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Critical current throughout the BCS-BEC crossover with the inclusion of pairing fluctuations
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The present work aims at providing a systematic analysis of the current density versus momentum characteris-
tics for a fermionic superfluid throughout the BCS-BEC crossover, even in the fully homogeneous case. At low
temperatures, where pairing fluctuations are not strong enough to invalidate a quasiparticle approach, a sharp
threshold for the inception of a back-flow current is found, which sets the onset of dissipation and identifies the
critical momentum according to Landau. This momentum is seen to smoothly evolve from the BCS to the BEC
regimes, whereby a single expression for the single-particle current density that includes pairing fluctuations
enables us to incorporate on equal footing two quite distinct dissipative mechanisms, namely, pair breaking
and phonon excitations in the two sides of the BCS-BEC crossover, respectively. At finite temperature, where
thermal fluctuations broaden the excitation spectrum and make the dissipative (kinetic and thermal) mechanisms
intertwined with each other, an alternative criterion due to Bardeen is instead employed to signal the loss of
superfluid behavior. In this way, detailed comparison with available experimental data in linear and annular
geometries is significantly improved with respect to previous approaches, thereby demonstrating the crucial role
played by quantum fluctuations in renormalizing the single-particle excitation spectrum.
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I. INTRODUCTION

The concepts of the critical current of a superconductor
[1] and the critical velocity of a superfluid [2] are intimately
related. In both cases, the breaking of dissipationless flow
occurs when the imparted kinetic energy gives rise to quasi-
particle excitations with zero energy. For superconductors,
this shows up in the phenomenon known as “gapless super-
conductivity” [3,4], after the seminal work by Abrikosov and
Gor’kov on the effect of impurities in a superconductor [5],
which was later generalized by Maki [6] to the case of a
time-reversal symmetry-breaking (depairing or pair-breaking)
agent [7]. For superfluids, it corresponds to the criterion for
the onset of viscous flow originally conceived by Landau for
4He [2]. To the extent that the properties of superconductors
and superfluids crucially depend on the details of the under-
lying energy spectrum, a detailed analysis of the onset of
the dissipative flow should be able to reveal the microscopic
mechanisms underlying this phenomenon.

The appropriate physical quantity for revealing the above
features is the current response to an overall momentum
imposed on the (superconducting or superfluid) system. The
behavior of this physical quantity is familiar in two paradig-
matic cases, namely, the weakly attractive Fermi gas and the
weakly repulsive Bose gas. The first one can be described
in terms of the Bardeen-Cooper-Schrieffer (BCS) theory of
conventional superconductors [8] (with its extension to dirty
superconductors [9]), while the second one in terms of the
Bogoliubov theory of weakly interacting bosons [10] that
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Bose-Einstein condense (BEC) at low temperature (with its
extension to strongly interacting bosons like 4He [11]). In
both systems, kinetic and/or thermal dissipation occurs in the
form of a back-flow current (which is somewhat analogous to
that occurring in a normal Fermi system [12]), giving rise to
density inhomogeneities which, in turn, lead to the formation
of vortices [1] as well as of rotons [13].

With the advent of ultracold atomic gases (and, specifically,
of Fermi gases with attractive interparticle interaction), these
two paradigmatic (fermionic and bosonic) physical systems
can be smoothly connected via Fano-Feshbach resonances,
whereby these systems correspond to the limiting regimes of
the so-called BCS-BEC crossover, with largely overlapping
Cooper pairs in the BCS regime smoothly evolving into tightly
bound composite bosons in the BEC regime. (A recent com-
prehensive review on the BCS-BEC crossover can be found
in Ref. [14].) Commonly, the BCS-BEC crossover is spanned
in terms of the dimensionless coupling (kF aF )−1, where kF =
(3π2n)1/3 is the Fermi momentum with density n and aF the
scattering length of the two-fermion problem in vacuum. This
coupling ranges from (kF aF )−1 � −1 in the weak-coupling
(BCS) regime when aF < 0, to (kF aF )−1 � +1 in the strong-
coupling (BEC) regime when aF > 0, passing through the
unitary limit (kF aF )−1 = 0 when |aF | diverges.

Experiments with ultracold Fermi gases, with their detailed
control on the relevant parameters associated with the de-
grees of freedom of the system Hamiltonian, have revived
the interest in many key aspects of superconductivity (or,
more generally, of fermionic superfluidity), including the
Abrikosov vortex lattice [15,16], the Josephson effect [17,18],
and the interaction of magnetic(-like) fields with fermion
spins [19–21]. At the same time, these experiments have also
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stimulated more refined and advanced theoretical approaches
addressing these aspects, inevitably promoting a valuable
feedback in the theory of superconductors themselves. The
topic dealt with in the present article about the current re-
sponse to an overall momentum imposed on a (homogeneous)
fermionic superfluid makes no exception to this close connec-
tion between experiment and theory which is feasible with
ultracold Fermi gases. In particular, two recent experiments
have measured at low temperature throughout the BCS-BEC
crossover, both the critical velocity in a linear geometry where
a weak barrier proceeds through the superfluid in a circular
motion [22], and the maximum quantized persistent current
circulating in an annular geometry [23]. Both experiments
were essentially aimed at identifying the value of the critical
current (or velocity) for an ultracold Fermi gas, in a way that
would resemble as closely as possible the Landau criterion
envisioned theoretically for liquid helium [24].

In this context, the present article considers the smooth
evolution of the current-vs-momentum characteristics from
the BCS to the BEC limits of the BCS-BEC crossover at any
temperature in the superfluid phase, resting on an approach
recently developed in Ref. [25] to deal with the effects of
pairing fluctuations in the presence of a supercurrent and
nontrivial spatial constraints on equal footing (although in the
present case the spatial constraint may at most correspond
to a weak barrier in line with the setups of the experiments
of Refs. [22,23] mentioned above). This theoretical approach
will enable us to demonstrate, in terms of a single theory, how
the Landau critical velocity at zero temperature, originally
introduced for a bosonic superfluid [24], smoothly evolves
into its counterpart in the BCS regime where, however, the
presence of an underlying Fermi surface makes the value
of the critical velocity different from that obtained by the
Bardeen criterion originally introduced for a fermionic super-
fluid [8]. In addition, the analysis of the current-vs-momentum
characteristics obtained in this way will enable us to identify
the critical current (or, else, the critical velocity) even at finite
temperature in terms of the Bardeen criterion.

The results for the current-momentum response obtained
by the present approach, which include the renormalization
of the single-particle excitation spectrum due to pairing fluc-
tuations, represents a definite improvement over those given
by the conventional BCS-RPA (random-phase approximation)
theory of superconductors, originally introduced by Anderson
for conventional superconductors [26] and later extended to
the BCS-BEC crossover [27–29].

The main results obtained in this article are as follows:
(i) The current-vs-momentum characteristics are obtained

with the inclusion of pairing fluctuations beyond mean field
for a homogeneous two-component Fermi gas with attractive
interparticle interaction, at any temperature in the superfluid
phase and throughout the BCS-BEC crossover. Although, in
principle, the value of the critical current obtained in this way
is equivalent to that due to an applied infinitesimal pertur-
bation, in practice the presence of a non-negligible impurity
(in the form of a small barrier) embedded in an otherwise
homogeneous superfluid has to be taken into account when
simulating realistic experimental setups. This will be done in
terms of the theoretical mLPDA approach (with the acronym
standing for modified local phase density approximation) that

was recently developed in Ref. [25], with the further consid-
eration of the extended Gorkov-Melik-Barkhudarov (GMB)
approach implemented in Ref. [30] that improves on the com-
parison with experimental data.

(ii) A rather good comparison is retrieved in this way with
the experimental data available at low temperature, specif-
ically, from Ref. [22] for the critical velocity in a linear
geometry and from Ref. [23] for the maximum value of the
quantized velocity in an annular geometry.

(iii) The concept of the intrinsic critical current is further
extended locally inside a realistic barrier, and shown to ac-
count for the value of the critical current which is involved
in the Josephson effect at finite temperature as obtained in
Ref. [25].

(iv) Overall, this analysis enables us to assess how the
Landau and Bardeen criteria manifest themselves in different
experimental contexts and at the relevant temperature, when
the coupling is varied across the BCS-BEC crossover.

The article is organized as follows: In Sec. II the current-
vs-momentum characteristics are considered for the simple
cases of a weakly attractive Fermi gas and of a weakly re-
pulsive Bose gas, that represent the limiting cases occurring
in the BCS-BEC crossover. In Sec. III the inclusion of pairing
fluctuations beyond mean field will allow us to obtain a con-
tinuous evolution of the current-vs-momentum characteristics
for a homogeneous Fermi system that evolves from the BCS
to the BEC regimes, thus making the intrinsic critical cur-
rent obtained in this way to be the theoretical benchmark for
interpreting microscopically experiments and theoretical sim-
ulations. A linear geometry is first considered to relate with
the experimental results on the critical velocity of Ref. [22]
across the BCS-BEC crossover as well as with the theoretical
results on the Josephson characteristics obtained in Ref. [25].
Section IV considers alternatively an annular geometry with
quantized values of the superfluid velocity, for which com-
parison with the experimental data of Ref. [23] is possible.
Section V gives our conclusions.

Finally, for the benefit of the readers Appendix A briefly
summarizes previous theoretical results which are utilized for
the specific purposes of the present work, while Appendix B
expands on the topics dealt with in Secs. II A and III B.

II. INTRINSIC CRITICAL CURRENT OF WEAKLY
INTERACTING GASES

This section briefly reviews the current-density response
induced by an imposed momentum in two paradigmatic cases:
The weakly attractive Fermi gas treated within the BCS ap-
proximation and the weakly repulsive Bose gas treated within
the Bogoliubov approximation. In the Bogoliubov case, the
Landau critical velocity sets not only the dissipative threshold
but also the onset of the dynamical instability of the gas. In
the BCS case, on the other hand, the dissipative threshold
does not coincide with the onset of the dynamical instability.
This is due to the presence of an underlying Fermi surface
which introduces a second (thermodynamic) critical velocity,
that can be referred to as the Bardeen critical velocity after
Bardeen who first considered it [8].

The expressions of the current density utilized here for the
Fermi and Bose gases can be obtained as limiting cases of a
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more general expression which spans the BCS-BEC crossover
between the two (BCS and BEC) limits, which will be exten-
sively discussed in Sec. III below. In addition, for the benefit
of the readers Appendix A summarizes how this more general
expression for the current was originally obtained in Ref. [25].

A. Intrinsic critical current of a weakly attractive Fermi gas

We first consider the superfluid current density of a weakly
attractive Fermi gas as a function of an imposed velocity,
which we calculate at the mean-field (BCS) level. Although
this topic has already been dealt with by a number of authors
[6–8,31] in the context of depairing currents and gapless su-
perconductivity we are here interested in its intimate relation
with the system energy excitation spectrum and with the Lan-
dau criterion for superfluidity [32].

At the mean-field level, the current density induced by an
imposed momentum q reads [33]

j(q) = n
q
m

+ 2
∫

dk

(2π )3

k
m

f (E+(k; q)), (1)

where n is the (fermionic) particle density, m the
fermion mass, E+(k; q) = E (k; q) + k·q

m the Doppler-
shifted BCS quasiparticle spectrum where E (k; q) =
[( k2

2m − μ + q2

2m )2 + �2
q]1/2 with gap parameter �q and

chemical potential μ, f (ε) = (e
ε

kBT + 1)−1 the Fermi
distribution function, and 2 the spin factor. We set h̄ = 1
throughout.

Here, as well as in the more general expressions (7) and
(11), the first term n q

m represents the total density n moving
uniformly in stationary equilibrium with an imposed mo-
mentum q = mv, while the second term corresponds to the
depletion of the superfluid component in favor of the normal
one due either to thermal or velocity effects. This connects
with the Landau two-fluid model, as discussed below for both
fermions and bosons.

By symmetry consideration, the second term on the right-
hand side of Eq. (1) is directed along −q and has accordingly
the microscopic interpretation of a back-flow current [12],
which is set in by the produced excitations that eventually
make the system to dissipate. The mechanism of the back-flow
is actually a widely ranging concept, which is invoked in the
stability of vortices in superconductors [1] and in the creation
of rotons in 4He (as proposed in the seminal work by Feynman
[13]). In this respect, the typical return flow of rotons is not a
specific feature of a bosonic system like 4He, since it was also
detected in a two-dimensional Fermi liquid like 3He [34] as
well as in a dipolar bosonic quantum gas [35].

For small momenta q � kF , the expression (1) recovers
the Landau’s two-fluid model whereby the back-flow term
implicitly defines the normal fluid density at finite temperature
[2]:

ρn(T ) = 2
∫

dk
(2π )3

(k · q̂)2

m

(
−df (E (k))

dE (k)

)
, (2)

where E (k) = E (k; q = 0). In this way, the standard hy-
drodynamic relation j(q) = n q

m − ρn(T ) q
m = ρs(T ) q

m is ob-
tained, where ρs(T ) = n − ρn(T ) is the superfluid density at
temperature T . In the present work, we go beyond the linear

FIG. 1. Momentum dependence of the current j(q) for a weakly
attractive Fermi gas with coupling (kF aF )−1 = −1.0, at several tem-
peratures in the superfluid phase. Here, q is in units of the Fermi
momentum kF = (3π 2n)1/3 and j(q) in units of the Fermi current
JF = nkF /m. (main panel) At given temperature T (here in units
of the superfluid critical temperature Tc calculated at the mean-field
level), the value JB of the critical current is reached at the maximum
of each characteristic in agreement with the Bardeen criterion (see
the text). (inset) At T = 0, the onset of dissipation is defined by qL

according to the Landau criterion, while at qB the stability is lost
according to the Bardeen criterion.

regime of Eq. (2) and focus especially on the nonlinear su-
percritical effects that show up once the Landau dissipation
threshold is reached [32].

Figure 1 shows the momentum dependence of the current
density given by the expression (1) at several temperatures.
In particular, at zero temperature the inset of Fig. 1 shows
that the current is proportional to the momentum q and the
backflow term of Eq. (1) is zero as long as q satisfies the
Landau condition

E (k; q) − kq

m
� 0 ⇒ q2

m
� q2

L

m
≡

√
�2 + μ2 − μ, (3)

which identifies the limiting (Landau) momentum qL. Past qL,
zero-energy excitations are produced in the system according
to the Landau criterion, with the effect of decreasing the
strength of the current in a gradual way up to a second critical
(Bardeen) momentum qB. At this point, the current reaches
its maximum value which signals the limit of the thermody-
namic stability of the system. Past qB, in fact, the dissipation
becomes out of control in such a way that the thermodynamic
equilibrium is lost and a new phase sets in. Accordingly, at
zero temperature the onset of dynamical dissipation occur-
ring at the Landau momentum qL can be identified when the
current-vs-momentum characteristic turns from a linear to a
nonlinear behavior, while the thermodynamic stability is lost
at a second critical momentum qB when the characteristic
attains its maximum value. A rigorous definition of qB will
be given after the expression (4) below when discussing the
case of finite temperature.

At finite temperature, on the other hand, kinetic and
thermal dissipations are simultaneously present making the
identification of qL from the current-vs-momentum charac-
teristic no longer possible, since a sharp transition from a
linear to a nonlinear behavior is now lost (as shown in the
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main panel of Fig. 1). In this case, it is convenient to adopt a
thermodynamic criterion for the stability of the system against
the collapse of the superfluid phase due to dissipation as
proposed by Bardeen [8], which corresponds to the condition
of the second derivative of the free energy F being positive
definite:

∂2F (q)

∂q2
= ∂ j(q)

∂ (q/m)
� 0. (4)

Here, the equality corresponds to the maximum (or critical)
current JB that occurs at the Bardeen momentum qB. In this
case, the superfluid density is defined directly as a dynamical
response of the system in the form [8]

ρs(q) ≡ ∂ j(q)

∂ (q/m)
, (5)

instead of being indirectly determined in terms of the normal
density (2). By this definition, ρs(q) vanishes at the Bardeen
momentum qB, where j(q) is maximum. In addition, at zero
temperatures ρs(q) remains constant and equal to the particle
density n when j(q) is linear in q for q � qL, while it de-
creases to zero when qL < q � qB.

These considerations will be further expanded in
Appendix B in terms of the free energy at the mean-field
level in the presence of a current.

In the related context of superconductivity, the maximum
current Jc is an intrinsic property of a superconductor and cor-
responds to the depairing current, whose knowledge is crucial
in applications of thin and narrow superconducting films, like
nanowire single-photon detectors and microwave kinetic in-
ductance detectors [36–38]. Remaining in this related context,
it may be instructive to relate the Landau threshold for viscous
flow to the onset of gapless superconductivity. This can be
done within the simplified context of mean-field theory, which
is preparatory to the case of the BCS-BEC crossover (to be
considered below) for which pairing fluctuations add to the
picture. It is known since the work of Gorkov and Abrikosov
[5] and its generalization due to Maki [6] that a dissipative
agent (like magnetic impurities, a magnetic field, or a current)
can make the excitation gap in the single-particle spectrum
to decrease to zero while maintaining the order parameter
finite. Within mean-field (BCS) theory, when considering an
imposed stationary flow with momentum q, the excitation
spectrum is provided by the energy positions of the quasipar-
ticle peaks in the single-particle spectral function:

A(k, ω; q) = u2
kδ(ω − E+(k; q)) + v2

k δ(ω + E−(k; q)), (6)

where E±(k; q) = E (k; q) ± k·q
m and (u2

k, v
2
k ) are BCS coher-

ence factors. In this way, the total current density (1) can then
be rewritten as follows:

j(q) = n
q
m

+
∫

dk

(2π )3

k
m

n(k; q), (7)

where we have introduced the density distribution function

n(k; q) = 2
∫ +∞

−∞
dω f (ω)A(k, ω; q). (8)

FIG. 2. Momentum dependence of the current j(q) for a weakly
repulsive Bose gas at several temperatures in the superfluid phase. At
finite temperature, a maximum develops corresponding to the critical
current Jc, which as T → 0 coincides with the current flowing at the
sound velocity. The inset shows a comparison between the energy
spectra of the Bose gas at rest and moving at the sound speed.

In the simplest case of T → 0 when thermal dissipation is
absent, the onset of viscous flow given by the Landau criterion

E (k, q) − kq

m
= 0 (9)

implies that the position of one of the two peaks in the spec-
tral function (6) has shifted to zero energy, thereby signaling
the closure of the excitation gap at some value of k while
the order parameter �q remains finite. As a consequence, the
Landau threshold at qL in the zero-temperature curve of Fig. 1
implies the closing of the excitation gap in the single-particle
spectral function (or, more conventionally, in the density of
states [3,6]). This discussion will be relevant in the next sec-
tion when discussing the inclusion of pairing fluctuations.

B. Intrinsic critical current of a weakly repulsive Bose gas

The current-density response of a weakly interacting Bose
gas moving with uniform momentum q can similarly be stud-
ied [10]. In this case, the current density has an expression
similar to Eq. (1) with suitable replacements, namely,

j(q) = n
q
M

+
∫

dQ

(2π )3

Q
M

b(EB
+(Q; q)), (10)

where n is the (bosonic) particle density, M the boson
mass, EB

+(Q; q) = EB(Q, q) + Q·q
M the Doppler-shifted

Bogoliubov quasiparticle spectrum with EB(Q, q) =
{[ Q2

2M + n0(T, q)g]2 − [n0(T, q)g]2}1/2, g the coupling
constant, n0(T, q) the condensate density as determined
consistently through the density equation for each imposed
momentum q, and b(ε) = (e

ε
kBT − 1)−1 is the Bose

distribution function.
In Fig. 2 the induced current is shown as a function

of the impressed momentum q for several temperatures
below the critical temperature Tc (which coincides with
that of the noninteracting Bose gas, as consistently deter-
mined by the Bogoliubov theory), with the sound velocity
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cs = √
n0(T = 0, q = 0)g/M being used for normalization in

both axes. At zero temperature, the straight line sharply drops
to −∞ as soon as the velocity exceeds cs, thus signaling an
instability of the system. At finite temperature, the instability
limit corresponds to the maximum of each curve and repre-
sents the maximum (critical) current Jc that can be sustained
before a destructive flow sets in.

Beyond this point (and depending on the nature of the exci-
tation spectrum of the Bose gas) a number of inhomogeneous
phases have been considered in the literature, ranging from the
condensation of rotons [39] to the Bogoliubov-Cerenkov radi-
ation [40,41], as well as to the recent observation of rotonic
density modulations and supersolidity [42]. In the present
work, we limit ourselves quite generally to considering the
behavior of the current up to but not past the critical current.

III. INTRINSIC CRITICAL CURRENT THROUGHOUT
THE BCS-BEC CROSSOVER

In this section, we perform a comprehensive study of
the current-vs-momentum characteristics in the presence of
pairing fluctuations for a fermionic superfluid spanning the
BCS-BEC crossover. By following the onset of dissipation
signaled by these characteristics, we show how the Landau
critical velocity can be identified for all couplings from the
BCS to BEC limits. This will be done by explicitly calculating
a single measurable quantity, rather than by merely identifying
the branches of the single-particle and two-particle excita-
tion spectra corresponding to the lower velocity for given
coupling, as one would instead do in a BCS-RPA approach
[28,29].

A. Current-vs-momentum characteristics in the presence
of pairing fluctuations

The fermionic expression (7) for the total current density
can quite generally be generalized to include pairing fluctu-
ations, by adopting the following definition for the density
distribution function (cf. Ref. [25] and Appendix A below):

n(k; q) = 2kBT
∑

n

eiωnηGpf
11(k, ωn; q). (11)

Here, ωn = (2n + 1)πkBT (n integer) is a fermionic Matsub-
ara frequency, η a positive infinitesimal, and Gpf

11 the “normal”
single-particle Green’s function obtained in the presence of
a superfluid flow with momentum q. In the following, the
single-particle Green’s function Gpf

11 will be calculated within
the t-matrix approach in the presence of a supercurrent as
developed in Ref. [25] (although when comparing with exper-
imental data the refinements provided by the extended GMB
approach of Ref. [30] will also be considered). Like in the
mean-field case [cf. Eq. (1)], the current density given by
Eqs. (7) and (11) is again made up of two terms, a standard
(classical) term proportional to the carriers velocity and a
dissipative term identified as a back-flow current.

Figure 3 shows the current versus momentum characteris-
tics obtained from Eqs. (7) and (11), for three representative
couplings across the BCS-BEC crossover and several temper-
atures (left panels). At low-enough temperatures, the behavior

FIG. 3. The current-vs-momentum characteristics (normalized to
JF = kF n/m) for three representative couplings across the BCS-BEC
crossover and several temperatures in the superfluid phase, as ob-
tained by the t-matrix approach, are shown in the left panels. For
given coupling and temperature, the value of the critical current
corresponds to the maximum of the curve according to the Bardeen
criterion (where the temperature is now in units of the superfluid
critical temperature Tc calculated with the inclusion of pairing fluc-
tuations). At zero temperature, both Landau (JL) and Bardeen (JB)
critical currents can be identified, as shown at unitarity with their
identifying labels in the left-central panel. In addition, the right
panels report the temperature dependence of the Bardeen critical
current for given coupling.

is analogous to the mean-field case of Sec. II A. Accordingly,
a threshold is found at a critical momentum, past which
the current density is seen to deviate from a linear behavior
and to enter a dissipative regime due to the onset of the
back-flow current. Below we argue that this critical value cor-
responds to the Landau critical velocity qL/m, where now the
single-particle excitation branch of the spectrum is suitably
renormalized by pairing fluctuations.

Similarly to the mean-field case of Sec. II A, at any tem-
perature the current density is seen to saturate at a maximum
value, labeled in Fig. 3 by JB in correspondence to the Bardeen
momentum qB. This value corresponds to the Bardeen cri-
terion (4) for the thermodynamic stability of the intrinsic
current, such that past qB the system enters into a new phase.
The temperature dependence of the intrinsic critical current
JB for various couplings is reported in the right panels of
Fig. 3. Note how the behavior of this temperature dependence
confirms what was recently found in Ref. [25] (cf. Fig. 5
therein) for the critical current that can flow through a barrier,
whose temperature dependence changes from a convex to a
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FIG. 4. Coupling dependence of the critical velocity qc/m at
low temperature extracted from the characteristics j(q) for various
couplings. Here, the red solid line represents the Landau velocity
for which qc = qL and the green dashed line the Bardeen velocity
for which qc = qB, both obtained like in Fig. 3 by the t-matrix
approach. The blue dotted line corresponds to the critical velocity
for pair-breaking excitations as obtained from the spectral function.
Long-dashed lines (dashed-dotted lines) correspond to pair-breaking
(ascending branch) and sound (descending branch) critical velocities,
with thermodynamic parameters that do not include (include) pairing
fluctuations [28,29] (see the text).

concave behavior from the BCS to the BEC regime, passing
through an essentially linear behavior at unitarity. This linear
temperature behavior of the critical current of a strongly in-
teracting fermionic superfluid is reminiscent of an analogous
behavior of the critical velocity of 4He (as shown in Fig. 12 of
Ref. [43]).

Note also from Fig. 3 that the maximum of the characteris-
tics about qB is much broader at unitarity than on either side of
the crossover, and that the values of JL and JB remain close to
each other in contrast with their respective momenta qL and qB

which differ appreciably from each other. Here, a clear (albeit
not sharp) onset of dissipation is not restricted to zero tem-
perature but extends, in practice, up to about 0.5Tc ÷ 0.6T c,
similarly to what was found in Sec. II A for a weakly attractive
Fermi gas. This result is consistent with the fact that, in the
broken-symmetry phase, the Landau damping due to thermal
fluctuations becomes relevant above 0.3Tc ÷ 0.4Tc, although
the quasiparticle approximation (or, equivalently, the presence
of a sharp energy spectrum on which the Landau criterion rests
to begin with) ceases to be valid only above 0.5 ÷ 0.6Tc [44].
We return to this point below.

B. Landau and Bardeen intrinsic critical
velocities at low temperature

Quite generally, (quantum and thermal) pairing fluctua-
tions are expected to give rise to a finite lifetime in the energy
excitations, making the quasiparticle approximation much less
reliable than in the mean-field case of Sec. II A. Nevertheless,
by analyzing in detail the single- and two-particle excitation
spectra in the presence of pairing fluctuations throughout the
BCS-BEC crossover, in Ref. [44] it was shown that at low-
enough temperature a quasiparticle picture is still applicable

FIG. 5. Comparison with the experimental data for the Landau
critical velocity at low temperature from Ref. [17] (light green aster-
isk) and Ref. [22] (dark green squares). Theoretical results obtained
by the extended GMB approach of Ref. [30] in the homogeneous
case are given by the blue solid line and are compared with the results
obtained by the t-matrix approach reproduced from Fig. 4 above (red
dashed-dotted line). Results obtained with the addition of a small
Gaussian barrier (as specified in Ref. [22] for different number of
atoms) are given by light and dark circles (joined by dotted lines for
clarity) The corresponding results obtained by the Gross–Pitaevskii
equation for composite bosons with scattering length 0.6aF are
reported as light and dark diamonds. For completeness, the long-
dashed line reproduces the BCS-RPA critical velocity also reported
in Fig. 4 above.

to the extent that the energy spectrum remains rather sharp. In
addition, it was shown that the single-particle spectral func-
tion A(k, ω) possesses BCS-like features, with coherent peaks
of quite small linewidths (cf. Fig. 10 of Ref. [44]) and dis-
persions showing a characteristic back-bending (cf. Fig. 13 of
Ref. [44]). It was further shown that the degeneracy between
the order parameter and the excitation gap occurring at the
mean-field level is removed by pairing fluctuations. Specif-
ically, a quantitative comparison between these two energy
scales at low temperature was reported in Fig. 14 of Ref. [44],
showing a reduction of about 10% of the excitation gap with
respect to the order parameter at unitarity.

Accordingly, as long as at low temperature the single-
particle spectrum can be interpreted in terms of quasiparticle
excitations with well-defined coherent peaks, one may as-
sume a BCS-like expression like that given by Eq. (6) for
the single-particle spectral function to be valid throughout
the BCS-BEC crossover (although with renormalized values
of the thermodynamic parameters appearing therein), thereby
taking advantage of the arguments discussed in Sec. II A. This
would imply that, even in the presence of pairing fluctuations,
the onset of the nonlinear behavior in j(q) should reflect the
closing of the excitation gap, thereby identifying the Landau
critical threshold.

Figure 4 reports several curves for the critical velocity
vc = qc/m throughout the BCS-BEC crossover at low tem-
perature, with qc obtained from different approximations. All
curves contain an “ascending” branch associated with pair-
breaking excitations in the BCS side of the crossover and a
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“descending” branch associated with phonon excitations in
the BEC side of the crossover [29].

Initially, a BCS-RPA approach [26] is adopted and ex-
tended throughout the BCS-BEC crossover [27–29], whereby
the pair-breaking branch is obtained via the expression (3)
for the Landau momentum qL and the phonon branch via the
expression of the sound velocity at zero temperature reported
in Ref. [27], with the thermodynamic parameters � and μ

calculated either at the mean-field level (long-dashed lines
[28,29]) or with the further inclusion of pairing fluctuations
(dashed-dotted lines). Both these pairs of lines represent an
upper bound to the Landau critical velocity (cf. Fig. 8 of
Ref. [28] and Fig. 24 of Ref. [29]), and become strongly
renormalized by dynamical many-body effects once properly
included.

In this respect, the red solid line represents the value of
the Landau critical velocity vL = qL/m obtained at a low (but
nonzero) temperature (T = 0.1Tc) from the threshold of the
nonlinear behavior as identified in Fig. 3. Note here the strong
suppression with respect to the previous BCS-RPA results
(black long-dashed [28,29] and dashed-dotted lines), which
is due to dynamical effects that are not taken into account in
those results, yielding a significant renormalization of the ex-
citation gap and of the underlying Fermi surface. In addition,
the short-dashed line of Fig. 4 represents the velocity qB/m
for which the current reaches its critical value, corresponding
to the maximum value extracted from the left panels of Fig. 3.

By taking advantage of the analytic considerations re-
ported in Sec. II A, the single-particle excitations at low
temperature can be interpreted throughout the crossover in
terms of a quasiparticle approximation with an effective BCS-
like single-particle spectral function. Accordingly, following
Ref. [44], for given coupling we have obtained renormal-
ized values of the order parameter and chemical potential
by a BCS-like fit to the dispersion relation extracted from
the single-particle spectral function, in terms of which we
have calculated the Landau critical velocity for the ascending
branch using the expression (3). The result of this calculation
corresponds to the (blue) dotted line of Fig. 4. Note how
this line is quite close although not identical to the solid line
therein, owing to a small broadening of the spectral line-
shape associated with quantum fluctuations not captured by
the quasiparticle approximation.

Physically, the dotted line of Fig. 4 represents the Landau
velocity relative to the single-particle (pair-breaking) contri-
bution to the excitation spectrum. This is the reason why it
tends to increase without bound upon approaching the BEC
regime, where it is expected to follow the behavior of the
pair binding energy. The solid line of Fig. 4 instead switches
smoothly from the ascending branch of pair-breaking excita-
tions to the descending branch of phonon excitations, with
the maximum reached for coupling (kF aF )−1 = +0.36 (cf.
Appendix B for further considerations on this topic). This
smooth evolution of the intrinsic critical velocity, from the
ascending to the descending branches when the BCS-BEC
crossover is spanned from the BCS to the BEC regimes,
takes place directly from the expressions (7) and (11) for the
homogeneous case where pairing fluctuations are included.
It is worth pointing out that this smooth evolution corre-
sponds to a more realistic picture of the critical velocity, by

removing the unphysical cusp present in the BCS-RPA ap-
proach (long-dashed and dashed-dotted black lines in Fig. 4)
[28,29]. At the mean-field level, on the other hand, a smooth
evolution between the two branches can be recovered when
the current is made to flow in the presence of a small (in the
limit, infinitesimal) barrier that breaks translational invariance
[29,33].

In this respect, it may be instructive to consider the BEC
regime of Eqs. (7) and (11), for which analytic expressions
can be obtained (cf. Appendix B of Ref. [25]). One obtains the
following approximate expression for the density distribution
function (11):

n(k, q) � 1

4ξ (k)2

[
2�2

q + 2
∫

dQ

(2π )3 kBT
∑

ν

ei�νη
11

× (Q,�ν ; q)

(
1 + k · Q/m

ξ (k)

)]
, (12)

where ξ (k) = k2/(2m) − μ, �ν = 2πνkBT (ν integer) is a
bosonic Matsubara frequency, and 
11(Q,�ν ; q) is the diag-
onal element of the particle-particle ladder in the presence
of a supercurrent [25]. After integration over the fermionic
variables, the total current density (7) becomes [25]

j(q) − n
q
m

� 2
∫

dQ

(2π )3

Q
2m

b(EB
+(Q; q)), (13)

where EB
+(Q) is given after Eq. (10) and 2m = M is the mass

of composite bosons that form in the BEC limit (to which an
imposed momentum 2q is now associated). It is thus evident
that the fermionic current has become purely bosonic in na-
ture, with the Landau threshold now set by the Bogoliubov
sound velocity (cf. Sec. II B).

C. Comparison with the available experimental
data for the critical velocity

A direct comparison can be made at this point with the
available experimental data for the Landau critical velocity
vL obtained with an ultracold trapped Fermi gas, initially at
unitarity in Ref. [17] and, more extensively, throughout the
BCS-BEC crossover in Ref. [22]. These data are reported in
Fig. 5 as a light green asterisk [17] and dark green squares
[22], respectively. To make the best possible comparison with
these experimental data, we have improved on the t-matrix
results shown previously in Fig. 4 and implemented in the
present context the extended GMB approach of Ref. [30],
which has recently proved to lead to a quite good comparison
with experiments in several contexts [25,45–47]. (For the ben-
efit of the readers, a concise summary of the extended GMB
approach of Ref. [30] can be found in Appendix A below.)

The results of the extended GMB approach for the critical
Landau velocity at low temperature in the homogeneous case
are shown by the blue solid line of Fig. 5.

To offer a direct comparison with the experimental results,
Fig. 5 also reproduces from Fig. 4 both the results obtained by
the t-matrix approach (red dashed-dotted line) and the BCS-
RPA critical velocity (long-dashed line).

A quite good agreement is found between the experimen-
tal data and the extended GMB approach for the ascending
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(pair-breaking) branch, at least for coupling values up to about
+0.2 before the descending (phononic) branch prevails and
the maximum occurs, with a slight (yet favorable) improve-
ment on the BCS side of the crossover over and above the
results of the t-matrix approach. It turns out, however, that
the behavior of vL about and past this (intermediate) cou-
pling regime is sensible to the presence even of the small
barrier considered in the experiment of Ref. [22]. To quantify
this effect, on top of the extended GMB approach we have
considered a small Gaussian barrier like that utilized in the
experiment of Ref. [22] (although of a different sign, which
should be immaterial in the limit of infinitesimal barrier), with
the results given by the light and dark circles in Fig. 5.

Here, the presence of this barrier is dealt with the mLPDA
approach of Ref. [30], where pairing fluctuations are included
on top of the original LPDA approach of Ref. [48]. (For
the benefit of the readers, a concise summary of the LPDA
approach of Ref. [48] as well as of the mLPDA approach of
Ref. [30] can be found in Appendix A below.)

The difference between these values stems from the ex-
perimental uncertainty in the number of atoms [22], which
is reflected in the values of the Fermi momentum utilized to
normalize the theoretical results (see below).

It is evident from Fig. 5 that the presence of a small barrier
has only minor effects on the ascending branch on the BCS
side of the crossover up to (about) unitarity, but its effects
become rather substantial on the BEC side of the crossover
past unitarity when the descending branch is dominated by
bosonic degrees of freedom and the underlying Fermi surface
is lost. This enhanced sensitivity to the presence of spatial in-
homogeneities on the BEC side of the crossover is in line with
what found in Ref. [49] for the effects of random impurities.

Yet, in Fig. 5 discrepancies with the experimental data still
remain deep in the BEC side of the crossover for (kF aF )−1 ≈
1, even after having included the effects of a small barrier.
This discrepancy could be due to our theory recovering in this
limit the (Born) value 2.0aF [50] instead of the correct value
0.6aF [51] for the scattering length of composite bosons,
thereby overestimating the value of the speed of sound. To
clarify this point, we have calculated the Landau critical ve-
locity at zero temperature for coupling (kF aF )−1 = 1.0 in
terms of the Gross–Pitaevskii equation, with the values 0.6aF

for the bosonic scattering length. The results of this additional
calculation are shown in Fig. 5 by light and dark diamonds,
respectively, where for consistency the presence of a small
barrier is also taken into account as we did above. One sees
that, with these additions, in the BEC regime the theoretical
results come considerably closer to the experimental data.

The residual discrepancy between theory and experiment,
as far as the bosonic side of the descending branch in Fig. 5 is
concerned, can be ascribed to the method used in Ref. [22] to
excite the gas of ultracold atoms through a circular stirring
of a laser. The same authors of Ref. [22] have proven in
Ref. [52] that for a bosonic gas the additional centrifugal
energy present in a circular stirring acts to lower significantly
the value of the Landau critical velocity, which would in-
stead be expected to coincide with the Bogoliubov sound
velocity [see also Fig. 2(a) in Ref. [22] ]. In contrast, the pres-
ence of an underlying Fermi surface on the BCS side of the
crossover up to somewhat past unitarity makes the centrifugal

energy negligible when compared with the fermionic chemi-
cal potential.

We return, finally, to the values of the Fermi momentum
mentioned above and utilized to normalize the theoretical
results. In Ref. [17], the experimental values of vL were ex-
pressed directly in terms of the local Fermi velocity vloc

F at
the trap center, yielding the value vL/vloc

F = 0.25 reported in
Fig. 5 (light green asterisk). In Ref. [22], on the other hand,
the experimental values of vL were given in terms of the global
(trap) Fermi velocity vt

F . To estimate the corresponding local
values of vloc

F at the trap center, we have taken advantage
of the procedure followed in Ref. [22] when converting the
theoretical values for the speed of sound obtained in Ref. [53]
in the homogeneous case to the experimental trap geometry
throughout the whole BCS-BEC crossover. This procedure
effectively amounts to multiplying the value of the sound
velocity obtained in the homogeneous case by the factor
vloc

F /vt
F . We have used this procedure in reverse and extracted

the geometrical factor vt
F /vloc

F specific to the trap settings of
Ref. [22], which has enabled us to convert the value of the
experimental data of Ref. [22] for the Landau critical velocity
in a way to compare them with our theoretical results for the
homogeneous case.

D. Josephson critical current interpreted as an intrinsic
critical current inside the barrier

The considerations made so far for the intrinsic critical
current (or critical velocity) have naturally direct applications
to physical systems which are either homogeneous or slightly
deviate from a homogeneous condition. In this section we
apply the concept of critical current to the case of the Joseph-
son effect for a fermionic superfluid flowing across a barrier
of width larger than or comparable with the healing length
of the bulk superfluid. This condition is satisfied by most
experiments with ultracold Fermi atomic gases, for which the
healing length is of the order of the interparticle spacing k−1

F
in the relevant coupling range −0.5 < (kF aF )−1 < 1 probed
by the experiments, while the width of the barrier cannot be
made as small [54,55].

In the Josephson effect, the maximum (critical) current that
can flow across a barrier depends on the shape (height and
width) of the barrier, besides coupling and temperature. In
Ref. [25] a systematic study of the Josephson characteristics
was performed in terms of a theoretical (mLPDA) approach
that allows for the inclusion of pairing fluctuations in a non-
trivial spatial geometry, thus complementing and extending
the original LPDA approach of Ref. [48]. (For the benefit
of the readers, a concise summary of the LPDA approach of
Ref. [48] as well as of the mLPDA approach of Ref. [30] can
be found in Appendix A below.)

Here, we analyze the case examined in Figs. 2 and 3 of
Ref. [25], where a Gaussian barrier of width 2.5k−1

F and height
V0/EF = 0.1 was considered for temperature T/Tc = 0.15 at
unitarity. It turns out that the maximum current sustained by
the barrier is quantitatively related to the intrinsic critical cur-
rent of a bulk superfluid with the same “local” thermodynamic
conditions that develop at the center of the barrier.

This behavior is shown in Fig. 6, where the current den-
sity as obtained by the methods of Ref. [25] is reported as
a function of the local superfluid velocity vs(x = 0) at the
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FIG. 6. The Josephson characteristic, obtained at unitarity and
T/Tc = 0.15 for a Gaussian barrier of width 2.5k−1

F and height
V0/EF = 0.1, as expressed in terms of the local superfluid velocity
vs(x = 0) at the barrier center (filled squares), is compared with
the intrinsic current obtained for a homogeneous system using the
“local” thermodynamic parameters determined at the barrier center
(filled circles).

center of the barrier, and compared with the intrinsic current
j(q) where |q| = mvs as obtained from Eqs. (7) and (11)
for a homogeneous superfluid with the same coupling and
temperature, in which the local thermodynamic parameters
�(x = 0), μ(x = 0), and n(x = 0) at the center of the barrier
are used. From the good agreement between these two curves
we are led to conclude that it is the dissipative mechanism
of the back-flow current which develops inside the barrier to
determine the value of the critical current for the Josephson
junction. Note how, in both cases, the maximum (critical)
currents correspond to the Bardeen critical current discussed
in Sec. III A.

IV. DECAY OF PERSISTENT CURRENTS

A topic for which the concept of intrinsic critical current
discussed above is especially relevant is that of the persis-
tence of a supercurrent induced in a superfluid with a closed
(annular) geometry and of the associated decay mechanisms,
which are the hallmark of superfluidity in the first place.
In principle, a persistent current will continue indefinitely
as long as the medium is superfluid. In practice, persistent
currents in superconducting materials (like, for instance, NbZr
alloys) were estimated to flow over more than hundreds of
years [56]. Recently, this topic was taken over in the context
of ultracold Fermi gases, for which a recent experiment [23]
using a phase-imprinting technique has detected quantized
circulations across the BCS-BEC crossover persisting up to a
few seconds and identified its decay mechanism to take place
via the emission of vortices [57]. In this section, we examine
the outcomes of this experiment in the light of the theoretical
considerations made above in Sec. III.

Typically, along a circle of radius R the velocity field
v = ∇ϕ(r)/(2m) of the fermionic superfluid [where ϕ(r) is
the phase of the local gap parameter �(r) = |�(r)|eiϕ(r) and
m is the fermion mass] has a quantized circulation given by
πw/m, where w is an integer. Correspondingly, the magnitude
of v takes the quantized values v = w/(2mR). The integer w

FIG. 7. Experimental data for the final mean winding number
〈wF 〉 vs the impressed winding number 〈w0〉 are compared with
theoretical calculations for couplings (kF aF )−1 = −0.4 (top panel)
and (kF aF )−1 = 0.0 (bottom panel). Experimental data for a ho-
mogeneous superfluid (diamonds) are from Fig. 3(c) and those in
presence of a point defect (triangles) from Fig. 4(e) of Ref. [23]. The
results of the theoretical simulations at temperature T = 0.02TF (as
described in detail in the text) are identified by filled dots up to the
critical value of 〈wF 〉 and by empty dots past this critical value.

is referred to as a winding number just because it counts the
number of oscillations of the phase of the order parameter
along the circulation. It can be measured by interferometric
techniques. After an initial overall phase difference 2πw0

has been imprinted on the superfluid, the system is observed
to stabilize for a time of the order of tenths of a second
and its final (mean) winding number 〈wF 〉 is measured. Ex-
perimentally, mean winding numbers (both for w0 and wF )
are considered because the same imprinting procedure is re-
peated several times, such that the ensuing results are suitably
averaged out.

Figure 7 reports the experimental data from Ref. [23] for
the mean winding number 〈wF 〉 at low temperature for the
couplings (kF aF )−1 = (−0.4, 0.0), as obtained for a homoge-
neous superfluid constrained in a ring geometry (diamonds)
and with the additional presence of a weak point-like defect
placed inside the ring (triangles). In the experiment dissipation
is expected to occur as soon as 〈wF 〉 < 〈w0〉. However, while
the onset of dissipation is observed in both geometries for the
weaker coupling (kF aF )−1 = −0.4 as shown in Fig. 7(a), at
unitarity apparently no dissipation is found in either geometry
as shown in Fig. 7(b). Here, we provide a theoretical explana-
tion for this experimental finding in the following terms.

We first unfold the ring into a linear tube of the same
length and supplement it with periodic boundary conditions
at its edges. We then adopt a strategy similar to that recently
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FIG. 8. Comparison between experimental (full lines) and the-
oretical (dashed lines) density profiles with the ring geometry of
Ref. [23] for couplings (kF aF )−1 = −0.4 (top panel) and (kF aF )−1 =
0.0 (bottom panel). (Experimental profiles courtesy of Del Pace.)

utilized in Ref. [47] in terms of the mLPDA approach (see
Appendix A below) and partition the tube into a large number
of (961) tubular filaments, each of which is treated as if it
were a homogeneous superfluid with a given (local) density
and a linear supercurrent flowing through it. To have full
control of the density profiles spanning these filaments, we
adjust the number of atoms as well as the height and width
of the walls that contain the atomic cloud, in such a way to
reproduce the corresponding experimental density profiles. A
comparison between the experimental and theoretical density
profiles obtained in this way is shown in Fig. 8 for the same
couplings considered in Fig. 7.

With this calibration procedure at hand, we may now
restrict ourselves to considering the tubular filament that
corresponds to the innermost part of the original ring with
the smallest distance Rin from its center where the critical
flow is reached first. This is a consequence of the facts
that all filaments must have the same winding number and
that the quantization for the velocity obtained above reads
q = w/(2R) in terms of the linear momentum q = v/m at
a distance R from the ring center. In this way, the intrin-
sic current density j(q0) is computed for several momenta
q0 = w0/(2Rin ) along the lines of Sec. III A, and the final
winding number wF is obtained from the relations qF /m =
j(q0)/n(Rin ) and qF = wF /(2Rin ), where n(Rin ) is the local
particle density at position Rin. The results of this calculation
are then reported in Fig. 7, where they are compared with the
experimental data of Ref. [23].

Note from this figure that, as long as the momentum q0

is below the critical momentum corresponding to the Landau
dissipative threshold, the initial w0 and final wF winding
numbers coincide with each other as expected. Conversely,

above this critical momentum (identified by the endpoint of
the linear increase in Fig. 7) the onset of the back-flow current
acts to suppress the value of the supercurrent, thus making
wF < w0. Note also that the presence of a weak barrier on
the experimental determination of the winding number has
only a minor effect for coupling (kF aF )−1 = −0.4 and es-
sentially no effect for coupling (kF aF )−1 = 0.0. To confirm
this experimental finding, we have also explicitly considered
the presence of a weak barrier in our theoretical calculations,
although only to realize that its effects are indeed quite neg-
ligible. Note, finally, that Fig. 7 predicts that, at unitarity, the
theoretical value of the threshold at which wF deviates from
a linear behavior considerably exceeds the maximum value of
w0 experimentally attainable.

V. CONCLUSIONS

In this article, we have performed a systematic inves-
tigation of the current-vs-momentum characteristics for a
fermionic superfluid spanning the BCS-BEC crossover, for
which the inclusion of pairing fluctuations beyond mean field
plays a crucial role. To this end, we have initially consid-
ered a fully homogeneous superfluid system, for which the
above characteristics have allowed us to identify the intrinsic
upper value of the supercurrent flowing through the system,
in terms of a single expression of the supercurrent which is
intrinsically limited by two different dissipative mechanisms
(pair-breaking and phonon excitations) on the two BCS and
BEC sides of the crossover, respectively. In this context, we
have considered both the Landau [24] and Bardeen [8] criteria
for the loss of superfluid behavior when the intrinsic cur-
rent exceeds a corresponding upper value, and examined how
their respective values evolve across the BCS-BEC crossover
within suitable temperature ranges. When needed, we have
further included the effects of a small barrier that somewhat
spoils the system homogeneity, so as to reproduce as closely
as possible the experimental configurations based on linear
[22] and annular [23] geometries.

In our analysis, we have not explicitly investigated the fate
of the homogeneous superfluid once passed the Landau or
Bardeen thresholds, when one expects patterns of inhomo-
geneous fluctuations to be built from pair-breaking (on the
BCS side) and sound (on the BEC side) elementary excita-
tions, giving rise to spatially nonuniform configurations with
a strong local suppression of the gap parameter. Typically,
these configurations are expected to be precursors for the
formation of vortices. This topic, although interesting in itself
both theoretically and experimentally, exceeds the purposes
of the present article. In this respect, one may envisage that an
appropriate theoretical method should possibly be based on
a time-dependent approach, that would include pairing fluc-
tuations and spatially inhomogeneous configurations on the
same footing over a wide range of temperature and coupling
throughout the BCS-BEC crossover.
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APPENDIX A: BRIEF OVERVIEW OF THE MAIN
PREVIOUS THEORETICAL RESULTS UTILIZED

IN THE PRESENT WROK

For the benefit of the readers, this Appendix briefly sum-
marizes a number of theoretical results previously obtained
in the literature, which are relevant to obtain the results dis-
cussed in the present work for the critical current with the
inclusion of pairing fluctuations beyond mean field that span
the BCS-BEC crossover. The results here summarized include
(i) the nonself-consistent t-matrix approach in the presence
of a superfluid flow that was implemented in Ref. [25], (ii)
the modified local phase density approximation (mLPDA)
that was also introduced in Ref. [25] to include pairing
fluctuations over and above the original local phase density
approximation (LPDA) of Ref. [48], and (iii) the extended
Gorkov-Melik-Barkhudarov (GMB) approach originally in-
troduced in Refs. [58] and [30].

1. Expressions for the density and current in the presence
of a superfluid flow

In the superfluid phase, the fermionic local number density
and current read

n(r) = 2

β

∑
n

eiωnηG11(r, r; ωn), (A1a)

j(r) = 1

β

∑
n

eiωnη
(∇r − ∇r′ )

im
G11(r, r′; ωn)|r=r′ ,

(A1b)

where G11 is the “normal” single-particle Green’s function,
β = (kBT )−1 the inverse temperature (kB being the Boltzmann
constant), η a positive infinitesimal, m the fermion mass,

and ωn = (2n + 1)π/β (n integer) a fermionic Matsubara
frequency [59].

When a supercurrent with momentum q flows in a homo-
geneous environment, the gap parameter takes the form [60]

�(r) = ei2q·r�q. (A2)

To comply with this spatial dependence, the single-particle
Green’s function G11 then becomes [25]

G11(x, x′; q) = eiq·(r−r′ )G11(x − x′; q), (A3)

where G11 is the “reduced” single-particle Green’s function

G11(x − x′; q) =
∑

k

eik·(r−r′ )e−iωn (τ−τ ′ )G11(k; q), (A4)

with the short-hand notation
∑

k = ∫
dk

(2π )3
1
β

∑
n, k = (k, ωn)

being a fermionic four-vector. Accordingly, in momentum and
frequency space the expressions (A1a) and (A1b) read

n = 2
∫

dk

(2π )3

1

β

∑
n

eiωnηG11(k, ωn; q), (A5a)

j = q
m

n + 2
∫

dk

(2π )3

k
m

1

β

∑
n

eiωnηG11(k, ωn; q).

(A5b)
The form of G11(k; q) to be entered in the above expressions
can be evaluated within different approximations, depending
on the choice of the single-particle self-energy. In the present
work, it is evaluated both at the mean-field level and with the
inclusion of pairing fluctuations within the non-self-consistent
t-matrix approach. Quite generally, G11 is obtained by solving
the Dyson’s equation in the broken-symmetry phase in the
Nambu-Gorkov formalism [25]

[
iωn − ξ (k + q) − S11(k; q) −S12(k; q)

−S21(k; q) iωn + ξ (k − q) − S22(k; q)

][
G11(k; q) G12(k; q)

G21(k; q) G22(k; q)

]
=

[
1 0

0 1

]
, (A6)

where ξ (k) = k2/(2m) − μ and Sii′ are the components of
the “reduced” self-energy. Different approximations then cor-
respond to different choices of Sii′ .

a. Mean-field approximation in the presence of a supercurrent

At the mean-field (mf) level, one takes S11(k, q) =
S22(k, q) = 0 and S12(k, q) = S21(k, q) = −�q, such that
solving the Dyson’s equation (A6) yields [25]

Gmf
11 (k; q) = u(k; q)2

iωn − E+(k; q)
+ v(k; q)2

iωn + E−(k; q)
, (A7a)

Gmf
12 (k; q) = −u(k; q)v(k; q)

[
1

iωn − E+(k; q)

− 1

iωn + E−(k; q)

]
, (A7b)

where

u(k; q)2 = 1

2

(
1 + ξ (k; q)

E (k; q)

)
, (A8a)

v(k; q)2 = 1

2

(
1 − ξ (k; q)

E (k; q)

)
, (A8b)

with the notation

ξ (k; q) = k2

2m
− μ + q2

2m
,

E (k; q) =
√

ξ (k; q)2 + �2
q,

E±(k; q) = E (k; q) ± k · q
m

. (A9)

Entering the result (A7a) for G11 into the expressions (A5),
one ends up with the expression (1) for the current density at
the mean-field level (as well as with the associated expression
for the density), which has the typical form of the two-fluid
model at finite temperature in the Bardeen formulation for
fermions [8].
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b. t-matrix approximation in the presence of a supercurrent

Within the pairing-fluctuation (pf) approximation, the re-
duced self-energy of the Dyson’s equation (A6) reads [25]

S
pf
11(k; q) = −S

pf
22(−k; q)

= −
∑

Q


11(Q; q)Gmf
11 (Q − k; q),

S
pf
12(k; q) = S

pf
21(k; q) = −�q, (A10)

with the short-hand notation
∑

Q ←→ ∫ dQ
(2π )3

1
β

∑
ν , where

Q = (Q,�v ) is a four-vector with �ν = 2νπ/β (ν integer) a
bosonic Matsubara frequency [61]. In this way, the expression
of G11(k; q), to be utilized in Eq. (A5b) to obtain the current
with the inclusion of pairing fluctuations becomes

Gpf
11(k; q)= 1

iωn − ξ (k + q)−S
pf
11(k; q)− �2

q

iωn+ξ (k−q)+S
pf
11(−k;q)

.

(A11)
The quantity 
11 entering Eq. (A10) is the upper diagonal

element of the 2 × 2 matrix for the “pair propagator,” which
consists in a series of ladder diagrams whereby two fermions
with opposite spins repeatedly scatter with each other [62]. In
the presence of a supercurrent, its expression reads [25][


11(Q; q) 
12(Q; q)


21(Q; q) 
22(Q; q)

]
= 1

A(Q; q)A(−Q; q) − B(Q; q)2

×
[

A(−Q; q) B(Q; q)

B(Q; q) A(Q; q)

]
,

(A12)

where

A(Q; q) = − m

4πaF
+

∫
dk

(2π )3

m

k2

−
∑

k

Gmf
11 (k + Q; q)Gmf

11 (−k; q), (A13)

B(Q; q) =
∑

k

Gmf
12 (k + Q; q)Gmf

12 (−k; q), (A14)

with the normal Gmf
11 (k; q) and anomalous Gmf

12 (k; q) mean-
field Green’s functions given by Eqs. (A7). Performing the
sums over the Matsubara frequency in Eqs. (A13) and (A14),
one obtains for the particle-particle rungs the rather lengthy
expressions reported in detail in Appendix A of Ref. [25],
which need not be reported here. It may be instead important
to emphasize that the presence of the pair propagator (A12) in
the t-matrix approach guarantees that the effects not only of
pair-breaking (single-particle) excitations but also of sound-
mode (two-particle) excitations are present in the physical
quantities calculated in terms of this approach.

In addition, in Appendix B of Ref. [25] it was shown that,
when approximating the quantities A(Q; q) and B(Q; q) in
the BEC limit of the BCS-BEC crossover, the expression of
the current, obtained by utilizing Gpf

11(k; q) of Eq. (A11) into
Eq. (A5b), recovers the typical form of the current within
a two-fluid model [63] for a bosonic gas treated with the
Bogoliubov approximation. This form, in turn, coincides with
the expression (10) considered in Sec. II B.

2. The mLPDA approach

The mLPDA approach introduced in Ref. [25] consists of
a “modified” local phase density approximation approach, in
which the inclusion of pairing fluctuations at the level of the
nonself-consistent t-matrix was implemented on top of the
original LPDA approach of Ref. [48]. In particular, the LPDA
approach was utilized to study the Josephson effect occurring
when a barrier is embedded in a homogeneous fermionic
superfluid spanning the BCS-BEC crossover [33], a problem
for which the mLPDA approach was further considered [47]
aiming at comparing with recent experimental measurements
of the Josephson critical current in ultracold atomic Fermi
gases [54,55].

When a supercurrent flows across a barrier embedded in an
otherwise homogeneous superfluid, the order parameter reads

�(x) = |�̃(x)|e2iq·x+2iφ(x) = e2iq·x�̃(x), (A15)

where x̂ is the direction of the superfluid flow and 2φ(x) the
phase of the order parameter due to the presence of the barrier,
in addition to that occurring in Eq. (A2).

In this case, the LPDA equation takes the form [33]

− m

4πaF
�̃(x) = I0(x)�̃(x) + I1(x)

4m

d2

dx2
�̃(x)

+ iI1(x)
q

m

d�̃(x)

dx
, (A16)

where the coefficients I0 and I1 are given by

I0(x) =
∫

dk

(2π )3

[
1 − 2 fF (Eq

+(k|x))

2E (k|x)
− m

k2

]
, (A17a)

I1(x) = 1

2

∫
dk

(2π )3

{
ξ (k|x)

2E (k|x)3 [1 − 2 fF (Eq
+(k|x))]

+ ξ (k|x)

2E (k|x)2

∂ fF (Eq
+(k|x))

∂Eq
+(k|x)

+ k · q
q2

1

E (k|x)

∂ fF (EQ0+ (k|x))

∂Eq
+(k|x)

}
, (A17b)

with

ξ (k|x) = k2

2m
−

[
μ − Vext (x) − q2

2m

]
,

E (k|x) =
√

ξ (k|x)2 + |�̃(x)|2,

Eq
+(k|x) = E (k|x) + k · q

m
, (A18)

Vext (x) being the external potential associated with the
Josephson barrier.

When implementing the numerical calculations, the imag-
inary part of the LPDA equation (A16) is conveniently
replaced by the constraint of the current conservation
[25,33,47], namely,

j(x) − J = 0, (A19)

where J is the current evaluated far from the barrier.
Within the LPDA approach of Ref. [48], the expression for

the local current j(x) to be utilized in Eq. (A19) is obtained
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by entering the mean-field form (A7a) for G11(k; q) into the
expression (A5b) for the current, provided the following local
replacements are performed therein:

μ −→ μ − Vext (x), (A20a)

�q −→ |�(x)|, (A20b)

q −→ q + dφ(x)

dx
. (A20c)

Within the mLPDA approach, on the other hand, the local
replacement (A20a) may lead to unwanted unphysical singu-
larities in the diagonal element 
11(Q; q) (A12) of the pair
propagator, when this is treated within a local perspective
with local values of the gap parameter and of the chemical
potential. For this reason, in Ref. [25] it was found convenient
to utilize the local requirement

μ −→ μ − Veff (x) (A21)

in the place of Eq. (A20a), where now Veff (x) is a suitable
“effective” potential which ensures the gapless condition at
Q = 0 of the pair propagator at any x. Examples of the spatial
profile of Veff (x) were reported in Fig. 2 of Ref. [25] for sev-
eral couplings and temperatures, when the external potential
Veff (x) has a Gaussian form.

3. The extended Gorkov-Melik-Barkhudarov approach

In Ref. [30] a diagrammatic scheme was implemented for
improving on the treatment of pairing fluctuations over and
above the t-matrix approach, by generalizing to the whole
BCS-BEC crossover the original work by Gor’kov and Melik-
Barkhudarov (GMB) which was meant for the BCS limit only
[64]. To this end, the property of the pair propagator �(Q,�)
to be equivalent to the Bogoliubov propagators for composite
bosons that form in the BEC limit of the BCS-BEC crossover
[62] was first utilized to show that, already at the level of the
t-matrix approach in the superfluid phase, the gap equation for
the constituent fermions throughout the whole BCS-BEC
crossover is equivalent to a bosonic Hugenholtz-Pines con-
dition, in the form 
−1

11 (0, 0) − 
−1
12 (0, 0) = 0. In this way, it

was possible to go beyond the t-matrix approach in a natural
way by introducing a suitable bosonic-like self-energy cor-
rection �B(Q,�ν ) to the bare pair propagator �(Q,�ν ), such
that

�−1(Q,�ν ) → �−1
dressed(Q,�ν )

= �−1(Q,�ν ) − �B(Q,�ν ) (A22)

in a way formally equivalent to a Dyson’s equation. In ad-
dition, in Ref. [30] the fermionic self-energy was kept of
the t-matrix form [that is, like in Eq. (A10)], with the bare
pair propagator replaced, however, by the dressed one of
Eq. (A22).

As mentioned above, the form of the bosonic-like self-
energy �B adopted in Ref. [30] was motivated by the original
work by Gor’kov and Melik-Barkhudarov [64], who con-
sidered the screening of the pairing interaction due to the
polarization of the surrounding medium, as represented dia-
grammatically at second order in the interparticle interaction
by two crossing interaction lines in a particle-hole rung. This
effect was shown to introduce a correction by a factor of

(4e)1/3 to the BCS values of both the critical temperature
and the pairing gap [64]. In Ref. [30] the GMB correction
of Ref. [64] was extended to the whole BCS-BEC crossover,
both in the normal and superfluid phases, by identifying the
diagram representing the bosonic-like self-energy to be in-
serted in Eq. (A22) with the original GMB diagram, where
the interaction lines of the particle-hole rung are now replaced
by pair propagators �(Q,�) which include infinitely repeated
scattering between two fermions and thus go beyond second
order (cf. Fig. 2 of Ref. [30]).

In Ref. [30] the fermionic superfluid was considered at rest,
which corresponds to the case with q = 0 in Eqs. (A10)–
(A14). Full consideration of the GMB correction in the
presence of a superfluid flow with q �= 0 is beyond the scope
of the present work. Nonetheless, we may still consider the
effect of the GMB correction in an approximate manner, by
replacing the bare pair propagator � of Eq. (A22) by the
dressed one �dressed of Eq. (A22), where now �(Q,�ν ) →
�(Q,�ν ; q) contains q �= 0 while the bosonic-like self-
energy correction �B is taken from the expression with q = 0
given in Ref. [30] in the absence of current, where we further
set Q = 0 and �ν = 0. As already noted in Ref. [30], at low
temperature the effect of the GMB self-energy amounts in
practice to a coupling-dependent shift of the coupling strength
(kF aF )−1 entering in the bare inverse propagator �−1(Q,�ν ).
This remark allows for a swift implementation of the GMB
correction in the present work, as it was done in Sec. III C.

APPENDIX B: ADDENDUM ABOUT TWO TOPICS
TREATED IN THE MAIN TEXT

This Appendix expands on two topics dealt with in
Secs. II A and III B, regarding respectively: (i) The free energy
of a weakly attractive Fermi gas treated at the mean-field level,
thus illustrating in more detail the Bardeen criterion for the
supercritical flow [given by Eq. (4) of Sec. II A] in terms
of an analytically solvable approximation. (ii) The crossing
between ascending and descending branches of two-particle
excitations, which is shown to occur on the BEC side of
unitarity for a coupling at which the underlying Fermi surface
has not yet collapsed.

1. Free energy at the mean-field level in the presence
of a supercurrent

The free-energy density Fs(q) of a weakly attractive Fermi
gas treated at the mean-field level can be computed in the
superfluid phase at the mean-field level by following Ref. [65],
provided that the Nambu Green’s functions in Eq. (2.35)
therein are replaced by their counterpart (A7) in the pres-
ence of a supercurrent. In this way, one obtains the following
expression:

Fs(q) = −�2
q

v0
+

∫
dk

(2π )3 [ξ (k, q) − E (k, q)]

− 2

β

∫
dk

(2π )3 ln (1 + exp [−βE+(k, q)]) + μqn,

(B1)
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FIG. 9. (upper panel) The free-energy density Fs(q) given by
Eq. (B1) (red full line) is shown vs the magnitude q of the momentum
(in units of the Fermi wave vector kF ) for coupling (kF aF )−1 = −1.0,
where it is also compared with the quantity Fs(q = 0) + q2

2m (brown
dashed line) and with the free-energy density Fn = 3

5 nEF of an ideal
Fermi gas (horizontal black dotted line). Also shown are the Landau
critical value qL (vertical green dashed-dotted line) and the Bardeen
critical value qB (vertical blue dashed line). The inset shows the
difference Fs(q = 0) + q2

2m − Fs(q) in the range between (about) qL

and qB. (lower panel) The corresponding superfluid order parameter
�q (orange dashed line) and superfluid density ρs(q) (violet full line)
are shown vs q.

with the notation (A9) [cf. also Eq. (42) of Ref. [66]]. In
the above expression, v0 < 0 is the strength of the contact
interparticle interaction and μq is the chemical potential in the
presence of a supercurrent which depends on q = |q| when
q > qL.

Limiting to zero temperature, the quantity (B1) for cou-
pling (kF aF )−1 = −1.0 is shown vs q = |q| in the upper
panel of Fig. 9 (red full line), where it is compared with its
counterpart in the normal state Fn = 3

5 nEF with Fermi energy

EF = k2
F

2m (horizontal black dotted line) which represents the
free-energy density of an ideal Fermi gas. This panel shows
also the quantity Fs(q = 0) + q2

2m (brown dashed line), which
benchmarks the superfluid nondissipative state and thus coin-
cides with Fs(q) up to the Landau critical value qL (vertical
green dashed-dotted line) at which dissipation sets in. Also
shown is the Bardeen critical value qB (vertical blue dashed
line) in correspondence with the inset of Fig. 1 of the main
text which shows j(q) = ∂Fs(q)/∂q. In the inset of Fig. 9,
the difference Fs(q = 0) + q2

2m − Fs(q) is plotted in a restricted
range between about qL and qB, where this quantity starts
being different from zero at qL.

FIG. 10. Two-particle excitation spectrum for the crossover cou-
pling (kF aF )−1 = +0.36 (red curves) and the weaker coupling
(kF aF )−1 = +0.10 (blue curves), where the solid lines correspond to
the sound mode and the dashed lines to the onset of the pair-breaking
spectrum at zero temperature. The black dotted line represents the
Landau critical velocity for (kF aF )−1 = +0.36, where this slope is
identical for both pair-breaking and sound mode excitations. (Here,
the wave vector Q is in units of the Fermi wave vector kF and the
frequency � in units of the Fermi energy EF ).

In the lower panel of Fig. 9 the superfluid order parameter
�q of Eq. (A2) (orange dashed line) is shown vs q, where
it is seen to vanish way beyond the Bardeen critical value
qB. Also shown is the superfluid density ρs(q) = ∂F 2

s /∂q2

(violet full line) given by Eq. (5) of the main text, which
is seen to coincide with the full particle density n up to the
Landau critical value qL, after which it abruptly decreases and
eventually vanishes at the Bardeen critical value qB. At this
point, where the superfluid density ρs would change sign, the
thermodynamical stability of the system is lost. Since ρs rep-
resents the stiffness (or rigidity) of the superfluid component
to a perturbing velocity field, its turning negative signals the
instability of the translational state of the system, in analogy
with the occurrence of a negative compressibility in an unsta-
ble mechanical system (like for the liquid-gas transition). The
system thus undergoes a phase transition to a new state, which
in the present case would most likely involve the condensation
of finite-momentum Cooper pairs.

2. Crossing between ascending and descending
branches of two-particle excitations

One may wonder whether there exists a connection, be-
tween the coupling at which the crossover from pair-breaking
to phonon excitations occurs (which determines the maximum
current in Figs. 4 and 5) and the coupling at which the underly-
ing Fermi surface collapses (such that at this “splitting point”
the single-particle dispersion switches over from BCS-type
to bosonic-type [67]). The detailed analysis reported below
shows that this is actually not the case, such that the two
couplings (albeit close in values) are physically unrelated to
each other.

In our calculation, the maximum of the Landau velocity
equals 0.33vF obtained for the coupling (kF aF )−1 = +0.36
(cf. the red full line in Fig. 4). This coupling corresponds to
the point where the pair-breaking and sound velocities are
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comparable to each other (cf. the blue dotted line and the
black dashed-dotted line in Fig. 4), such that the two types
of excitations have comparable energy. To better illustrate
how the change between one type (pair-breaking) to the other
type (sound mode) of excitations comes about, following
what was done in Fig. 7 of Ref. [44], Fig. 10 shows the
zero-temperature two-particle excitation spectrum both for the
crossover coupling (kF aF )−1 = +0.36 (red curves) and for
the weaker coupling (kF aF )−1 = +0.10 (blue curves), where
the solid lines correspond to the sound mode and the dashed
lines to the onset of the pair-breaking spectrum. The latter
quantity is obtained like in Ref. [44], but now considering the
renormalized chemical potential μL = k2

L/(2m) (where kL is
the so-called “Luttinger” wave vector to be discussed below)
and the excitation gap �e as extracted from the single-particle
excitation spectrum, rather than the thermodynamic values μ

and � utilized in Ref. [44] (including in this way some degree
of self-consistency in the calculation which takes into account
the effect of quantum fluctuations). In Fig. 10 the slope of the
black dotted line represents the Landau critical velocity for
the crossover coupling (kF aF )−1 = +0.36, where this slope is
identical for both pair-breaking and sound mode excitations.
For the weaker coupling (kF aF )−1 = +0.10, on the other

hand, the slope of the sound mode is evidently larger than that
of the onset of the pair-breaking excitations, consistently with
what is reported in Fig. 4.

Regarding instead the coupling at which the collapse of
the underlying Fermi surface takes place upon approaching
the BEC side of the BCS-BEC crossover, this coupling refers
to a property of the single-particle excitation spectrum of
the Fermi system and has been identified as the coupling
at which the so-called Luttinger wave vector kL mentioned
above vanishes. In particular, this quantity was determined
at the critical temperature Tc by including pairing fluctua-
tions beyond mean field within the t-matrix approximation,
either when comparing with the available experimental data
in ultracold Fermi gases [68], or when considering in de-
tails the properties of the single-particle spectral function in
the normal phase of a Fermi gas [69], and even with the
inclusion of disorder [49]. These calculations show that the
splitting point “κ0” of Ref. [67], which is the coupling where
kL vanishes according to Refs. [49,68,69], is about +0.60.
This confirms our expectation that the crossover coupling
(kF aF )−1 = +0.36 (for two-particle excitations) and the split-
ting point (for single-particle excitations) are two unrelated
quantities.
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