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Arbitrary interaction quench phenomena in harmonically trapped two-body systems
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We consider the evolution of two contact-interacting harmonically trapped particles following an arbitrary
quench in interaction strength. We focus on the change in system energy, the work, associated with the quench.
When quenching from any nonzero interaction strength to zero interaction strength we observe that the work
done and particle separation diverge. In particular, the divergent behavior arises always and exclusively when
quenching to the noninteracting regime. We demonstrate that the source of the divergence is its instantaneous
nature. This validates and builds upon previous work that found divergent behavior arises when quenching from
the strongly interacting limit to the noninteracting limit in both the two- and three-body cases.
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I. INTRODUCTION

Understanding the nonequilibrium behavior of quantum
systems is strongly relevant to a variety of very fundamen-
tal problems such as how quantum systems equilibrate [1]
and quantum thermodynamics more generally [2]. Ultracold
atomic gases are very fertile ground for studying quantum
thermodynamics [3–21]. A high degree of experimental con-
trol is possible over such systems [22–32], and they exist
in a regime where various analytical techniques are highly
applicable, e.g., the Fermi pseudopotential [33,34].

We consider two particles in a three-dimensional isotropic
harmonic trap interacting via a contact interaction. We are
interested in the behavior of the system after a sudden change,
a quench, in the interaction strength from one arbitrary value
to another. We use known analytic wave functions [35]
to calculate the work associated with the quench. Previ-
ous calculations of quenched two- and three-body systems
in three dimensions find that the system size diverges af-
ter a quench from very strong interactions (unitarity) to
no interactions [36–38]. This stands in opposition to the
one-dimensional case where the divergence occurs when
quenching to the strongly interacting regime [39]. However,
it is unclear how having a finite nonzero interaction strength
affects the quench. Additionally, the duration or speed of a
quench has been shown to be strongly relevant to a system’s
behavior [21], and we investigate the effects of quench dura-
tion in relation to the divergent behavior.

Additionally, we must note that the physical system of
interest, two contact-interacting bodies in a three-dimensional
harmonic trap quenched in interaction strength, can be re-
alized with current experimental capabilities. Methods to
construct few-atom systems are well understood [25–31],
and exploiting Feshbach resonance is a well-known reliable
method of controlling the interaction strength [40–43]. In
particular the evolution of particle separation of a quenched
system has been experimentally measured [44]. However, that
experiment considered a quench in trap geometry rather than
interaction strength as we consider here.

This paper is structured in the following way. In Sec. II we
review the interacting two-body wave function first derived

by Ref. [35]. In Sec. III we calculate the work associated with
the quench to determine if the system size diverges. In particu-
lar, we examine quenches between the unitary/noninteracting
limits and arbitrary interaction strengths, and quenches be-
tween two arbitrary interaction strengths. In Sec. IV we
investigate the relationship quench duration and the divergent
behavior.

II. OVERVIEW OF THE TWO-BODY PROBLEM

In this paper we consider two distinguishable particles in
a three-dimensional isotropic harmonic trap interacting via a
contact interaction. We use the Fermi-Huang pseudopoten-
tial [33,34] to describe the interaction. The center-of-mass
(c.m.) motion separates out as a simple harmonic oscilla-
tor Hamiltonian with mass M = m1 + m2 and position �R =
(m1�r1 + m2�r2)/M, where mi and �ri are the mass and position
of the ith particle, respectively. However, the relative motion
is more complicated due to the interaction term. The relative
Hamiltonian is given

Ĥrel = − h̄2

2μ
∇2

r + μω2r2

2
+ 2π h̄2as

μ
δ3(r)

∂

∂r
(r•), (1)

where Ĥtotal = Ĥc.m. + Ĥrel, �r = �r1 − �r2, μ = m1m2/M, ω is
the trapping frequency, and as is the s-wave scattering length
which characterizes the interaction. The dot inside the paren-
theses of the derivative is to indicate that the derivative acts on
rψ (where ψ is the wave function) not just r.

The eigenfunctions of Eq. (1), i.e., the interacting wave
functions, were first found by Ref. [35] and are given

ψν (r) = Nν�(−ν)er2/2a2
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where aμ = √
h̄/μω, and ν is the energy pseudoquantum

number with Erel = (2ν + 3/2)h̄ω. The values of ν are
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FIG. 1. The energy of the interacting two-body wave function,
Eq. (2), as a function of s-wave scattering length. The red horizontal
lines correspond to Erel = (2n + 1/2)h̄ω, the energies in the unitary
limit.

obtained by solving the transcendental equation

aμ

as
= 2�(−ν)

�
( − ν − 1

2

) . (4)

The energy spectrum is presented in Fig. 1. Note the bound
state present for small positive as.

III. QUENCH DYNAMICS

In general, a quench is a sudden change in some variable
of the system, e.g., a sudden change in ω is a quench in
trapping frequency. Here, we are concerned with the effects
of a quench in as. In experiment such quenches have been
implemented [45] by exploiting Feshbach resonance [41,43].

The wave function of the system, ψ (t ), as a function of
time after the quench can be written

ψ (t ) =
∞∑
j=0

〈φ j |ψ (0)〉φ je
−iE jt/h̄, (5)

where t = 0 is the time of the quench, ψ (0) is the prequench
wave function, φ j are the eigenstates of the postquench sys-
tem, and Ej are the associated eigenenergies. The overlap
terms 〈φ j |ψ (0)〉 are presented in Ref. [36]. Quenches in as

only change the relative Hamiltonian, not the c.m. Hamilto-
nian. As such, only the relative part of the total wave function
is affected. The c.m. wave function simply integrates to one in
all calculations, and we do not need to consider it further.

When quenching from the strongly interacting limit to the
noninteracting limit the expectation of the particle separation,
〈r(t )〉, diverges [36]. This divergence is also present in the
three-body case [37,38]. This divergence arises because a 1/r2

tail forms in the probability distribution of particle separation
when t �= nπ/ω. The first moment of this distribution, 〈r(t )〉,
is poorly defined due to the 1/r tail of the integrand. In
the three-body case we can only consider quenches between
the unitary and noninteracting regimes, but in the two-body
case we can consider arbitrary quenches. This naturally leads
one to ask if the divergence is present for other quenches and,
if so, under what circumstances.

FIG. 2. The work as a function of the number of terms in
the expansion in Eq. (6), Nmax. Upper panel: 〈W 〉 for the forward
quench. The dashed red line indicates 〈W 〉 = 0. Lower panel: 〈W 〉
for the backward quench. The dashed red line indicates 〈W 〉 =
0.7

√
Nmax h̄ω. In both cases the initial state is the ground state.

A. Presence of the divergence

It is not immediately obvious whether the divergence is
unique to the unitarity to noninteracting limit (backwards)
quench or if there are other quenches with the divergence
present. Rather than calculate 〈r(t )〉 for a variety of quenches
it is more efficient to calculate 〈W 〉, the average work associ-
ated with the quench,

〈W 〉 = 〈ψ (t )|(Ĥ − Ei )|ψ (t )〉

=
∞∑
j=0

(Ej − Ei )|〈ψ (0)|φ j〉|2, (6)

where Ei is the energy of the initial state and the Ej’s are
the eigenenergies of the postquench Hamiltonian. If 〈r(t )〉
is divergent, then so is the potential energy and the work
is infinite. It is worthwhile to define the irreversible work,
〈Wirr〉 = 〈W 〉 + Ei − Ej=0, where Ej=0 is the ground-state en-
ergy of the postquench system. 〈Wirr〉 gives a measure of how
the postquench excited states are populated.

In Fig. 2 we display 〈W 〉 against the number of terms we
evaluate up to in Eq. (6), Nmax, for the forward (noninteracting
limit to unitarity) and backward quenches. It is clear that the
forward quench is convergent and the backward is divergent
with 〈W 〉 ≈ 0.7

√
Nmax h̄ω for Nmax � 100. This is consistent

with previous results [36].
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FIG. 3. The probability distribution of work. Upper panel: The
work associated with the forward quench. Lower panel: The work
associated with the reverse quench. In both cases the initial state is
the ground state.

In Fig. 3 we present the probability distribution of the
work,

P(W ) =
∞∑
j=0

|〈ψ (0)|φ j〉|2δ(W − (Ej − Ei )), (7)

for the forward (upper panel) and backward (lower panel)
quenches. The work can be negative for the forward quench
because the noninteracting ground-state energy is greater than
the unitary ground-state energy. Note that the tail decays much
more slowly for the reverse quench than the forward quench.
This large tail leads to the divergent behavior.

Next, we turn our attention to quenches involving arbi-
trary scattering length. There are two cases here. There are
quenches between two arbitrary scattering lengths, and there
are quenches between the unitary/noninteracting limits and
arbitrary as. We begin with the former case. In Fig. 4 we
plot 〈W 〉 (upper panel) and 〈Wirr〉 (lower panel) for quenches
between two arbitrary scattering lengths where the initial state
is the ground state. In all cases we find that the quantities con-
verge. Both works peak when quenching from small positive
as to small negative as. In this case the initial state is a bound
state, and it is being projected onto a basis without bound
states. There are significant contributions from higher-order
terms with large energies. In Fig. 5 we plot the probabil-
ity distributions of work for quenches between as = −0.5aμ

and as = 0.5aμ. For the quench towards as = −0.5aμ (lower
panel) we can see that the tail is much larger, and there is no
negative work contribution due to the lack of a bound state in
the final Hamiltonian. The presence of the bound state in the

FIG. 4. Work associated with the quench. Upper panel: The av-
erage work 〈W 〉 done by the quench. Lower panel: The average
irreversible work 〈Wirr〉 done by the quench. Quantities are calculated
for a variety of arbitrary s-wave scattering lengths. In all cases the
initial state is the ground state. The main diagonal is where the initial
and final scattering lengths are the same. The work and irreversible
work associated with these “quenches” is always zero.

postquench system introduces the possibility of negative work
leading to less average work.

The irreversible work is maximized when quenching from
a bound state or toward a system capable of supporting a
bound state. The irreversible work is necessarily positive so
there are no negative energy contributions to skew the average.
The average irreversible work is then determined by the shape
of the tail of the probability distribution. The tail is largest
(contributions from excited states are greatest) when quench-
ing between Hamiltonians that can and cannot support bound
states. When quenching between regimes that do not support
bound states 〈Wirr〉 is near zero, as can be seen in the corners
of the lower panel of Fig. 4.

Now we turn to quenches between the noninteracting/

unitary limits and finite as. In the upper and middle panels
of Fig. 6 we present 〈W 〉 and 〈Wirr〉 respectively for quenches
between arbitrary s-wave scattering length and unitarity and
from the noninteracting regime to arbitrary as. We find
that these quenches are convergent regardless of the values
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FIG. 5. The probability distribution of work for arbitrary
quenches. Upper panel: The work associated with a quench from
as = −0.5aμ to as = 0.5aμ. Lower panel: The work associated with
a quench from as = 0.5aμ to as = −0.5aμ. In both cases the initial
state is the ground state.

of as. For the toward unitarity quenches 〈W 〉 and 〈Wirr〉 peak
near initial as = 0. Small initial as corresponds to values of ν

which differ significantly from those of the unitary spectrum.
When projecting the initial weakly interacting wave function
onto the unitary basis there are significant contributions from
higher-order terms, because the unitary states are a poor basis
for the weakly interacting states. Higher-order terms have
larger energies, hence 〈W 〉 and 〈Wirr〉 peak near initial as = 0.
For the quenches from unitarity we again see the influence
of the bound state with the most amount of work (positive
or negative) being associated with quenching to/from bound
states.

Notably, for the quenches from the noninteracting system
the work done is zero. The reason that no work is done for
these quenches is explained in more detail in Sec. IV. In brief,
in the noninteracting system the probability the two atoms
are in the same place and at the same time is zero. When
the interaction strength is quenched, the energy of the system
does not change because the atoms are not initially in contact.
After the quench the system evolves and the atoms come into
contact, but at the time of the quench the atoms are not in
contact, so a changing contact interaction does not change the
energy of the system.

In the lower panel of Fig. 6 we plot 〈W 〉 against Nmax for
a quench from as = 0.1aμ to the noninteracting limit. For this
quench 〈W 〉 diverges. In fact, a quench from any nonzero
s-wave scattering length to the noninteracting regime results
in a divergence in 〈W 〉 and 〈Wirr〉. This is not entirely unex-
pected. After all, the interacting wave function for arbitrary

FIG. 6. Quenches between the noninteracting (NI) or unitary
limits and arbitrary values of as. Upper panel: 〈W 〉 for quenches
between a variety of s-wave scattering lengths and unitarity and
for quenches from the noninteracting regime to arbitrary as. Center
panel: 〈Wirr〉 for quenches between a variety of s-wave scattering
lengths and unitarity and for quenches from the noninteracting
regime to arbitrary as. Lower panel: 〈W 〉 for a quench from as =
0.1aμ to the noninteracting regime as a function of Nmax. The red
dashed line corresponds to 〈W 〉 = 11.8

√
Nmax h̄ω. In all cases the

initial state is the ground state.

as has the same functional form as the unitary wave function.
Importantly, this demonstrates that the divergence behavior is
not confined to the backward quench.

IV. DYNAMIC SWEEP THEOREM

The results of Sec. III A are consistent with the dynamic
sweep theorem [46]. The dynamic sweep theorem relates the
work of a quench in scattering length and/or trap geometry to
the initial conditions of the system and the properties of the
quench. If the trap geometry does not change it can be written

dE

dt
= h̄2
C(t )

8πμ

d[−as(t )−1]

dt
, (8)

where 
C(t ) is the integrated contact intensity of the system.
It is related to the probability of two particles being in the
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same place at the same time. For an instantaneous quench
Eq. (8) becomes

W = h̄2
C(0)

8πμ

(
1

ai
− 1

af

)
, (9)

where ai and af are the initial and final scattering lengths. In
the static interacting two-body case it is given [47]


C = 16π2 lim
r→0

|rψν (r)|2 = 16π3a2
μN2

ν , (10)

and in the static noninteracting case 
C = 0. The predictions
of the dynamic sweep theorem match our calculations of 〈W 〉
and 〈Wirr〉. That is, Eqs. (6) and (9) are in good agreement.
It should be noted that 
C(0)/ai goes to zero in the limit
of ai → 0. This is why 〈W 〉 = 0 for the quenches from the
noninteracting regime.

In prior work it was suggested that the divergent behavior
may be caused by the instantaneous nature of the quench
and/or the zero-range nature of the interaction [36–38]. Using
the dynamic sweep theorem we can show that the divergence
is indeed a result of the instantaneous quench. Consider a
quench where the scattering length changes as

as(t ) = af − ai

π
arctan(xt ) + af + ai

2
, (11)

where x is a parameter to describe the speed of the quench.
We assume that the quench happens on a timescale faster than
the dynamical response time such that C(t ) = C(0) and that
as changes only between t = −t ′ to t = t ′. From Eq. (8) we
obtain

W = h̄2
C(0)

μ

[
(af − ai ) arctan(xt ′)

π2(af + ai )2 − 4(af − ai )2 arctan(xt ′)2

]
.

(12)

For a quench to the noninteracting regime Eq. (12) only
diverges in the limit of an instantaneous quench (x → ∞).

A contact-interacting system can be quenched to the
noninteracting regime and not diverge provided the quench
is not instantaneous. This demonstrates that the divergent
behavior is a result of instantaneous quenches.

V. CONCLUSION

In this paper we consider the postquench evolution of a
harmonically trapped system of two contact-interacting bod-
ies with the aim of determining if divergences in particle
separation are or are not present. We find that when quench-
ing from finite as to the noninteracting limit the work done
diverges. This builds upon previous work that found the
system size diverges when quenching from unitarity to the
noninteracting limit [36–38]. Importantly, we observe that this
divergent behavior is present in only these two cases: unitarity
to the noninteracting regime and finite as to the noninteracting
regime. The divergence is not present in any other quench.
Using the dynamic sweep theorem we are able to determine
that the divergence arises due to the instantaneous nature of
the quench rather than the zero-range nature of the interaction.

Finally, we reemphasize that these predictions are exper-
imentally testable. Modern techniques allow for low atom
number systems to be constructed with high fidelity [25–31].
Feshbach resonances are well understood [40–43] and have
been implemented in experiment before [45,48]. In particular,
the evolution of the postquench particle separation of a two-
atom system has been measured before [44], albeit the quench
was in trap geometry not as. While particle separation will
not diverge in experiments where as is quenched to zero, it is
likely that oscillations in system size will still be large.
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