E ) vs energy
E in the coupled disordered model with t0 = t1 = 1, M = 0, V = 2,
and tv = 20. The square dots denote the numerical results and the
dashed lines are the analytical results given by Eq. (A4). (c) Density
of states ρ(E ) vs the coupling tv and energy E . When tv is large, the
whole spectra are split into two bands. The red dashed lines denote
E = ±tv.

dm = 1√
2
(am − bm), we find the Hamiltonian becomes

H =
∑

m

t (c†
mcm+1 + H.c.) +

(
Km,1

2
+ tv

)
c†

mcm

+
∑

m

t (d†
mdm+1 + H.c.) +

(
Km,1

2
− tv

)
d†

mdm

+ M − Km,1

2
(c†

mdm + d†
mcm). (A1)

It was found that tv becomes the offset of the c and d chains
[see Figs. 8(a) and 8(c)]. We further require |tv| 
 |M|, |V | �
|t |; thus, we can use the same treatment as in Sec. IV to
decouple these two chains, from which we have

Hc =
∑

m

t (c†
mcm+1 + H.c.) + Wm,cc†

mcm, (A2)

Hd =
∑

m

t (d†
mdm+1 + H.c.) + Wm,d d†

mdm, (A3)

with Wm,c = Km,1

2 + tv + (M−Km,1 )2

8tv−2Km,1
and Wm,d = Km,1

2 − tv −
(M−Km,1 )2

8tv+2Km,1
. Here, we have neglected the effect of intrachain

hopping t , which is too weak to be important. Using the
Thouless formula and keeping the leading-order term of 1/t2

v ,
we find

ξ−1
μ (E ) = 1

8t2 − 2(E ± tv)2

[
(M ± 4tv)4V 2

12 288t4
v

+ 11(M ± 4tv)4V 4

5 898 240t6
v

+ O
(

1

t2
v

)]
, (A4)

033310-7



XIAOSHUI LIN AND MING GONG PHYSICAL REVIEW A 109, 033310 (2024)

FIG. 9. Lyapunov exponent γ (E ) vs interchain coupling tv for
E = tv. The energy corresponds to the red dashed lines in Fig. 8(c).
Here, we use L = 106, t = 1, V = 2, and M = 0, which yields
limtv→∞ γ (E = tv) ≈ 0.0104.

with μ ∈ {c, d}, and in E ± tv and M ± 4tv the minus sign
is for c and the plus sign is for d . When tv → ∞, we find
ξ−1
μ → V 2/4

96t2−24E2 , which is reduced to Eq. (2). A differ-
ent possibility for the bath-localized insulator problem in
a strong-coupling limit is discussed in Ref. [34]. We have
also presented a numerical verification of this expression in
Fig. 8(b), where excellent agreement between numerical and
analytical results is achieved. Finally, we present the Lya-
punov exponent as a function of interchain coupling tv in
Fig. 9. It is found that γ (E ) is a nonmonotonic function of tv.
When tv � 1, the Lyapunov exponent in the overlap regime
increases with the increasing of tv. However, when tv � 1,
the overlap regime is not well defined and the Lyapunov
exponent follows the prediction in Eq. (A4), which decreases
with the increasing of tv. The Lyapunov exponent exhibit
a peak at about tv ≈ 1, which happens in the overlapped
regime.
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