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Time evolution of coherent wave propagation and spin relaxation in spin-orbit-coupled systems
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We investigate, both numerically and analytically, the time evolution of a particle in an initial plane-wave
state as it is subject to elastic scattering in a two-dimensional disordered system with Rashba spin-orbit coupling
(SOC). In the analytic calculation, we treat the SOC nonperturbatively and the disorder perturbatively using the
diffuson and the cooperon. We calculate the time dependence of coherent backscattering as a function of the
strength of the SOC. We identify weak and strong SOC regimes and give the relevant time and energy scales in
each case. By studying the time dependence of the anisotropy of the disorder-averaged momentum distribution,
we identify the spin-relaxation time. We find a crossover from D’yakonov-Perel’ spin relaxation for weak SOC
to Elliot-Yafet-like behavior for strong SOC.
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I. INTRODUCTION

Cold atomic gases have unique features that are ad-
vantageous for research on coherent wave propagation in
disordered systems. Experiments can be performed in a
regime where the gas is noninteracting. The gas can be put
into a specified initial state and the subsequent time evolu-
tion of the spatial and momentum distributions of the atoms
can be measured. The gas can be subjected to a random
potential by applying laser speckle. Observations [1,2] of
coherent backscattering (CBS) and of Anderson localization
[3–5] have been performed in this way. Further develop-
ments of experimental technique, e.g., bichromatic speckle
[6], promise quantitative measurement of the Anderson tran-
sition in speckle potentials.

An alternative approach is to subject the gas to a quasiperi-
odic modulation to realize a quantum kicked rotor with a
quasiperiodic kick. This system exhibits dynamical local-
ization, an analog of Anderson localization in momentum
space. In this way, the analog of the three-dimensional
Anderson transition has been observed [7]. The critical ex-
ponent of the transition has been measured [8] and found
to be in good agreement with numerical finite-time-scaling
studies of the quantum kicked rotor [9] and with finite-size-
scaling studies of Anderson’s model of localization [10,11].
Other signatures of Anderson localization, namely, coher-
ent forward scattering and the quantum boomerang effect,
have been proposed theoretically [12,13] and then subse-
quently observed [14,15] in the cold-atom quantum kicked
rotor.

Coherent backscattering results from interference between
time-reversed scattering processes. This interference is usu-
ally constructive and is manifest in an enhanced probability,
ideally by a factor of 2, for a wave to be scattered in the
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direction opposite to that of the incident wave. This has been
observed in optics [16,17], acoustics [18], and cold atoms
[1,2]. In solid-state physics, it is manifest in the weak localiza-
tion effect [19]. In cold atoms, the constructive interference of
time-reversed states leads to the emergence of characteristic
structures in the disorder-averaged momentum distribution
[20,21].

Spin-orbit coupling (SOC) is well known in atomic and
solid-state physics. It involves the coupling of an electron’s
spin with its orbital motion. The importance of SOC is that it
breaks spin-rotation symmetry while preserving time-reversal
symmetry. In a system with both time-reversal symmetry
and spin-rotation symmetry, the electron spin plays no role
in the dynamics and the operation of time reversal corre-
sponds to reversing the electron’s momentum. In a system
with time-reversal symmetry but where spin-rotation symme-
try is broken by SOC, the operation of time reversal also
involves reversing the electron’s spin. This has a dramatic
effect on the interference between time-reversed processes,
changing it from constructive to destructive. In solid-state
physics this is manifested in the weak antilocalization ef-
fect [19,22]. Synthetic SOC has been realized experimentally
in both Bose and Fermi gases [23–27]. This brings into
prospect experiments that combine synthetic SOC with ran-
dom potentials and this has stimulated recent theoretical
work [28–33].

To make clear the importance of SOC for interference
between time-reversed scattering processes, consider a gas of
electrons in the independent-particle approximation described
by a single-particle Hamiltonian H . Let us suppose that H
has time-reversal symmetry, i.e., that H commutes with a
time-reversal operator T ,

[H, T ] = 0. (1)

If H has spin-rotation symmetry, we have T 2 = +1, since
reversing the momentum twice leaves the momentum un-
changed. If spin-rotation symmetry is broken by SOC, we
have T 2 = −1. This is because reversing the electron’s spin
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TABLE I. Energy scales and time scales governing the time-
dependent behavior for the weak and strong SOC limits. Here τ is
the scattering time and � is the spin splitting induced by SOC.

Scale Weak SOC Strong SOC

Energy � � h̄/τ � � h̄/τ

Time τ , h̄2/τ�2 τ , h̄/�

twice introduces a change of sign. Starting from Eq. (1) and
assuming T 2 = −1, we find that the probability of scattering
into a time-reversed state is zero (see Appendix A),

〈T ψ0|exp(−iHt )|ψ0〉 = 0, (2)

for any arbitrary initial state |ψ0〉 and for all times t . Note
that this does not mean that scattering into a state with oppo-
site momentum cannot occur, but rather that scattering into
a state with opposite momentum and opposite spin cannot
occur.

In this paper we consider the time evolution of an initial
plane-wave state with wave vector k0 resulting from elas-
tic scattering by the random potential. By treating the SOC
nonperturbatively and disorder perturbatively using a dia-
grammatic perturbation theory, we identify weak and strong
SOC regimes. In Table I we tabulate the corresponding time
and energy scales. In Fig. 1, in a regime of weak SOC, we
show the buildup of the diffusive ring on the order of the
scattering time τ , the enhancement of backscattering on times
of the order of several τ , and the reduction of backscattering
at much longer times. As can be seen in Figs. 2(d)–2(f),
we obtain good agreement between numerical and analytical
results without any fitting parameters for the entire range from
weak SOC to strong SOC.

Spin-orbit coupling also leads to significant anisotropy in
the disorder-averaged momentum distribution. This is seen
not only for strong SOC, as in Figs. 3, 10, and 11, but also
for weak SOC when the disorder-averaged momentum distri-
bution is spin resolved as in Fig. 12. This anisotropy relaxes
at sufficiently long times due to spin relaxation. By studying
this, we are able to determine the spin-relaxation time and in-
vestigate the crossover from D’yakonov-Perel’ spin relaxation
for weak SOC to Elliot-Yafet-like behavior for strong SOC.

II. MODEL

In this study we use the Ando model [34], which is a tight-
binding model with Rashba-type SOC defined on a square
lattice, with the lattice constant taken as the unit of length.
The Hamiltonian in the spin basis

|↑〉 =
(

1
0

)
, |↓〉 =

(
0
1

)
(3)

is given by

H0 = −thop

∑
r

∑
σ,σ ′

[(Tx )σσ ′c†
r+ex,σ

cr,σ ′

+ (Ty)σσ ′c†
r+ey,σ

cr,σ ′ + H.c.]. (4)

Here

Tx =
(

t1 t2
−t2 t1

)
, Ty =

(
t1 −it2

−it2 t1

)
, (5)

with

t1 = cos ϕ, t2 = sin ϕ. (6)

Also, c†
r,σ and cr,σ are creation and annihilation operators,

respectively, at site r and spin σ , and ex and ey are lattice
vectors. We take thop and h̄/thop as the units of energy and
time, respectively.

We consider square systems with linear size L. The Hamil-
tonian (4) may then be expressed in momentum space as

H0 =
∑
σ,σ ′

∑
k

[H0(k)]σσ ′c†
k,σ

ck,σ ′ , (7)

where the summation is over spin and the appropriate allowed
values of k in the first Brillouin zone and

H0(k) =
(−2t1(cos kx + cos ky) 2t2(−i sin kx − sin ky)

2t2(i sin kx − sin ky) −2t1(cos kx + cos ky)

)
.

(8)

The Hamiltonian (8) is diagonalized by the following
momentum-coupled spin basis, which we refer to in what
follows as the ± basis:

|k,+〉 = |k〉 ⊗
( |↑〉 − e−iθ (k)|↓〉√

2

)
, (9)

FIG. 1. Simulation of the time evolution of a plane wave with initial wave vector k0 = (k0, 0) in two-dimensional systems with weak
disorder and weak SOC. We use the Ando model [34], as described by Eq. (4), with ϕ = π/1024 and a disorder strength of W = 1. The
disorder-averaged momentum distribution n(k, t ) is estimated by sampling 213 = 8192 disorder realizations. An isotropic diffusive background
ring due to elastic scattering is observed with a crossover from enhanced backscattering at a time of several τ to reduced backscattering at
much longer times.
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FIG. 2. [(a)–(c)] Comparison of the time dependence of the disorder-averaged momentum distribution n(k, t ) at two points k = (−k0, 0)
(red points) and k = (0, k0 ) (blue crosses) estimated by sampling 8192 disorder realizations. The disorder strength is fixed at W = 1 for all
cases, while the strength of the SOC varies: ϕ = π/1024 for weak SOC, ϕ = π/128 for intermediate SOC, and ϕ = π/16 for strong SOC.
[(d)–(f)] Comparison between the disorder-averaged momentum distribution at k = (−k0, 0) obtained in the simulation and that obtained from
a diagrammatic expansion (solid line): (d) Eq. (58) and (e) and (f) Eq. (59).

|k,−〉 = |k〉 ⊗
(

−eiθ (k)|↑〉 + |↓〉√
2

)
. (10)

Here θ (k) is a real value for any wave vector k and satisfies

eiθ (k) = i sin kx + sin ky√
sin2 kx + sin2 ky

. (11)

FIG. 3. Disorder-averaged momentum distribution for strong
SOC. The model parameters are ϕ = π/16 and W = 1. At long
times, the anisotropy of the diffusive background rings disappears.
A view of the cross section is presented in Fig. 11(a).

The state | − k,+〉 is equal to the time-reversed state of |k,+〉
to within a phase factor,1

T |k,+〉 = iσyK|k,+〉

= | − k〉 ⊗
(

−|↓〉 + eiθ (k)|↑〉√
2

)

= eiθ (k)| − k,+〉, (12)

where σy is the Pauli matrix, K is the complex conjugation,
and we used the relation eiθ (−k) = −eiθ (k). Also, the corre-
sponding relationship holds for | − k,−〉 and |k,−〉,

T |k,−〉 = e−iθ (k)| − k,−〉. (13)

The eigenstates (9) and (10) have eigenenergies

E±(k) = −2t1(cos kx + cos ky)

± 2t2

√
sin2 kx + sin2 ky, (14)

respectively. In Fig. 4 we show the band structure of the Ando
model, where the spin splitting into upper and lower branches
due to SOC is visible.

1We note that the phase factors in Eqs. (12) and (13) are to some
extent arbitrary, as the eigenvectors (9) and (10) and the time-reversal
operator T are only defined up to arbitrary complex phase factors.
These phase factors do not affect the subsequent calculations.
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FIG. 4. Band structure of the Ando model with the parameters
t1 = cos ϕ, t2 = sin ϕ, and ϕ = π/16. As t2 increases, the spin split-
ting into upper branch E+(k) and lower branch E−(k) becomes larger.

We suppose a spin-independent random potential of the
form

V =
∑

r

∑
σ

wrc
†
r,σ cr,σ , (15)

where wr are independently and identically distributed ran-
dom variables with uniform distribution on the interval
[−W/2,W/2]. The potential distribution is uncorrelated and
translationally invariant. Therefore, the disorder-averaged
Green’s function is also translationally invariant, i.e.,

G
R(A)

(r, r′, ε) = G
R(A)

(r − r′, ε), (16)

and is diagonal with respect to the wave vector [35],

G
R(A)

(k, k′, ε) = G
R(A)

(k, ε)δk,k′ . (17)

Here R stands for retarded and A stands for advanced. In
addition, if the random potential is spin independent and

has short-range correlations, as in this paper, the disorder-
averaged Green’s function is a diagonal matrix in the ± basis,

G
R(A)

(k, ε) = gR(A)
+ (k, ε)|k,+〉〈k,+|

+ gR(A)
− (k, ε)|k,−〉〈k,−|. (18)

The diagonal elements are

gR
±(k, ε) = 1

ε − E±(k) + i/2τ
, (19)

gA
±(k, ε) = 1

ε − E±(k) − i/2τ
. (20)

The detailed calculation is presented in Appendix B.

III. DIAGRAMMATIC CALCULATION

In this study we consider the time evolution of the disorder-
averaged momentum distribution. The disorder-averaged mo-
mentum distribution at wave vector k and time t , given an
initial state |ψ0〉, is

n(k, t ) = 〈ψ (t )|(|k,+〉〈k,+| + |k,−〉〈k,−|)|ψ (t )〉
:= n+(k, t ) + n−(k, t ), (21)

where

|ψ (t )〉 = e−i(H0+V )t |ψ0〉. (22)
The branch resolved components n+(k) and n−(k) can be
expressed as2 [20,36–38]

n±(k, t ) =
∫ ∞

−∞

dε

2π

∫ ∞

−∞

dω

2π
e−iωt�±(k, ε, ω), (23)

where

�±(k, ε, ω) =
∑

a,b=±

∫
d2k′d2k′′

(2π )4
〈k,±|GR

(
ε + ω

2

)
|k′, a〉〈k′′, b|GA

(
ε − ω

2

)
|k,±〉〈k′, a|ψ0〉〈ψ0|k′′, b〉. (24)

To avoid confusion, from now on, we associate latin subscripts with the ± basis and greek subscripts with the spin basis, i.e., a
and b represent + or −, while α, β, and so on represent ↑ or ↓. As the initial state, we take the plane wave that is an eigenstate
of H0 given in Eq. (4) in the upper branch whose energy is E+(k0),

|ψ0〉 = |k0,+〉. (25)

Substituting the initial state (25) into Eq. (24), performing the integration on k′ and k′′, and summing over a and b, we obtain

�±(k, ε, ω) = 〈k,±|GR
(
ε + ω

2

)
|k0,+〉〈k0,+|GA

(
ε − ω

2

)
|k,±〉. (26)

Equation (26) includes contributions from all scattering processes, but we approximate these by retaining only the contributions
from the ladder diagram (diffuson) and the maximally crossed diagram (cooperon) [20,35],

n±(k, t ) �
∫ ∞

−∞

dε

2π

∫ ∞

−∞

dω

2π
e−iωt [�0

±(k, ε, ω) + �D
±(k, ε, ω) + �C

±(k, ε, ω)], (27)

where

�0
±(k, ε, ω) = gR

+

(
k0, ε + ω

2

)
gA

+

(
k0, ε − ω

2

)
δ(k − k0)δ±,+, (28)

2In Sec. III, all sums with respect to k′′ are replaced by integrals
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�D
±(k, ε, ω) = gR

±

(
k, ε + ω

2

)
gA

±

(
k, ε − ω

2

)
Γ D

±±,++(k, k0, ε, ω)gR
+

(
k0, ε + ω

2

)
gA

+

(
k0, ε − ω

2

)
, (29)

�C
±(k, ε, ω) = gR

±

(
k, ε + ω

2

)
gA

±

(
k, ε − ω

2

)
Γ C

±±,++(k, k0, ε, ω)gR
+

(
k0, ε + ω

2

)
gA

+

(
k0, ε − ω

2

)
. (30)

The operators Γ D and Γ C in the ± basis can be projected to the operators �D and �C in the spin basis using unitary operators
with

Uαβ,ab(k) = 〈k, α|k, a〉〈k, b|k, β〉 (31)

as elements. The projection is represented in matrix representation as

Γ D(k, k′, ε, ω) = U †(k)�D(0, ε, ω)U (k′), (32)

Γ C (k, k′, ε, ω) = U †(k)�C (k + k′, ε, ω)U (k′), (33)

where U (k) is a Hermitian unitary matrix

U (k) = 1
2

⎛
⎜⎜⎝

1 −eiθ (k) −e−iθ (k) 1
−e−iθ (k) −1 e−2iθ (k) e−iθ (k)

−eiθ (k) e2iθ (k) −1 eiθ (k)

1 eiθ (k) e−iθ (k) 1

⎞
⎟⎟⎠. (34)

The diagrams of �D and �C are shown in Fig. 5. In the absence of SOC, time-reversal symmetry ensures that reversing the
direction of the arrows yields the same result. Consequently, in the long-time limit, the contributions of the diffuson and the
cooperon become equal at k = −k0. However, in the present discussion, the direction of the arrows carries significant meaning.
For �D and �C in the spin basis, Bethe-Salpeter equations

�D
αβ,γ δ (q, ε, ω) = γ0δα,γ δβ,δ + γ0

∑
μ,ν

�D
αβ,μν (q, ε, ω)�D

μν,γ δ (q, ε, ω), (35)

�C
αδ,γ β (q, ε, ω) = γ 2

0 �C
αδ,γ β (q, ε, ω) + γ0

∑
μ,ν

�C
αδ,μν (q, ε, ω)�C

μν,γ β (q, ε, ω) (36)

hold. For the cooperon, Eq. (36) is obtained by “twisting” the �C diagram in Fig. 5. Here �D and �C are

�D
αβ,γ δ (q, ε, ω) =

∫
d2k′′

(2π )2
GR

αγ

(
k′′, ε + ω

2

)
GA

δβ

(
q + k′′, ε − ω

2

)
, (37)

�C
αβ,γ δ (q, ε, ω) =

∫
d2k′′

(2π )2
GR

αγ

(
k′′, ε + ω

2

)
GA

βδ

(
q − k′′, ε − ω

2

)
, (38)

where GR(A)
αβ is the element of the disorder-averaged Green’s function in the spin basis

GR(A)
(q, ε) = 1

2

(
gR(A)

+ (q, ε) + gR(A)
− (q, ε) −e−iθ (q)(gR(A)

+ (q, ε) − gR(A)
− (q, ε))

−eiθ (q)
(
gR(A)

+ (q, ε) − gR(A)
− (q, ε)

)
gR(A)

+ (q, ε) + gR(A)
− (q, ε)

)
(39)

and

γ0 = 1

πρτ
. (40)

Here ρ is the density of states.
When considering k = −k0 in Eq. (27), it is apparent that by using Eqs. (32) and (33), it is sufficient to calculate �D(0, ε, ω)

and �C (0, ε, ω), or equivalently �D(0, ε, ω) and �C (0, ε, ω). Performing the integration in Eqs. (37) and (38) taking into
account factors such as eiθ (−k) = −eiθ (k) and e2iθ (kx,ky ) = −e2iθ (ky,−kx ), several terms cancel out and we obtain

�D(0, ε, ω) =

⎛
⎜⎜⎝

�1 0 0 �2

0 �1 0 0
0 0 �1 0

�2 0 0 �1

⎞
⎟⎟⎠, (41)

�C (0, ε, ω) =

⎛
⎜⎜⎝

�1 0 0 0
0 �1 −�2 0
0 −�2 �1 0
0 0 0 �1

⎞
⎟⎟⎠, (42)
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FIG. 5. Diffuson and cooperon diagrams. The solid line arrows
and dashed line arrows represent the disorder-averaged retarded
Green’s function and advanced Green’s function, respectively. The
cross marks and dotted lines represent interactions with impurities.
The subscripts correspond to Eqs. (35) and (36).

where

�1(ε, ω) = 1

4

∫
d2k′′

(2π )2

[
gR

+

(
k′′, ε + ω

2

)
+ gR

−

(
k′′, ε + ω

2

)]

×
[

gA
+

(
k′′, ε − ω

2

)
+ gA

−

(
k′′, ε − ω

2

)]
, (43)

�2(ε, ω) = 1

4

∫
d2k′′

(2π )2

[
gR

+

(
k′′, ε + ω

2

)
− gR

−

(
k′′, ε + ω

2

)]

×
[

gA
+

(
k′′, ε − ω

2

)
− gA

−

(
k′′, ε − ω

2

)]
. (44)

Substituting Eqs. (41)and (42) into the Bethe-Salpeter equa-
tions (35) and (36), we obtain

�D(0, ε, ω) =

⎛
⎜⎜⎜⎜⎝

�1+�3
2 0 0 �1−�3

2

0 �2 0 0

0 0 �2 0
�1−�3

2 0 0 �1+�3
2

⎞
⎟⎟⎟⎟⎠, (45)

�C (0, ε, ω)

=

⎛
⎜⎜⎜⎜⎝

�2 − γ0 0 0 −�1−�3
2

0 �1+�3
2 − γ0 0 0

0 0 �1+�3
2 − γ0 0

−�1−�3
2 0 0 �2 − γ0

⎞
⎟⎟⎟⎟⎠,

(46)

where

�1(ε, ω) = γ0

1 − γ0[�1(ε, ω) + �2(ε, ω)]
, (47)

�2(ε, ω) = γ0

1 − γ0�1(ε, ω)
, (48)

�3(ε, ω) = γ0

1 − γ0[�1(ε, ω) − �2(ε, ω)]
. (49)

FIG. 6. (a) Value of cos[θ (k) − θ (k0)] for k0 = (π/4, 0). The
dashed lines represent energy contours. (b) Value of cos[θ (k) −
θ (k0)] on the inner and outer rings shown as dashed lines in (a). We
compare with cos �, where � is the angle between k and k0.

By transforming �D and �C into the ± basis using Eqs. (32)
and (33), respectively, substituting them into Eqs. (29) and
(30), and rearranging Eq. (27), we obtain the disorder-
averaged momentum distribution at k = −k0,

n−(−k0, t ) =
∫ ∞

−∞

dε

2π

∫ ∞

−∞

dω

2π
e−iωt

(
�1(ε, ω)

2

+ �2(ε, ω) + �3(ε, ω)

2
− γ0

)

× gR
+

(
k0, ε + ω

2

)
gA

+

(
k0, ε − ω

2

)

× gR
−

(
k0, ε + ω

2

)
gA

−

(
k0, ε − ω

2

)
, (50)

n+(−k0, t ) = 0. (51)

Since |k0,+〉 and | − k0,+〉 are time-reversed states,
n+(−k0) = 0, which is consistent with Eq. (2). If k is not close
to −k0, the contribution of the cooperon is negligible. In this
case, the disorder-averaged momentum distribution at k is

n±(k, t ) =
∫ ∞

−∞

dε

2π

∫ ∞

−∞

dω

2π
e−iωt {�1(ε, ω)

± �2(ε, ω) cos[θ (k) − θ (k0)]}

× gR
+

(
k0, ε + ω

2

)
gA

+

(
k0, ε − ω

2

)

× gR
±

(
k, ε + ω

2

)
gA

±

(
k, ε − ω

2

)
. (52)

Here, for the moment we ignore the terms associated with
�0

± since they are zero except for k = k0. The first term in
Eq. (52) is an isotropic contribution, while the second term is
an anisotropic contribution proportional to cos[θ (k) − θ (k0)].
Figure 6(a) shows how cos[θ (k) − θ (k0)] varies with k when
k0 = (π/4, 0). The dashed curves are energy contours with
energy E+(k0) for the Ando model without disorder (W =
0) for SOC strength ϕ = π/16. In Fig. 6(b) we show the
variation of the factor cos[θ (k) − θ (k0)] along these energy
contours. We see that, for the parameters considered in this
paper, this factor is well approximated by cos �, where � is
the angle between k0 and k.
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TABLE II. Roots of Eqs. (56) and (57) in the weak and strong
limits of the SOC. Note that we are setting h̄ = 1 in this section.

ωl Weak SOC τ� � 1 Strong SOC τ� � 1

ω1
τ�2

2
1

2τ

ω2, ω3
1
τ

± i �√
2

3
4τ

± i�

ω4, ω5 τ�2, 1
τ

[1 − (τ�)2] 1
2τ

± i�

We define � so that � = E+(k0) − E−(k0) and ap-
proximate �1, �2, and �3 by evaluating �1 and �2 in
Eqs. (47)–(49) as

�1(ε, ω) � γ0
ω + i

τ

ω
, (53)

�2(ε, ω) � γ0

(
ω + i

τ

)(
ω + � + i

τ

)(
ω − � + i

τ

)
(ω + iω1)(ω + iω2)(ω + iω3)

, (54)

�3(ε, ω) � γ0

(
ω + � + i

τ

)(
ω − � + i

τ

)
(ω + iω4)(ω + iω5)

, (55)

where ω1, ω2, and ω3 are the roots of the cubic equation

ω3 − 2

τ
ω2 +

(
1

τ 2
+ �2

)
ω − �2

2τ
= 0 (56)

and ω4 and ω5 are the roots of the quadratic equation

ω2 − 1

τ
ω + �2 = 0. (57)

These equations were also obtained in Ref. [39]. Note that
both τωl and ωl/� (l = 1, 2, . . . , 5) can be expressed as
functions of a single variable τ�. Detailed calculations are
given in Appendix C, but we emphasize that the method
we use is not perturbative in the strength of the SOC, i.e.,
Eqs. (53)–(55) are a good approximation even if � is larger
than 1/τ , provided � is sufficiently smaller than the band
width. The term �1 in Eq. (53) has a singularity at ω = 0.
Therefore, after a sufficiently long time, only the contribution
from �1 remains. Equation (56) has one real root, which we
denote by ω1, and two complex conjugate roots, which we
denote by ω2 and ω3. All the roots have positive real parts. The
two roots ω4 and ω5 of Eq. (57) are real when 2τ� < 1 and
complex conjugates when 2τ� > 1. The real parts of these
roots are always positive. We summarize the properties of the
roots in Table II for the limits of weak and strong SOC. In
the case of weak SOC, energy scales of τ�2 and 1/τ appear,
while in the case of strong SOC, energy scales of � and 1/τ

appear. These energies correspond to the time scales tabulated
in Table I.

Substituting Eqs. (53)–(55) into Eq. (50) and using the
residue theorem, we obtain the disorder-averaged momentum
distribution at k = −k0,

n−(−k0, t ) = f

(
t, 0,

1

τ
,�

)
+ 2 f

(
t, ω1,

ω2 + ω3

2
,
ω2 − ω3

2i

)
+ g

(
t,

1

τ
, ω4, ω5

)
− 2 f

(
t,

1

τ
,

1

τ
,�

)
(58)

for 2τ� < 1 and

n−(−k0, t ) = f

(
t, 0,

1

τ
,�

)
+ 2 f

(
t, ω1,

ω2 + ω3

2
,
ω2 − ω3

2i

)
+ f

(
t,

1

τ
,
ω4 + ω5

2
,
ω4 − ω5

2i

)
− 2 f

(
t,

1

τ
,

1

τ
,�

)
(59)

for 2τ� > 1, where

f (t, x, y, z) = γ0

(x − y)2 + z2

[
e−xt − e−yt

(
cos(zt ) − x − y

z
sin(zt )

)]
, (60)

g(t, x, y, z) = − γ0

(x − y)(y − z)(z − x)
[(y − z)e−xt + (z − x)e−yt + (x − y)e−zt ]. (61)

The first terms of Eqs. (58) and (59) remain at t → ∞. On the other hand, substituting Eqs. (53)–(55) into Eq. (52), we obtain

n±(k, t ) = f

(
t, 0,

1

τ
, �̃±(k)

)
± h

(
t, ω1,

ω2 + ω3

2
,
ω2 − ω3

2i
,

1

τ
, �̃±(k),

1

τ
,�

)
cos[θ (k) − θ (k0)], (62)

where

�̃±(k) = E+(k0) − E±(k) (63)

and

h(t, s, u, v,w, x, y, z) = γ0e−st [(s − y)2 + z2]

[(s − u)2 + v2][(s − w)2 + x2]

− γ0e−ut

[
[i(y − u) + (z + v)][i(y − u) − (z − v)]e−ivt

2v[i(s − u) + v][i(w − u) + (x + v)][i(w − u) − (x − v)]
+ H.c.

]

− γ0e−wt

[
[i(y − w) + (z + x)][i(y − w) − (z − x)]e−ixt

2x[i(s − w) + x][i(u − w) + (v + x)][i(u − w) − (v − x)]
+ H.c.

]
. (64)
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TABLE III. Scattering time, spin splitting, and density of states
per unit area for ϕ = π/1024, π/128, and π/16. These values are
used to calculate the solid lines in Figs. 2(d)–2(f). The lattice constant
is the unit of length, thop in Eq. (4) is the unit of energy, and h̄/thop

is the unit of time. The mean free path le = vτ , where v is the group
velocity, is not used in the calculation. We note that k0le � 1 for the
parameters considered in our simulations.

���������Parameter
ϕ

π/1024 π/128 π/16

SOC strength τ�/h̄ 0.194 1.55 11.8
Spin splitting � 8.68 × 10−3 0.0694 0.552
Scattering time τ 22.34 22.40 21.31
Mean free path le 31.7 32.4 35.4
Density of states ρ 0.1713 0.1721 0.1806

Also, when k = k0, there is an additional contribution∫ ∞

−∞

dε

2π

∫ ∞

−∞

dω

2π
e−iωt�0

±(k, ε, ω) = e−t/τ δ(k − k0)δ±,+.

(65)
The discussion up to this point can be carried out in the same
manner when the initial state is |k0,−〉.

The diagrammatic calculation presented above is valid for
weak disorder. More precisely, the condition is that kFle � 1,
where kF is the Fermi wave vector and le is the mean free
path. In addition, the time scales under consideration should
be not too long. The relevant time scales here are the Thouless
time τD = L2/D, where L is the system size and D = v2τ/2
is the diffusion constant (with v the group velocity), and
the localization time τloc = ξ 2/D, where ξ is the localization
length. For times longer than the shorter of these two time
scales, a coherent forward scattering peak [12] is expected.
The diffuson and the cooperon are not sufficient to capture
this phenomenon.

IV. RESULTS

We performed simulations of the time evolution of a wave
packet using the two-dimensional Ando model (4) defined on
an L × L lattice with L = 512 and periodic boundary con-
ditions. We used the Chebyshev expansion method [40] to
calculate the time evolution of the state vector. The initial state
was a plane wave (25) with a wave vector of k0 = (π/4, 0).
We considered three different values for the Ando model pa-
rameter ϕ: π/1024, π/128, and π/16. In each case, we fixed
the disorder strength at W = 1 and estimated the average of
the momentum distribution by sampling 213 = 8192 disorder
realizations. We used the coherent potential approximation
[41] to estimate the density of states, scattering time, and
mean free path for these parameters. The values are given in
Table III together with the spin splitting � and the value of
the dimensionless ratio τ�/h̄.

We focus first on the time dependence of the disorder-
averaged momentum distribution n(k, t ) at k = −k0, which is
parallel to the backscattering direction. In Figs. 2(a)–2(c) we
plot n(−k0, t ) obtained from our simulations. For comparison
we also plot n(k, t ) at k = (0, π/4), which is orthogonal to the
backscattering direction. For weak SOC [Fig. 2(a)], n(−k0, t )

FIG. 7. SOC strength � dependence of the roots ωl (l =
1, 2, . . . , 5) of Eqs. (56) and (57) for (a) real part of ωl and (b) the
absolute value of the imaginary part. The solid lines represent the
roots of Eq. (56) [Re(ω1) < Re(ω2) = Re(ω3)] and the dashed lines
represent the roots of Eq. (57). For convenience, we define Re(ω4) �
Re(ω5). We make the abscissa and ordinate dimensionless by multi-
plying by the scattering time τ . Note that τωl is a function of a single
variable τ�/h̄.

increases from zero and peaks at approximately twice the
diffusive background on a time scale of the order of several
scattering times, i.e., for short times this behavior is similar to
the CBS observed in the absence of SOC. After this, however,
there is a crossover to decreasing behavior with a limiting
value of n(−k0, t ) equal to half the diffusive background at
long times. For intermediate SOC strength [Fig. 2(b)], we see
that n(−k0, t ) still exhibits a maximum at short times and at
longer times tends to a limiting value that is a small fraction
of the diffusive background. For strong SOC [Fig. 2(c)], we
see that n(−k0, t ) is greatly reduced compared to the diffusive
background, exhibits decaying oscillations, and tends to a
constant value at long times.

In Figs. 2(d)–2(f) we overlay the disorder-averaged mo-
mentum distribution at k = −k0 obtained from simulations
with calculations of Eq. (58) or (59) with values of the scat-
tering time τ and the spin splitting � given in Table III. The
analytical equations and the simulation results exhibit clear
and consistent agreement for weak, intermediate, and strong
SOC. This demonstrates that considering only the diffuson
and the cooperon provides a good approximation for the
disorder-averaged momentum distribution.

The time scales governing the behavior of n(−k0, t ) are
determined by the roots ωl (l = 1, 2, . . . , 5) of Eqs. (56) and
(57). In Fig. 7 we show the SOC strength � dependence of the
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FIG. 8. Time evolution of the disorder-averaged momentum dis-
tribution at k = −k0 for various values of τ�/h̄ (from 0 to 0.2
with intervals of 0.01) in the weak SOC regime obtained from the
diagrammatic calculation, i.e., Eq. (58). The short-time behavior is
shown in the bottom figure. The disorder-averaged momentum dis-
tribution is expressed in units of 2τ/π h̄ρ, the height of the diffusive
background in the absence of SOC. This value differs by a factor of
2, corresponding to the spin degrees of freedom, compared to that of
Ref. [20].

roots. From Eqs. (58) and (59) it is evident that the reciprocals
of the real parts of the roots determine the overall time depen-
dence of n(−k0, t ). If a root is a complex number, it signifies
that the associated terms exhibit damped oscillations with the
imaginary part of the root giving the associated frequency
of oscillation. The term that gives the dominant contribution
varies with the parameters of the system and with time. To
understand qualitatively the behavior of n(−k0, t ), we focus
on two extremes: the limit where the SOC is weak compared
to disorder and the limit where it is strong.

For weak SOC, the enhancement of backscattering by a
factor of 2 compared to the diffusive background appears at a
time scale of several τ , while the subsequent reduction to one
half of the diffusive background, which is shown in Fig. 8,
occurs on a much longer time scale of

h̄2

τ�2
=

(
τp

τ

)2

τ, (66)

where

τp = h̄

�
(67)

is the spin precession time.
For strong SOC, two diffusive rings appear because of

the spin splitting due to the SOC. The width of the rings,
which is of order h̄/τ , is small compared with their splitting,
which is of order δk ≈ �/h̄v, where v is the average of the

FIG. 9. Disorder-averaged momentum distribution at k = −k0

decomposed into the contributions from single scattering (Born
approximation), diffuson, and cooperon, for (a) ϕ = π/1024 and
(b) ϕ = π/16. Note that we define the diffuson to include the lowest-
order diagram. The solid lines labeled “total” correspond to the solid
lines in Figs. 2(d) and 2(f).

group velocities at k0. The oscillations that are shown in
Fig. 2(f) arise from the diffuson and cooperon contributions to
n−(−k0, t ). At k = −k0, n+(−k0, t ) = 0 holds exactly for all
t . The period of oscillation coincides with the spin precession
time τp.

While the contributions of the diffuson and cooperon at
k = −k0 cannot be separated in the simulation, they can be
separated analytically. The contributions of the diffuson and
cooperon to n+(−k0, t ) are equal in magnitude but opposite in
sign and cancel exactly. In Fig. 9 we investigate the contribu-
tions to n−(−k0, t ) of the diffuson and cooperon for both weak
and strong SOC. In both cases, the short-time behavior can be
explained by the expression derived from the single-scattering
diagram (Born approximation). However, beyond the scatter-
ing time τ , the contribution of multiple scattering becomes
important. Oscillations of n−(−k0, t ) gradually decay, but the
oscillations originating from the cooperon persist longer than
those originating from the diffuson.

We now shift our attention to the time dependence of
the disorder-averaged momentum distribution at other mo-
menta k �= −k0. The initial state is spin polarized and there is
consequently a resulting anisotropy in the disorder-averaged
momentum distribution. This relaxes to an isotropic distri-
bution only at sufficiently long times as a result of spin
relaxation. By investigating this we determine the spin-
relaxation time for both weak and strong SOC. For strong
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FIG. 10. Disorder-averaged momentum distribution in the strong
SOC regime (ϕ = π/16) for k0 = (π/4, 0). Simulation results are at
times (a) t = 2.07τ and (b) t = 11.5τ and analytical results at times
(c) t = 2.07τ and (d) t = 11.5τ . At t = 2.07τ , the disorder-averaged
momentum distribution exhibits an anisotropic pattern, while at t =
11.5τ , it becomes isotropic, except at k = −k0.

SOC two diffusive rings are well resolved as a result of the
spin splitting due to SOC. These are clearly visible in Fig. 3
and also in Figs. 10 and 11. In Fig. 10 we compare the
disorder-averaged momentum distribution obtained from sim-
ulations with those calculated using Eq. (62). In Figs. 10(a)
and 10(b) we present the results of the simulations, while in
Figs. 10(c) and 10(d) we present the results of the analytical
calculations. In Fig. 11 we present cross-sectional views of
Figs. 10(a) and 10(c) along the kx and ky axes, respectively.

For weak SOC the spin splitting is small, the two dif-
fusive rings overlap, and this anisotropy is hidden. It is
revealed, however, when the disorder-averaged momentum
distribution is resolved into + and − components as in
Fig. 12.

Comparing the results of the simulations with the an-
alytical calculations, it is evident that the behavior of the
diffusive background can be explained using the diffuson. The
cooperon contributes only in the vicinity of k = −k0. The
anisotropy in the disorder-averaged momentum distribution
arises from the second term in Eq. (62). By examining the sign
of this second term, we can deduce that intrabranch scattering
is more likely to occur at small angles with respect to the
initial wave vector than interbranch scattering. Conversely,
interbranch scattering is more likely to occur at large angles.
The second term in Eq. (62) decays exponentially in the long-
time limit; as a result, the imbalance between the components
of the two branches vanishes in that limit. This corresponds
precisely to the process of spin relaxation. The function
h given in Eq. (64) decays at three different time scales,
namely, τ ,

τ1 = 1

ω1
, τ2 = 1

Re(ω2)
= 1

Re(ω3)
. (68)

FIG. 11. Disorder-averaged momentum distribution at time t =
2.07τ plotted along the kx axis (red solid line) and the ky axis (blue
dashed line). (a) Simulation results. (b) Analytical results. These fig-
ures correspond to Figs. 10(a) and 10(c), respectively. The analytical
calculation, considering only the diffuson, is in agreement with the
numerical simulation results, except at k = −k0.

FIG. 12. Disorder-averaged momentum distribution resolved
into + and − components for weak SOC (ϕ = π/1024) for k0 =
(π/4, 0) obtained in simulations. The + component n+(k) is shown
at times (a) t = 30.4τ and (b) t = 166τ and the − component n−(k)
at times (c) t = 30.4τ and (d) t = 166τ . The total distribution n(k) =
n−(k) + n+(k) appears isotropic even at t = 30.4τ , even though each
component is anisotropic.
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FIG. 13. Dependence of the spin-relaxation time τs on the scat-
tering time τ . We make the abscissa and ordinate dimensionless by
dividing them by the spin precession time τp = h̄/�. Note that τs/τp

is a function of a single variable τ/τp. The dashed lines show 2τp/τ

and 2τ/τp, respectively.

Since the equilibration of the spin imbalance occurs on the
slowest time scale, we conclude that the spin-relaxation time
is given by τs = τ1.

In Fig. 13 we show the dependence of the spin-relaxation
time τs on τ . For weak SOC, the spin-relaxation time is
inversely proportional to the scattering time. This behav-
ior is consistent with the D’yakonov-Perel’ spin-relaxation
mechanism [42,43]. For strong SOC, we find Elliott-Yafet-
like behavior with the spin-relaxation time proportional to τ

[44,45]. The τ dependence of τs shown in Fig. 13 provides
a quantitative description of the crossover between these two
regimes of spin relaxation.

V. DISCUSSION

We have investigated, both numerically and analytically,
the time evolution of a particle in an initial plane-wave state
as it propagates coherently in a two-dimensional disordered
system with SOC. We have focused in particular on the time
dependence of backscattering and the time dependence of the
anisotropy of the diffusive background. We have found that
the results of our numerical simulations are well described by
analytic calculations that treat the SOC nonperturbatively and
the effects of disorder using the diffuson and cooperon.

For weak SOC, we find at short times of the order of a
few times the scattering time τ an enhancement of backscat-
tering by a factor of 2 relative to the diffusive background.
This factor of 2 is characteristic of CBS in systems without
SOC. With SOC, however, for longer times, of the order of
(τp/τ )2τ , there is crossover to a reduction of backscattering
by a factor of 1

2 , which is characteristic of CBS in systems
with SOC.

With SOC, the spin polarization of the initial plane-wave
state is reflected in an anisotropy of the disorder-averaged
momentum distribution. This anisotropy relaxes on the time
scale of the spin-relaxation time τs and we have taken ad-
vantage of this to calculate the spin-relaxation time. For
weak SOC, we have found a spin-relaxation time that is in-
versely proportional to the scattering time τ consistent with
the D’yakonov-Perel’ spin-relaxation mechanism. For strong
SOC, we have found an Elliott-Yafet-like behavior with the

−π/2 −π/4 0 π/4 π/2

wave vector k

0

20

40

60

n
(k

,t
)

ky = 0

kx = 0

FIG. 14. Disorder-averaged momentum distribution at time t =
1492τ estimated by sampling 8192 disorder realizations for k0 =
(π/4, 0). The time t is sufficiently longer than the Thouless time
τD � 648τ that a CFS peak is observed.

spin-relaxation time proportional to τ . Our analytic calcu-
lations describe quantitatively the crossover between these
two regimes. Our results are consistent with those reported
in Ref. [39].

The effects we discuss theoretically in this paper should
be observable in a cold atomic gas with synthetic SOC. For
simplicity, we have studied a model from solid-state physics
with an uncorrelated potential. For easier comparison with
experiments with cold atoms, it may be important in future
work to extend our calculations by using a speckle potential. It
should be noted though that correlations of a realistic speckle
potential impose a considerable burden in numerical simula-
tions [46,47]. While taking account of these correlations is
necessary, for example, for an accurate quantitative determi-
nation of the mobility edge at which the Anderson transition
occurs, we think the calculations we report do yield consider-
able insight. Also, in systems with correlated disorder, such as
a speckle potential, an anisotropy of the diffusive background
emerges naturally [20,48]. However, in this study, the random
potential is uncorrelated and the anisotropy is purely a result
of the SOC.

In the Anderson localized phase a coherent forward scatter-
ing (CFS) peak emerges in the disorder-averaged momentum
distribution at k = k0 at sufficiently long times [12,32]. Even
in the metallic regime or in regimes where the localization
length is sufficiently long compared to the system size L, a
CFS peak also manifests as an effect of finite size [37]. The
relevant time scale is the Thouless time. For the Ando model
with L = 512, W = 1, and ϕ = π/1024, the estimated Thou-
less time is approximately τD � 522τ . Therefore, no CFS
peak is expected or observed in the simulations we reported
above. When simulating smaller systems and longer times, a
CFS peak appears. In Fig. 14 we show the CFS peak observed
in a simulation of the Ando model with L = 256, W = 1.5,
and ϕ = π/1024. For these parameters, using the coherent
potential approximation, we estimate τ = 10.03 in units of
h̄/thop.

Finally, we have considered the noninteracting limit. The
effects of interactions on coherent propagation in cold atoms
have also been studied [38,49,50] using the Gross-Pitaevskii
equation.
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APPENDIX A: PROBABILITY AMPLITUDE FOR
SCATTERING INTO A TIME-REVERSED STATE

We recall some basic definitions and properties based on
Ref. [51]. For any two states |φ〉 and |ψ〉 we have

〈φ|ψ〉 = 〈ψ |φ〉∗. (A1)

The Hermitian conjugate of an operator A is the operator A†

such that

〈φ|Aψ〉 = 〈A†φ|ψ〉 (A2)

for all states |φ〉 and |ψ〉 satisfying the appropriate boundary
conditions. Time-reversal operators are antiunitary. The defin-
ing property of an antiunitary operator is

〈T φ|T ψ〉 = 〈ψ |φ〉. (A3)

The time-evolution operator for the system described by a
time-independent Hamiltonian H is

U (t ) = exp(−iHt ), (A4)

where t is time. Since any time-reversal operator can be
expressed as a product of a unitary operator and complex
conjugation in a suitable basis, assuming that

[H, T ] = 0, (A5)

we see that

TU (t ) = U †(t )T . (A6)

We now consider the matrix element 〈T ψ |U (t )ψ〉. Since
T 2 = −1, this is equal to −〈T ψ |T 2U (t )ψ〉. Using Eq. (A6),
this is then equal to −〈T ψ |TU †(t )T ψ〉. Since T is antiuni-
tary, this is equal to −〈U †(t )T ψ |ψ〉. Using the definition of
the Hermitian conjugate, this is equal to −〈T ψ |U (t )ψ〉. Thus,
we have found that

〈T ψ |U (t )ψ〉 = −〈T ψ |U (t )ψ〉. (A7)

So the probability amplitude must be zero. An alternative
derivation that makes explicit use of the Kramers degeneracy
is given in Ref. [32].

APPENDIX B: DISORDER-AVERAGED GREEN’S
FUNCTION OF THE ANDO MODEL

The retarded free Green’s function of the Ando model in
the ± basis can be calculated using Eq. (14),

GR
0 (k, ε) = gR

0+(k, ε)|k,+〉〈k,+|
+ gR

0−(k, ε)|k,−〉〈k,−|, (B1)

where gR
0± is

gR
0±(k, ε) = 1

ε − E±(k) + iδ
. (B2)

Taking into account the relationship between the spin basis
and the ± basis given by Eqs. (9) and (10), the free retarded
Green’s function in the spin basis is expressed as

GR
0 (k, ε) = 1

2

(
gR

0+(k, ε) + gR
0−(k, ε) −e−iθ (k)

[
gR

0+(k, ε) − gR
0−(k, ε)

]
−eiθ (k)

[
gR

0+(k, ε) − gR
0−(k, ε)

]
gR

0+(k, ε) + gR
0−(k, ε)

)
. (B3)

Within the scope of the Born approximation, the self-energy
in the spin basis is

�R(k, k′, ε) = 1

L2

∑
k′′

V (k, k′′)GR
0 (k′′, ε)V (k′′, k′)

= 1

L2

∑
k′′

V (k, k′′)V (k′′, k′)GR
0 (k′′, ε), (B4)

where V (k, k′) is a 2 × 2 scalar matrix with

Vσσ ′ (k, k′) = V (k − k′)δσ,σ ′ (B5)

as elements. Taking the disorder average, we obtain

V (k, k′′)V (k′′, k′) = γ (k − k′′)δk,k′ I2. (B6)

Assuming that the random potential exhibits short-range
correlations, we can take γ (k) as a constant γ0. Since
gR

0±(−k, ε) = gR
0±(k, ε) and eiθ (−k) = −eiθ (k), when we per-

form the integration in Eq. (B4), the off-diagonal elements
cancel out and we find that the self-energy �R(k, ε) is a scalar

matrix with imaginary part

Im[�R(k, ε)]

= γ0

L2

∑
k′′

Im
[
gR

0+(k′′, ε)
] + Im

[
gR

0−(k′′, ε)
]

2
I2

= −π

2
γ0ρ(ε)I2. (B7)

Here, ρ(ε) is the density of states per unit area

ρ(ε) = 1

L2

∑
k′′

Tr

[
− 1

π
Im

{
GR

0 (k′′, ε)
}]

= − 1

πL2

∑
k′′

[
Im

{
gR

0+(k′′, ε)
} + Im

{
gR

0−(k′′, ε)
}]

.

(B8)

The scattering time is defined as the reciprocal of the imagi-
nary part of the self-energy, thus

Im{�R(k, ε)} = 1

2τ
I2 (B9)
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Since �R(k, ε) is a scalar matrix, it is unchanged when
transforming to the ± basis. As a result, the disorder-
averaged Green’s function in the ± basis is also given by
Eq. (18).

APPENDIX C: DERIVATION OF APPROXIMATIONS
OF �1, �2, AND �3

We define E (k) and �(k) from the two energy eigenvalues
in the Ando model,

E±(k) = −2t1(cos kx + cos ky)

± 2t2

√
sin2 kx + sin2 ky

:= E (k) ± �(k)

2
. (C1)

In the integration we approximate �, ν, and τ as constants.
Then using the residue theorem, we obtain∫

d2k′′

(2π )2
gR

+

(
k′′, ε + ω

2

)
gA

+

(
k′′, ε − ω

2

)

�
∫

νdE(
ε − E − �

2 + ω
2 + i

2τ

)(
ε − E − �

2 − ω
2 − i

2τ

)
= 2π iν

ω + i
τ

, (C2)

∫
d2k′′

(2π )2
gR

−

(
k′′, ε + ω

2

)
gA

−

(
k′′, ε − ω

2

)

� 2π iν

ω + i
τ

, (C3)

∫
d2k′′

(2π )2
gR

+

(
k′′, ε + ω

2

)
gA

−

(
k′′, ε − ω

2

)

� 2π iν

ω + � + i
τ

, (C4)

∫
d2k′′

(2π )2
gR

−

(
k′′, ε + ω

2

)
gA

+

(
k′′, ε − ω

2

)

� 2π iν

ω − � + i
τ

. (C5)

Using Eqs. (C2)–(C5), we can calculate approximations for
�1 and �2 from Eqs. (43) and (44). Substituting them into
Eqs. (47)–(49), their denominators are

1 − γ0(�0 + �1)

= 1 − 1

2

∫
d2k′′

(2π )2

[
gR

+

(
k′′, ε + ω

2

)
gA

+

(
k′′, ε − ω

2

)

+ gR
−

(
k′′, ε + ω

2

)
gA

−

(
k′′, ε − ω

2

)]

� 1 −
i
τ

ω + i
τ

= ω

ω + i
τ

, (C6)

1 − γ0�0

� 1

4

(
ω + �

ω + � + i
τ

+ ω − �

ω − � + i
τ

+ 2ω

ω + i
τ

)

= (ω + iω1)(ω + iω2)(ω + iω3)(
ω + i

τ

)(
ω + � + i

τ

)(
ω − � + i

τ

) , (C7)

1 − γ0(�0 − �1)

� 1

2

(
ω + �

ω + � + i
τ

+ ω − �

ω − � + i
τ

)

= (ω + iω4)(ω + iω5)(
ω + � + i

τ

)(
ω − � + i

τ

) . (C8)

Thus, we obtain Eqs. (53)–(55).
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