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Harmonically trapped fermions in one dimension: A finite-temperature lattice Monte Carlo study
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We study a one-dimensional two-component Fermi gas in a harmonic trapping potential using finite-
temperature lattice quantum Monte Carlo methods. We are able to compute observables in the canonical
ensemble via an efficient projective approach. Results for density profiles, correlations, as well as energy-related
observables are presented for systems with up to 80 particles and various temperatures. Our simulations
reproduce known numerical results and compare well against available experimental data close to the ground
state, while at higher temperature they are benchmarked against the exact solution of the two-particle system.
This provides an indication that a standard lattice discretization is sufficient to capture the physics of the trapped
system. In the special case of a spin-imbalanced gas, we find no sign problem in the studied parameter ranges,
allowing access without the need of specialized methods. This includes simulations close to the ground state and
at large population imbalance, where we present results for density correlations, indicating pairing at finite total
momentum.
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I. INTRODUCTION

Over recent years, considerable advances have been made
in the realm of ultracold atoms, both theoretically and exper-
imentally [1–4]. The unprecedented ability to experimentally
tune physical properties of the system, such as the scattering
length via a Feshbach resonance [5], the shape of trapping po-
tentials, including dimensionality [6–8], and the exact number
of particles in the trap [9,10], has allowed for investigations of
a wide range of physical phenomena in strongly correlated
systems. In particular, pairing between fermions that expe-
rience contact interactions has been a topic of great interest
for over a decade [11–15]. By tuning the scattering length,
the system can be brought from a Bardeen-Cooper-Schrieffer
(BCS) superfluid, where pairs are weakly bound, to strongly
bound bosonic dimers, forming a Bose-Einstein-Condensate
(BEC), which enables experiments to probe a rich phase struc-
ture in the crossover region [4,16,17].

In contrast to BCS-like pairing, pairs at finite momentum
may form in the presence of a population imbalance. This
was first studied by Fulde and Ferrell [18], and Larkin and
Ovchinnikov [19], and is commonly known as FFLO-type
pairing.

In this work, we investigate the thermodynamic and pairing
properties of a spin-1/2 fermionic system interacting via a
zero-range attractive interaction within a harmonic trapping
potential in one spatial dimension. We study systems with
equal and unequal number of spin-up and spin-down particles,
both at finite temperature and in the ground state, which we
are able to connect almost continuously.

*bauer_m@thphys.uni-heidelberg.de

The majority of the lattice simulations of ultracold quan-
tum gases to date were performed without an external
potential and aimed to take a thermodynamic limit. They
encompass studies of ground-state and finite-temperature
properties in one to three spatial dimensions [20–22], and
the thermodynamics of the unitary gas [23,24] in particu-
lar. Recently, the Berezinskii–Kosterlitz–Thouless transition
temperature [25], as well as pseudogap effects [26], were
computed in the BEC-BCS crossover regime of the two-
dimensional (2D) gas.

Previous theoretical works on the ground state of the
trapped system include exact-diagonalization approaches
[27–30], which are usually confined to small particle num-
bers. Nonuniform lattice Monte Carlo methods [31,32] have
been used to study systems of up to 20 particles, while
coupled-cluster [33,34] and diffusion Monte Carlo [12] ap-
proaches have allowed for computations with higher particle
numbers. At finite temperature, the canonical system has
been studied with exact diagonalization [35], while lattice-
based methods include the grand-canonical auxiliary field
and canonical stochastic Green’s function [36] approaches.
Theoretical searches for exotic pairing have been carried
out using, among others, Monte Carlo methods [12,36–39],
diagrammatic approaches [40], and exact-diagonalization
methods [35].

Lattice simulations often employ periodic boundary condi-
tions, allowing the physical system to enjoy translation invari-
ance. The presence of an external trapping potential breaks
this symmetry, making the density profile of the atomic cloud
a more interesting object and bringing the theoretical setting
closer to its experimental counterpart. However, simulations
at low temperature can suffer from numerical issues due to
large separations of scales and require a large temporal extent
of the lattice, making them computationally costly. The first
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issue is addressed by employing safe matrix multiplication
methods, while the latter is mitigated by the use of a truncation
technique that removes unoccupied modes from the simula-
tion [41]. Both methods are described in Sec. II.

While quantum Monte Carlo methods have been success-
fully applied to study trapped systems, as stated above, they
often rely on the one-dimensional nature of the problem in
order to avoid a sign problem. The lattice approach used here
does not suffer from a sign problem for spin-balanced systems
in any dimension. This work thus aims to lay the groundwork
for future studies of trapped systems via lattice approaches, in
particular in two spatial dimensions.

II. MODEL AND METHODS

The continuum Hamiltonian of the system under investiga-
tion is given by

Ĥ =
∫

dx ψ̂†
σ (x)

(−∇2

2m
+ 1

2
mω2x2

)
ψ̂σ (x)

+ g
∫

dx n̂↑(x)n̂↓(x), (1)

where ψ̂†
σ and ψ̂σ are, respectively, the creation and annihila-

tion operators of fermions in spin states σ ∈ {↑,↓}, and the
particle number density operators are given by n̂σ = ψ̂†

σ ψ̂σ .
In the following, we always use m = 1, leaving the trap
frequency ω and lattice coupling gL as parameters for the
lattice systems. The choice of the lattice coupling gL has been
such that the ground-state energy on the lattice agrees with
the analytical computation of a 1 + 1 particle system with
coupling g; see Refs. [31,42]. The given Hamiltonian is put
on a rectangular spatial lattice of size L and spacing a with
Nx = L/a sites and periodic boundaries. In units of the lattice
spacing, the discretized Hamiltonian then reads

Ĥ =
∑
p,σ

εp ψ̂†
pσ ψ̂pσ +

∑
x,σ

1

2
ω2x2 n̂xσ

+
∑

x

gL n̂x↑n̂x↓, (2)

where ψ̂†
pσ and ψ̂pσ are the creation and annihilation operators

for fermions with momentum p. The dispersion we use is
given by εp = p2/2, which is the one of free particles. For
a brief discussion on the choice of dispersion relation, see
Appendix A. The parameter ω has to be chosen such that the
characteristic length scale of the harmonic oscillator,

LT = 1√
ω

, (3)

can be resolved, i.e., 1 � LT /a � Nx.
The grand-canonical partition function of the system is

given by

Z = Tr[e−β(Ĥ−μ↑N̂↑−μ↓N̂↓ )], (4)

where β = 1/T is the inverse temperature, μσ is the chem-
ical potential for each spin species, and N̂σ is the respective
number operator. To proceed, we cast this expression into
a path-integral form by employing a Trotter decomposition,
discretizing the imaginary-time evolution over Nt steps of

size �t = β/Nt . Then, by performing a Hubbard-Stratonovich
(HS) transformation, we rewrite the partition function of our
fermionic system in the form of a path integral over a bosonic
field φ,

Z =
∫

Dφ det M↑(μ↑, φ) det M↓(μ↓, φ)p(φ), (5)

where p(φ) accounts for the weight that depends solely on
the bosonic field. The fermionic matrix is given by Mσ = 1 +
Uσ (μσ , φ), where Uσ (μσ , φ) are Nx × Nx matrices containing
the information related to the kinetic energy, harmonic trap,
and interaction [43,44]. In general, we may choose the fields
φ as discrete or continuous, as well as bounded or unbounded.

A. Sampling approach

We have chosen the HS field to take values ±1 on every
lattice site, leading the path integral in (5) to become a sum
over a discrete set of configurations, which we sample via the
Metropolis algorithm. Explicitly, on each space-time point, we
employ the well-known density channel transformation [45],

e−�tgn̂i↑n̂i↓ = 1

2

∑
xi=±1

e(γ xi−�tg/2)(n̂i↑+n̂i↓−1), (6)

where the coupling is given by cosh(γ ) = e−�tg/2.
The matrix Uσ (μσ , φ) is constructed using Fourier accel-

eration, i.e., we apply the kinetic energy in momentum space
and the harmonic trap and interaction part in position space,

Bn(μ, φ) = e−�tK e−�tV (φn ),

Uσ (μσ , φ) =
Nt −1∏
n=0

Bn(μσ , φ). (7)

In the definitions above, the chemical potential contribution
can be included in either the kinetic or potential part at each
step. It is not necessary to make the matrix product symmetric
here, as the determinant and relevant observables all obey a
form of cyclic invariance.

In practice, the costliest part of a simulation lies
in constructing the matrices Uσ (μσ , φ) and determinants
det Mσ (μσ , φ). Naïvely, the computational cost scales as
O(Nt N2

x ln Nx ) and O(N3
x ), respectively, which can become

prohibitive for large systems or when measuring higher-order
moments of observables.

At low temperatures, the matrices Uσ (μσ , φ) can be-
come ill conditioned, particularly when the relative difference
between the largest eigenvalues and those around unity (in-
dicating the Fermi surface) cannot be resolved by double
precision numbers. To address this, we construct the matrices
Uσ (μσ , φ) using stable matrix multiplication techniques rely-
ing on intermediate QR decompositions, which have proven
to be both reliable and fast [46,47].

In our simulations, we also exploit the low-rank nature
of the determinant as introduced in [41]. Unoccupied modes
are excluded from the simulation dynamically, resulting in
matrices Uσ of size Nx × nσ , where nσ is comparable to the
number of particles of spin σ at low temperatures. Typi-
cally, nσ is much smaller than Nx, leading to considerably
faster computations. More precisely, the aforementioned cost
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of O(Nt N2
x log Nx ) is reduced to O(Nt Nxnσ log Nx ) for the

bulk of the computation, while the determinant is computed
with O(n3

σ ) operations. It is worth noting that the first QR
decomposition performed when constructing Uσ remains an
O(N3

x ) operation, which is gradually reduced to O(n2
σ Nx ) as

modes are removed. The truncation procedure is especially
convenient in harmonically trapped systems, as the occupation
has to be small in comparison to the system size in order to
resolve the trapping potential.

Configurations are proposed via a force bias [21], resulting
in acceptance rates well beyond 90%. Since a single proposal
updates all fields on a single time slice, configurations are
usually decorrelated within only a few sweeps of the whole
lattice.

B. Reweighting to the canonical ensemble

All sampling is performed in the grand-canonical ensem-
ble. To obtain observables in the canonical ensemble, we
employ a reweighting procedure using Fourier projection [48].
The canonical partition function is given by

ZN = Tr[P̂N↑ P̂N↓e−βĤ ], (8)

with the projection operator

P̂Nσ
= 1

Nx

Nx−1∑
j=0

exp

[
i 2π j

Nσ − N̂σ

Nx

]
. (9)

In (8), we can introduce, to the exponential additional terms,
βμσ (N̂σ − Nσ ) to stabilize the Fourier sum numerically. For
practical purposes, the chemical potential is the one we use
to sample the grand-canonical system, but it has no actual
influence on the canonical trace. It is tuned such that the
average particle number in the grand-canonical ensemble is
close to the desired one in the canonical ensemble.

In a general case, the sum over projection angles must be
over the full basis set of the system. However, when a trun-
cation is applied, it is enough to consider the truncated basis
size [49]. This leads to a significant decrease in computational
cost in dilute systems.

We define a modified matrix for each projection angle
in the Fourier sum as Ml

σ = 1 + exp[−i2π l]Uσ (μσ , φ), and
use zlm(μ↑, μ↓, φ) = det Ml

↑(μ↑, φ) det Mm
↓ (μ↓, φ) for the

weight. A measure of the overlap between the canonical and
grand-canonical partition functions is given by

〈WN 〉 =
〈

1

N2
x

∑
l,m

e
i(lN↑+mN↓ )

2πNx
zlm(μ↑, μ↓, φ)

z(μ↑, μ↓, φ)

〉
, (10)

where the expectation value is with respect to the grand-
canonical weight. We omit the chemical potential prefactor
since it only gives a normalization, dropping out of observ-
ables. Note that the ratio does not necessarily need to be close
to unity for good statistics, as the partition functions are not
normalized. In practice, low ratios do not seem to pose a
problem, as long as the relative fluctuations in (10) are small.
This is generally the case when the average particle number
of the grand-canonical system agrees with the target particle
number of the canonical one. At higher temperatures, we can
usually reweight to a larger range of particle numbers. The

computation of observables proceeds similarly, now including
an additional sum over projection angles,

〈O〉N = 1

〈WN 〉N2
x

×
〈∑

l,m

e
i(lN↑+mN↓ )

2πNx
zlm(μ↑, μ↓, φ)

z(μ↑, μ↓, φ)
Olm

N (φ)

〉
. (11)

For the one-body density operator, the observable to be com-
puted is

nlm
i j,N (φ) = [(1 + ei2π l/NxU −1)−1]i j, (12)

which is independent of the index m, since the different spin
species factorize. Higher-order observables are computed us-
ing the one-body operator and Wick’s theorem in analogy
to the grand-canonical case. To ensure efficient computation
of the canonical observables, the U matrices are diagonal-
ized, again making use of the truncation similar to what is
introduced in [49]. This works by taking advantage of the
reduced matrix sizes at low particle numbers, extracting only
the relevant eigenvalues and eigenvectors.

In a general situation, for instance at positive coupling g
or in the presence of spin imbalance, positivity of the weight
is not guaranteed. This is accounted for in our simulation
by standard reweighting. In practice, we always sample the
absolute value of the grand-canonical weight and perform
the full reweighting in a single step with the projection
to the canonical ensemble.

C. Ground-state projection

The finite-temperature simulations described above are
well suited for the simulations of the system at temperatures
close to T = 0. However, they are not designed for the explicit
computation of the ground state, �0. To address this, we com-
plement the finite-temperature simulations with a ground-state
projection in the canonical ensemble, following the method
described in detail in, e.g., [46,50]. This projective method
relies on a trial state �T , which is taken to be a Slater deter-
minant, and uses that for nonvanishing overlap 〈�T |�0〉 
= 0,
the trial state converges to the ground state,

lim
β→∞

e−βĤ |�T 〉 = |�0〉 . (13)

We choose the trial state as the exact solution of the non-
interacting system, although more sophisticated options are
possible. For the ground-state projection, the imaginary-time
evolution is split into Nt steps of size �t = β/Nt . At each
time slice, we apply a symmetric Trotter decomposition and
utilize Fourier acceleration when applying them to the states.
Again, we make use of QR decompositions to allow for a
stable evolution of the Slater determinants. Moreover, to han-
dle the Hamiltonian’s interaction term, we use the same HS
transformation as for the finite-temperature simulation from
(6). The respective auxiliary fields are again sampled using
the force bias method. Altogether, this leads to a ground-state
projection operator of the form

e−βĤ ≈
Nt∏

n=1

e−�t K/2e−� tV (φn )e−�t K/2. (14)
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The observables O are then computed using the symmetric
estimator,

〈O〉GSP = 〈�T | e−βĤ/2 O e−βĤ/2 |�T 〉
〈�T | e−βĤ/2 e−βĤ/2 |�T 〉 . (15)

This concludes our setup.

III. RESULTS

Our results are structured as follows. In Sec. III A, we
provide a brief discussion on the lattice size and parameters.
Section III B presents results for density profiles and corre-
lations in systems with balanced population. In Sec. III C,
we provide a comparison to exact-diagonalization results for
separation energies and compute the temperature dependence
of the pairing gap for various particle numbers. Finally, in
Sec. III D, we briefly discuss the sign problem and provide
a tomographic picture of density-density correlations in the
imbalanced system.

A. Lattice parameters

An essential aspect of lattice simulations is the choice of
parameters to ensure a rapid convergence towards the con-
tinuum limit. In our case, there are several limits that need
consideration. One is the temporal lattice spacing aτ , which
dictates the number of time slices used and thus influences the
error of the Trotter decomposition. In all situations studied
here, we find aτ /a = 0.05 to be sufficiently small to ensure a
negligible Trotter error.

The ratio Lt/a governs the finite-size and finite-distance
errors and is set to Lt/a = 4. Simultaneously, the total number
of spatial sites is Nx = 80, which corresponds to a box size
of Nx/LT = 20 in units of the harmonic oscillator. We find
these parameters to be sufficient for the system with up to
N = 20 particles studied in the main text, which corresponds
to a total filling of N/Nx = 0.25. However, it is worth noting
that a higher number of particles necessitates both a larger
spatial extent and smaller spacing, in order to avoid finite-size
and filling effects. In particular, one must ensure that the
center of the trap is sufficiently below the saturation density,
which is the case in all our computations. In Appendix B, we
consider systems with up to N = 80 particles, for which we
use a Nx = 200 lattice and Lt/a = 8, leading to Nx/Lt = 25
and a filling of N/Nx = 0.4. The proximity to the continuum
theory is evidenced by the excellent agreement with previous
results found, e.g., in Figs. 3 and 6. Additionally, we have
compared the density profiles for N = 20 fermions for various
lattice parameters and find them to fall on universal curves;
see Appendix C.

For the system with 1 + 1 particles, the continuum
Hamiltonian can be diagonalized analytically, yielding an ex-
act comparison for observables in the canonical ensemble.
To determine the appropriate bare lattice coupling, we tune
it such that it yields the exact ground-state energy of the
two-particle system, given by the relation for the continuum
coupling [42,51],

g(E ) =
√

2(E − 1)

(
1 − E

2

)



(
3
2 − E

2

) . (16)

Achieving this does not require a direct lattice simulation, as
the two-particle lattice system can be numerically diagonal-
ized, providing the desired ground-state energy.

B. Spin-balanced gas

In the case of spin-balanced systems, the determinants
in (5) are real and equal, since μ = μ↑ = μ↓ and thus no
sign problem is present. This is true for the density channel
Hubbard-Stratonovich transformation used in this work, as
well as the spin-z channel not applied here, where the deter-
minants are complex conjugate of each other.

Before making further use of the particle number projec-
tion methods described above, we computed the expectation
value of the particle number operator N̂σ = ∫

dx n̂σ (x) as a
function of the chemical potential for different temperatures,
along with the correlation between up and down spin number
operators, 〈N̂↑N̂↓〉 − 〈N̂↑〉〈N̂↓〉.

Figure 1(a) depicts clear steps at nearly integer particle
numbers for the lowest temperature of T/ω = 0.125, indicat-
ing the thresholds in chemical potential where each energy
level is filled. This effect is smoothened by thermal fluctua-
tions, as can also be seen. Moreover, the attractive interaction
between up and down spins causes the departure from the
empty system to occur at negative chemical potentials. The
noninteracting theory, on the other hand, would have this
threshold around μ/ω = 1 for small but finite temperature.

Figure 1(b) shows the (connected) correlation between N̂↑
and N̂↓. Similar to what can be seen in the average particle
number, this correlation function for T/ω = 0.125 exhibits
repeating behavior following the filling of the different energy
levels. Conversely, at high temperature, this behavior is not
present and the correlator changes more smoothly with the
chemical potential.

Turning to the canonical ensemble, we investigate the
density profile of a fixed number of particles in the trap-
ping potential. The ground state shows characteristic particle
peaks, originating directly from the wave functions of the
harmonic-oscillator states. These oscillations are already
present in the ground state of the noninteracting system g = 0,
where the density is given by n(0)(x) = ∑Nσ −1

n=0 |ψn(x)|2, in
terms of the well-known harmonic-oscillator wave functions
ψn(x). The density peaks are thus not necessarily a sign
of pairing, but rather a direct consequence of the harmonic
potential.

In Fig. 2(a), the density profile n(x) = n↑(x) = n↓(x) for
g/

√
ω = −3 with 3 + 3 particles is plotted for various tem-

peratures. In the ground state, the density distribution displays
three peaks, equal to the number of filled oscillator shells.
The same behavior is observed at temperatures significantly
smaller than the spacing between energy levels in the trap-
ping potential, where the ground-state contribution dominates.
As the temperature increases to the point where the thermal
energy becomes comparable to the energy gap, the peaks
disappear and the density profile gradually smoothens.

With larger particle numbers, the particle peaks are ex-
pected to decrease in amplitude and become more frequent,
eventually converging towards a smooth profile in the ther-
modynamic limit (see Appendix B).
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〈N̂

↑〉〈
N̂

↓〉

(b)
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T/ω = 0.125

FIG. 1. (a) Expectation value of the particle number operator as a function of the chemical potential μ = μ↑ = μ↓ for different temper-
atures at g/

√
ω = −3. (b) Correlation between the particle number operators for each spin species as a function of the chemical potential

μ = μ↑ = μ↓ for different temperatures at g/
√

ω = −3. Dashed lines are drawn to guide the eye.

As an indicator for the existence of pairing in the system,
we compute the connected density-density correlation func-
tion in momentum space, given by

S(k, k′) = 〈n↑(k)n↓(k′)〉 − 〈n↑(k)〉〈n↓(k′)〉. (17)

Pairing around the Fermi surface is expected to manifest as
positive correlation peaks at S(±kF ,∓kF ). In Fig. 2(b), we
present results for the system at g/

√
ω = −3 and S(k,−k)

for various temperatures. Close to the ground state, the peaks
around the Fermi surface are more pronounced. The correla-
tions decrease rapidly towards larger momenta, but they do
not vanish at vanishing opposite momenta due to the finite
particle number and the resulting finite size of the systems,
as compared to the thermodynamic limit of an untrapped
gas. We observe a weakening in correlations, similar to the

breakup of ground-state features in the density profile, when
temperatures become comparable to the level spacing of the
trapping potential. However, in contrast to the oscillations
in the density profile, the density-density correlations at
higher temperatures remain clearly visible. While the peaks
around the Fermi surface are less pronounced, the overall
correlation appears flatter at small momenta.

C. Energy observables

Having explored density observables and their correlations,
we now shift our focus to energy-related quantities. In partic-
ular, separation energies have been measured experimentally
[52] and studied theoretically via exact diagonalization
[28,34], and provide a good benchmark for the validity of our
computations close to the ground state. The separation energy
can be understood as the interaction energy cost of adding a

−3 −2 −1 0 1 2 3

x/LT
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0.8

1.0

n
(x

)
L

T

(a)

T/ω =0.0 (GS)

T/ω =0.25

T/ω =1.0

T/ω =1.5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

k/kF

0.00

0.01

0.02
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0.04
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0.06
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0.08

S
(k

,−
k
)
/
L

2 T

(b)
T/ω =0.125

T/ω =0.5

T/ω =1.0

T/ω =2.0

FIG. 2. (a) Density profile per spin species n(x) = n↑(x) = n↓(x) for 3 + 3 particles and g/
√

ω = −3 at three different temperatures.
Dashed lines are splines through the data points and hollow circles indicate data from projection to the ground state. (b) Antidiagonal of the
density-density correlation function for 10 + 10 particles at g/

√
ω = −3 and four different temperatures.
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FIG. 3. (a) Separation energies in the ground state for up to 5 + 5 particles. Experimental data [52] (blue squares) and exact-diagonalization
results [28] (green circles) are compared to results from finite-temperature lattice simulations at T/ω = 0.125 (orange cross). (b) Pairing gap
at g/

√
ω = −3 for 1 + 1, 4 + 4, and 10 + 10 particles at finite temperatures. The two-particle system is compared to the exact result of the

continuum theory (solid line). Stars indicate results from ground-state projection.

single particle to the system and is defined in terms of the
ground-state chemical potential of the system as follows:

μ(N ) = E (N ) − E (N − 1), (18)

�S (N ) = μ(N ) − μ∗(N ), (19)

where μ∗(N ) is the chemical potential of the free system.
At low temperatures, this requires simulations of an

imbalanced system, since the overlap of the balanced canon-
ical simulation with the imbalanced sector becomes small.
In Fig. 3(a), we observe excellent agreement between our
results, marked as “Lattice” and computed with a finite
temperature of T/ω = 0.125, and results computed via the
exact-diagonalization method from [28]. The steplike behav-
ior, with lower energies for even particle numbers, which
correspond to shell closures, indicates the presence of pairing
between particles of up and down spin. We also note the prox-
imity to experimental values at a slightly different coupling.
Some deviations are visible in comparison to the experiment,
likely due to anharmonicity in the trapping potential present
in the experiment, while beyond the scope of this work, our
method generally allows the study of an arbitrarily shaped
external potential, which opens up avenues to study the effects
of anharmonicity in a controlled manner. For the comparison
to exact-diagonalization results, we match both two-body en-
ergies to the same ground-state values, resulting in a value
for the coupling that is slightly smaller than what was given
in [28]. While the results in Fig. 3(a) are at small coupling,
similar agreement with exact diagonalization is found in more
strongly coupled scenarios.

Next, we compute the energy staggering pairing gap, de-
fined for even particle numbers as

�P(N ) = 1
2 [2E (N/2 − 1, N/2) − E (N/2, N/2)

− E (N/2 − 1, N/2 − 1)]. (20)

This quantity serves as an indicator for pairing in the system
and has been used to study pseudogap effects [15,26] and pair

correlations [13] in higher dimensions. Although higher-order
estimators are available [53], we use a three-point estimator
here for simplicity. At high enough temperatures, it is often
enough to sample for a single chemical potential and reweight
the different particle numbers from the same data. This ap-
proach breaks down around T/ω ∼ 0.5, where we perform an
independent simulation for the energies at different particle
numbers.

Figure 3(b) depicts the pairing gap at g/
√

ω = −3 for
1 + 1, 4 + 4, and 10 + 10 particles at finite temperature.
For two particles, we find good agreement with the exact
result of the continuum theory up to T/ω = 5. We see an
increase in the gap when increasing temperature, before it de-
cays again. This behavior can likely be explained by the lower
degeneracy in the first few excited states of the 1 + 1 sys-
tem compared to its noninteracting counterpart. Consequently,
the energy of the single-particle contribution increases more
rapidly than that of the two-particle one. The good agreement
of the two-particle systems with the exact result indicates the
validity of the renormalization approach used to fix the cou-
pling, where no excited states were considered. However, we
expect the agreement to break down at higher temperatures,
as high-energy states beyond the limits of the lattice start to
contribute significantly.

The systems with 8 and 20 particles, respectively, follow
a similar general trend to the two-particle one, but at lower
total magnitude, consistent with available ground-state results
[33]. Interestingly, we still find peaks at finite temperature,
which move to lower temperature when increasing the particle
number. It remains unclear, from our computations, whether
the peak converges to a fixed temperature or vanishes in the
thermodynamic limit, indicating a shell effect.

D. Imbalanced gas

An important open question in the study of ultracold
fermionic gases is the existence of an exotic pairing phase
at finite spin imbalance. Such a phase, known as the FFLO

033305-6



HARMONICALLY TRAPPED FERMIONS IN ONE … PHYSICAL REVIEW A 109, 033305 (2024)

−2 0 2

k↑/kF↓

−2

−1

0

1

2

k
↓/

k
F
↓

4 + 4

−2 0 2

k↑/kF↓

6 + 4

−2 0 2

k↑/kF↓

8 + 4

−2 0 2

k↑/kF↓

12 + 4

FIG. 4. Density-density correlations of the system at g/
√

ω = −3 and T/ω = 0.25, with varying imbalance. We observe clear signals of
unconventional pairing in the presence of an imbalance. To retain visibility, all color scales are normalized independently to span the full range
of values in the corresponding data.

phase, is characterized by pairing at nondegenerate Fermi
surfaces, resulting in pairs with finite total momentum
kF↑ − kF↓.

It is not clear, however, to what extent such systems can be
studied using standard lattice methods. In the case of imbal-
anced spin species, the configuration weight is not necessarily
positive anymore, and a sign problem can arise. This is the
case in both 2D and 3D simulations [54,55]. In contrast,
some previous studies of Fermi gases with contact interac-
tions in 1D have not shown a sign problem in the considered
parameter regions [56–58]. The trapped system considered
here appears to show similar behavior. For no temperature,
chemical potential, or coupling that has been studied do we
find negative weight configurations. It is important to note that
this is not an issue of ergodicity, as our code runs into the
expected sign problems in 2D and 3D and reproduces known
results in 1D as has already been shown above in the case
of separation energies, which require simulations at a slight
imbalance.

We complement previous studies that consider trapped
systems with imbalances [35,36,59] by computing pairing
patterns at higher particle numbers than done previously. In
Fig. 4, we present a visualization of the connected density-
density correlations in (17) for a system with 4 + 4 to 4 +
12 particles at g/

√
ω = −3 and T/ω = 0.25 in momentum

space. The spin-balanced system is peaked at k↑ + k↓ = 0,
while the imbalanced systems show a clear signal of pairing
at finite momentum, which is consistent with the expected
FFLO behavior. It is important to note that Fig. 4 does not
show the relative magnitude of correlations at different parti-
cle numbers; each plot is independently normalized to ensure
visibility. Moreover, several pockets of positive and negative
correlation are visible, forming an oscillatory pattern. These
oscillations, similar to the oscillatory pattern in the density
profile, are a feature of the harmonically trapped system, not
found in the same way in the untrapped gas [37]. While a
thorough analysis is left to future work, we generally find a
decrease in correlations when going to higher temperatures
and larger imbalance, which aligns with results from a recent
exact-diagonalization study of few-particle systems at finite
temperature [35].

IV. CONCLUSION

We have presented results from lattice simulations of
trapped fermionic systems in one dimension, in both the case
of balanced and imbalanced populations. The sampling was
performed in the grand-canonical ensemble with a reweight-
ing step to give canonical expectation values, which is more
efficient than directly sampling the canonical weight but
requires tuning the chemical potential. The stabilization pro-
cedure we used allowed us to simulate the full range of
temperatures, down to the ground state, where we compare
to a projective approach. To verify the validity of our results,
we compared to experimental and theoretical data for the sep-
aration energies of up to six particles, finding good agreement.
Additionally, we computed the energy staggering pairing gap,
which agrees with exact results for the two-particle system
and is also computed for up to 20 particles. The computation
of separation energies in particular requires simulations for
spin-imbalanced systems, which we find to be sign-problem
free in the studied parameter ranges. This is also the case
when computing density-density correlations in the presence
of larger imbalances, where we find clear signals of uncon-
ventional pairing.

In future studies, it may be interesting to explore polaronic
effects in the systems, as no sign problem appears to be
present, allowing computations even at large imbalances. In
this paper, we put a focus on attractive contact interactions
due to the absence of a sign problem. However, recent work
on the application of complex Langevin methods in the study
of both ultracold fermions [37–39,60,61] and bosons [62–64]
may allow for the study of repulsive interactions in the future.
In contrast to, e.g., Path integral Monte Carlo computations,
the canonical lattice formulation used in this work does not
incur a sign problem in higher dimensions, as long as the pop-
ulation remains balanced. Given the good agreement of our
lattice computation to previous results in, e.g., Fig. 3(a), we
expect the approach to generalize straightforwardly to higher
dimensions. Indeed, using a very similar truncation approach
as the one employed here, lattices for up to 752 were recently
studied in the two-dimensional untrapped gas [25], which is
close to the linear extent that we found to be sufficient for the
1D system.
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APPENDIX A: LATTICE DISPERSION

The discretization of the Laplace operator is an impor-
tant aspect of lattice simulations. In particular, a well-chosen
dispersion can reduce finite distance effects and improve

convergence to the continuum limit. In this work, we use

εp = p2

2
(A1)

for the kinetic energy of the lattice system. Another form often
used is given by the finite-difference approximation of the
derivatives, yielding

εp = 2 sin2
( p

2

)
, (A2)

which is the standard dispersion of the Hubbard model, which
was previously used for the trapped system in, e.g., [36].
As a simple check, we diagonalize the noninteracting lat-
tice Hamiltonians with both dispersions and compare the
resulting energies to the continuum theory. The lattice param-
eters from the main text are used, which are Nx = 80, ω =
0.0625. In Fig. 5, we compare the energy levels of the lattice
Hamiltonians to those of the continuum theory,

�E (n) =
∣∣E (n) − E (n)

cont

∣∣
E (n)

cont

. (A3)

The quadratic dispersion shows significantly better agree-
ment, with no significant deviations up to half filling, while the
Hubbard dispersion deviates even for the lowest-lying states.
In both cases, we observe an even-odd effect in higher shells.
This is not an issue for our simulations, as they are carried out
in more dilute regimes. Figure 5 suggests that it is necessary
to use the quadratic dispersion if one wants to obtain accurate
results for observables such as the total energy or separation
energies. It should be noted that methods which keep the
energy levels exact are available, but require a nonuniform
spatial lattice [31,32].

APPENDIX B: LARGE PARTICLE NUMBERS

To show the applicability of our approach to systems of
larger particle number, we compute the density profiles and
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FIG. 6. (a) Density profiles per spin species for N = 6, 20, 50, and 80 particles at g/
√

ω = −5 and T/ω = 0.25. Splines connecting the
data points (dashed lines) are drawn to guide the eye. The ground-state densities of the corresponding noninteracting systems are plotted as
solid lines. (b) Energy of the system, normalized by the noninteracting energy, as a function of the rescaled coupling γ . The energies of the
two-particle system in the ground state are plotted as a dashed line.
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FIG. 7. Density profile for the N = 20 balanced system at vari-
ous lattice sizes. The inset shows the tails of the density profile on a
logarithmic scale.

energies for systems of up to N = 80 particles. To this end,
we adjust the lattice parameters to be Nx = 200 and ω =
0.015625, which corresponds to LT /a = 8. In Fig. 6(a), we
plot the density profiles N = 6, 20, 50, and 80 particles at
g/

√
ω = −5 and T/ω = 0.25, as well as the ground-state

densities of the corresponding noninteracting systems. The
larger number of lattice sites, and smaller lattice spacing,
allow for a satisfactory resolution of the density oscillations
close to the ground state. To further verify the computations,
we compare the energies obtained at different particle num-
bers. In [33], the authors found the energy, normalized by the
noninteracting energy, to show only very weak dependence
on the particle number when plotted against the rescaled

coupling,

γ = πg√
ωN

. (B1)

This behavior is reproduced by our data, as can be seen in
Fig. 6(b), where we compare the energies against those of
the two-particle system in the ground state. The lattice results
generally overshoot the two-particle system slightly, which
is expected at higher particle number, but may also partially
result from the finite temperature.

Our current approach is somewhat limited in the couplings
that can be studied, as stronger interactions lead to ergodicity
issues in the Markov process. This makes tuning the particle
number challenging, in particular at very low chemical po-
tentials. Similar issues are encountered in the Hubbard model
at half filling, where the issue can be mitigated by global
updates [65]. Alternatively, it may be possible to circumvent
the problem by sampling the canonical weight more directly.

APPENDIX C: APPROACH TO THE CONTINUUM

To demonstrate the proximity of our computations to the
continuum theory, we compare the density profiles of the
N = 20 balanced system with g/

√
ω = −3 at various filling

values. To this end, we keep the extent of the lattice fixed in
units of the harmonic oscillator Nx/LT = 20, while varying
the number of lattice sites between Nx = 24 and 200. Note
that this procedure requires a retuning of the coupling for
each lattice as described in Sec. III A. The results are shown
in Fig. 7. We find the density profile around the center of the
trap to be well converged, even for lattices with only 40 points.
In contrast, smaller lattice sizes show clear signs of saturation.
As can be seen in the inset, the Nx = 80 and 200 lattices show
good agreement in the tails over eight orders of magnitude,
after which they become indistinguishable from zero. We do
not show the smaller lattices in the inset to avoid visual clutter.
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