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Collective excitations of a Bose-condensed gas: Fate of second sound in the crossover regime
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We develop the moment method for Bose-Einstein condensates at finite temperatures that enable us to study
collective sound modes from the hydrodynamic to the collisionless regime. In particular, we investigate collective
excitations in a weakly interacting dilute Bose gas by applying the moment method to the Zaremba-Nikuni-
Griffin equation, which is the coupled equation of the Boltzmann equation with the generalized Gross-Pitaevskii
equation. Utilizing the moment method, collective excitations in the crossover regime between the hydrodynamic
and collisionless regimes are investigated in detail. In the crossover regime, the second sound mode loses the
weight of the density response function because of the significant coupling with incoherent modes, whereas the
first sound shows a distinct but broad peak structure. We compare the result obtained by the moment method
with that of the Landau two-fluid equations and show that the collective mode predicted by the Landau two-fluid
equations well coincides with the result from the moment method even far from the hydrodynamic regime,
whereas clear distinction also emerges in the relatively higher momentum regime.
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I. INTRODUCTION

Collective excitation is one of the most fundamental con-
cepts in many-body physics [1,2]. For the homogeneous
Bose-condensed gas at zero temperature, the Gross-Pitaevskii
(GP) equation predicts the Bogoliubov excitation [2–4],
whose dispersion consists of two main regions: the long-
wavelength phonon excitation and the short-wavelength
particlelike excitation. At finite temperatures, the situation
is more complicated due to the coexistence of the conden-
sate and noncondensate components. In the hydrodynamic
region, the two-fluid theory predicts the first and second
sounds, where in-phase and out-of-phase modes emerge be-
tween condensates and noncondensates. The zero-temperature
GP equation explains a mean-field type of collisionless mode.
In a dilute Bose gas, the collisionless regime, where the
Landau two-fluid model is out of scope, is easier to address
experimentally. On the other hand, the liquid 4He is inherently
incompressible, resulting in the second sound as an entropy
wave with the normal fluid and superfluid being in out-of-
phase oscillation without involving density fluctuation [5].

There have been numerous approaches to extend the
zero-temperature GP equation or Bogoliubov theory to the
finite-temperature Bose-Einstein condensates (BECs) [6–11].
In this paper, we study the collective excitation based on the
Zaremba-Nikuni-Griffin (ZNG) formalism, which provides
coupled equations of motion for finite-temperature Bose-
condensed gases [12] extended from the pioneering work
by Kirkpatrick and Dorfman [13]. A striking feature of this
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model is its applicability; since the thermal cloud is governed
by the Boltzmann equation, this approach is not restricted to
either collisionless or hydrodynamic regimes.

In the hydrodynamic regime, the ZNG formalism provides
a microscopic derivation of the Landau-Khalatnikov two-fluid
equations including the transport coefficients [12,14]. On the
other hand, in the collisionless regime, Williams and Griffin
applied the static-thermal-cloud approximation to the ZNG
equation and derived the finite-temperature Stringari equa-
tion [15]. This equation describes the Bogoliubov excitation
with collisional damping [16].

However, the crossover from the hydrodynamic to the col-
lisionless regime has not yet been studied within a single
framework. In the hydrodynamic limit, the Boltzmann equa-
tion can be reduced to the hydrodynamic equation with a few
coarse-grained (or thermodynamic) variables. On the other
hand, in the collisionless regime far from the local equilib-
rium, one requires full knowledge of the distribution function
of the gas. This means that one needs a set of equations that
contains not a few moments. The moment method shows great
applicability in addressing the crossover from the hydrody-
namic to collisionless regimes. This method was introduced
to solve the linearized Boltzmann equation exactly [17,18],
and recently refurbished to investigate the crossover from
the hydrodynamic to the collisionless regime in the normal
systems [19–22].

In the present paper, we develop the moment method for
the ZNG coupled equations and investigate collective modes
of finite-temperature Bose-Einstein condensed gases through
the density response function. By extending the moment
method previously developed for the normal systems, we
rewrite the linearized ZNG equation in terms of the moments
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with the relaxation-time approximation. We also show that
the Landau two-fluid equations can be derived by truncating
the hierarchy of the moment equations. By solving the mo-
ment equations numerically, we study the crossover between
hydrodynamic and collisionless regimes. The result from the
moment method is compared with the dissipative Landau two-
fluid theory and shows that the second sound at the crossover
regime significantly couples to the other incoherent modes
and loses its weight. The first sound, on the other hand,
smoothly crossovers to the collisionless regime and eventually
loses its weight in the response function.

This paper is organized as follows. In Sec. II, we develop
the moment method for the finite-temperature BECs. Extend-
ing the moment method previously developed for the normal
systems, we rewrite the linearized ZNG equation in terms

of the moments. The relaxation-time approximation in the
framework of the moment method will be reviewed in detail.
Section III is devoted to the derivation of the Landau two-fluid
equation by truncating the hierarchy of the moment equations.
In Sec. IV, we solve the moment equations numerically and
discuss the crossover between hydrodynamic and collisionless
regimes. In Sec. V, the conclusion of this paper is summa-
rized.

II. LINEARIZED ZAREMBA-NIKUNI-GRIFFIN EQUATION
AND MOMENT METHOD

In the framework of the ZNG formalism, the dynamics of
the Bose-condensate order parameter � is described by the
generalized Gross-Pitaevskii equation (GGPE) [16]:

ih̄
∂�(r, t )

∂t
=

[
− h̄2∇2

2m
+ Uext (r, t ) + gnc(r, t ) + 2gñ(r, t ) − iR(r, t )

]
�(r, t ). (1)

The dynamics of the noncondensate atoms is described by the semiclassical distribution function f (r, p, t ), which obeys the
Boltzmann equation [12,13]: [

∂

∂t
+ p

m
· ∇r − ∇rU (r, t ) · ∇p

]
f (p, r, t ) = C12[ f , �] + C22[ f ], (2)

where nc(r, t ) = |�(r, t )|2 is the number density of the condensate, and

ñ(r, t ) =
∫

d p
(2π h̄)3

f (p, r, t ) (3)

is the noncondensate number density. Here, U (r, t ) = Uext (r, t ) + 2g[nc(r, t ) + ñ(r, t )] is the time-dependent effective potential
including the external potential Uext (r, t ) and the self-consistent Hartree-Fock mean-field potential. The two collision terms are
given by

C12[ f (1), �] = 4πg2nc

h̄

∫
d p2

(2π h̄)3

∫
d p3

∫
d p4δ(mvc + p2 − p3 − p4)δ(εc + ε̃(2) − ε̃(3) − ε̃(4))

× [δ(p1 − p2) − δ(p1 − p3) − δ(p1 − p4)]{[1 + f (2)] f (3) f (4) − f (2)[1 + f (3)][1 + f (4)]}, (4)

C22[ f (1)] = 4πg2

h̄

∫
d p2

(2π h̄)3

∫
d p3

(2π h̄)3

∫
d p4δ(p1 + p2 − p3 − p4)δ(ε̃(1) + ε̃(2) − ε̃(3) − ε̃(4))

× {(1 + f (1))(1 + f (2)) f (3) f (4) − f (1) f (2)(1 + f (3))(1 + f (4))}, (5)

where we have introduced the simplified notation for the distribution function f (i) = f (ri, pi, t ) with i = 1, 2, 3, 4. The local
energies of the condensate and noncondensate atoms are given by εc(r, t ) = mv2

c (r, t )/2 + μc(r, t ) and ε̃(i) = p2
i /2m + U (r, t ),

with the local condensate chemical potential μc(r, t ), and the condensate velocity vc(r, t ). The dissipation term R(r, t ) and the
source term �12[ f , �] are given by

R(r, t ) ≡ h̄�12[ f , �(r, t )]

2nc(r, t )
, (6)

�12[ f , �(r, t )] ≡
∫

d p
(2π h̄)3

C12[ f (p, r, t ), �(r, t )]. (7)

In terms of the phase and the amplitude �(r, t ) = √
nc(r, t )eiθ (r,t ), we can rewrite the GGPE in terms of the density and

velocity vc(r, t ) = h̄∇θ (r, t )/m, given by

∂nc(r, t )

∂t
+ ∇ · [nc(r, t )vc(r, t )] = −�12[ f , �(r, t )], (8)

m

[
∂vc(r, t )

∂t
+ 1

2
∇v2

c (r, t )

]
= −∇[μc(r, t ) + Uext], (9)
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where the local condensate chemical potential μc(r, t ) is given by

μc(r, t ) = − h̄2∇2√nc(r, t )

2m
√

nc(r, t )
+ gnc(r, t ) + 2gñ(r, t ). (10)

In this paper, we are interested in the collective mode in a uniform system.
Following Refs. [16,19], we linearize the ZNG equation by writing the physical quantity as A(r, t ) = A0 + δA(r, t ), where A0

is the equilibrium solution and δA(r, t ) = δAei(q·r−ωt ) is a small fluctuation with a plane-wave solution. Keeping to the first order
in δA, we obtain the following linearized hydrodynamic equations:

ωδnc(q, ω) = nc0qδvc(q, ω) − iδ�12(q, ω), (11)

mωδvc(q, ω) = h̄2q3δnc(q, ω)

4mnc0
+ gqδnc(q, ω) + 2qgδñ(q, ω) + qUext (q, ω). (12)

For the noncondensate distribution function, we write f (p, r, t ) = f 0(p) + f 0(p)[1 + f 0(p)]ν(p, r, t ), where f 0 is the
equilibrium distribution function in a uniform system [23] and ν(p, r, t ) = ν(p, q, ω)ei(q·r−ωt ) describes the deviation from the
equilibrium distribution with the assumption of the plane-wave solution. By substituting this form into the Boltzmann equation,
we obtain the linearized Boltzmann equation:

i[1 + f 0(p)] f 0(p)

[(
− ω + p · q

m

)
ν(p, q, ω) + β0

p · q
m

[2gδn(q, ω) + Uext (q, ω)]

]

= −β0[δμc(q, ω) − 2gδn(q, ω)]L12[1] + L[ν(p, q, ω)], (13)

where δn = δnc + δñ and the linearized collisional operator L[ν] = L12[ν] + L22[ν] is given by

L12[ν(1)] = −
∫

d p2

(2π h̄)3

∫
d p3

∫
d p4W12(1, 2, 3, 4)[ν(2) − ν(3) − ν(4)], (14)

L22[ν(1)] = −
∫

d p2

(2π h̄)3

∫
d p3

(2π h̄)3

∫
d p4W22(1, 2, 3, 4)[ν(1) + ν(2) − ν(3) − ν(4)]. (15)

Here, kernels W12 and W22 are defined by

W12 = 4πg2nc0

h̄
[1 + f 0(2)] f 0(3) f 0(4)δ(p2 − p3 − p4)δ(μc0 + ε̃0(2) − ε̃0(3) − ε̃0(4))

× [δ(p1 − p2) − δ(p1 − p3) − δ(p1 − p4)], (16)

W22 = 4πg2

h̄
δ(p1 + p2 − p3 − p4)δ(ε̃0(1) + ε̃0(2) − ε̃0(3) − ε̃0(4)) f 0(1) f 0(2)(1 + f 0(3))(1 + f 0(4)). (17)

We expand ν(p) and collisional operators Lα (p) for α = {12, 22} with the spherical harmonics Yl,m(θ, φ), resulting in (see
Appendix A for a detailed discussion on the expansion of Lα)

ν(p) =
∞∑

l=0

l∑
m=−l

√
4π

2l + 1
νm

l (p)Yl,m(θ, φ), (18)

Lα (p) =
∞∑

l=0

l∑
m=−l

√
4π

2l + 1
Lml

α (p)Yl,m(θ, φ). (19)

Let us define the moment 〈pnνl〉 and the temperature dependent function Wn as follows:

〈pnνl〉 ≡
∫

d p
(2π h̄)3

pnνl (p) f 0(p)[1 + f 0(p)], (20)

Wn =
∫

d p
(2π h̄)3

pn f 0(p)[1 + f 0(p)]. (21)

One can show that the noncondensate density fluctuation is directly related to the zeroth-order moment δñ = 〈ν0〉. Multiplying
pl+2kY ∗

l,m( p̂) with the linearized Boltzmann equation Eq. (13) and integrating it over the momentum, one obtains the moment
equation:

− iω〈pl+2kνl〉 + i
q

m

l

2l − 1
〈pl+2k+1νl−1〉 + i

q

m

l + 1

2l + 3
〈pl+2k+1νl+1〉 + iβ

q

m
Wl+2k+1(2gδnc + 2g〈ν0〉 + Uext )δl,1

= d

dt
〈pl+2kνl〉coll. (22)
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The collision term on the right-hand side is given by

d

dt
〈pl+2kνl〉coll

= −Jl [pl+2k, νl (p)] + β0

(
h̄2q2

4mnc0
− g

)
J0,12[p2k, 1]δncδl,0,

(23)

where we defined the total collision integral as

Jl [pn, νl ] = Jl,12[pn, νl (p)] + Jl,22[pn, νl (p)], (24)

and the collision integral Jl,α for α = 12, 22 by

Jl,α[pn, νl (p)] = −
∫

d p
(2π h̄)3

pnLl
α[νl (p)]. (25)

So far, the moment equation in Eq. (22) is the exact conse-
quence obtained from the linearized ZNG equations.

To solve the moment equation, we must express the colli-
sion term Jl,α in terms of the moments. For this purpose, we
expand νl (p) in power series of p:

νl (p) =
∑
k=0

Cl
k pl+2k, (26)

where, in the classical kinetic theory, the coefficient Cl
k is

given by the Sonine or Hermite polynomials depending on
the system coordinates [24]. By substituting the expression
in Eq. (26) into the definition of the moment in Eq. (20),
we obtain the relation between the moment 〈pl+2kνl〉 and the
expansion coefficient Cl

k′ given in the form

〈pl+2kνl〉 =
∑

k′
Cl

k′W2l+2k+2k′ . (27)

Similarly, the collision integral can be rewritten in terms of
the expansion coefficient Cl

k′ , given by

Jl [pl+2k, νl (p)] =
∑

α

∑
k′

Cl
k′Jl,α[pl+2k, pl+2k′

]

≡
∑

α

∑
k′

Cl
k′γ

l
α,kk′W2l+2k+2k′ . (28)

Here, we defined the generalized collision rate γ l
α,kk′ given by

γ l
α,kk′ ≡ 1

W2l+2k+2k′
Jl,α[pl+2k, pl+2k′

]. (29)

(See Appendix D for the explicit expression of the collision
rate γ l

α,kk′ .) We note that the generalized collision rate γ l
12,kk′

can be either positive or negative, depending on the indices
l, k, and k′ [Fig. 1(a)].

The so-called relaxation-time approximation can be im-
plemented by neglecting the l, k, and k′ dependence, where
γ l

α,kk′ is replaced with γα , given by

Jl [pn, νl (p)] =
∑

α

γα

∑
k′

W2l+2k+2k′Cl
k′

=
∑

α

γα〈pl+2kνl〉. (30)

The approach of introducing the single collision rate has often
been employed in normal systems [19–21]. In Fig. 1, we plot

FIG. 1. Collision rates appearing in the moment equation. The
plot label is presented as (l, k, k′), e.g., (l, k, k′) = (0, 0, 0). (a), (b)
Collision rates originating from the C12 collision process. (c) Col-
lision rates originating from the C22 collision process. We plot the
inverse relaxation time 1/τ 0

12 and 1/τ 0
22. Here, the interaction strength

is gn0 = 0.3kBTBEC.

the collision rate defined by Eq. (29), and also the inverse
relaxation time 1/τα associated with the Cα collision process
(see Appendix D). The collision rates γ l

22,kk′ and 1/τ22 for
the collision process between noncondensate atoms have sim-
ilar monotonically increasing temperature dependence [see
Fig. 1(c)].

As in Figs. 1(a) and 1(b), due to the divergent property
of the Bose distribution function, the collision rate γ l

12,kk′
has a significant temperature dependence for l = 0, 1. This is
the striking difference between Bose-condensed systems and
normal systems. As in the collision rate γ l

22,kk′ in Eq. (D2), the
integrand has a form of the distribution function multiplied by
the power function of the single-particle momentum, which
suppresses the divergent behavior of the Bose distribution
function for a large value of l, k, and k′. Thus, one can re-
place the collision rates γ l

α,kk′ with a dominant collision rate.
Indeed, we numerically confirmed that the collision rate in
the moment equation for l > 2 has a temperature dependence
similar to that of l = 2.

To make use of this fact, we systematically develop the
relaxation-time approximation for the moment equation of
the Bose-condensed gas (see Appendix B). By applying
the relaxation-time approximation to Eq. (28) and using
the relation Eq. (27), we obtain the following moment
equation:

ω〈ν0〉 = q

3m
〈pν1〉 + iβ

(
h̄2q2

4mnc0
− g

)
γ 0

12,00W0δnc

− i

[(
γ 0

12,00 − W 2
2

D

(
γ 0

12,01 − γ 0
12,00

))〈ν0〉

+ W2W0

D

(
γ 0

12,01 − γ 0
12,00

)〈p2ν0〉
]
, (31)

ω〈pν1〉 = q

m
〈p2ν0〉 + 2q

5m
〈p2ν2〉

+ β0
q

m
W2[2gδnc + 2g〈ν0〉 + Uext], (32)
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ω〈p2ν0〉 = q

3m
〈p3ν1〉 + iβ0

(
h̄2q2

4mnc0
− g

)
γ 0

12,01W2δnc

− i

[
W2W4

D

(
γ 0

12,01 − γ 0
12,11

)〈ν0〉

+
(

W4W0

D
γ 0

12,11 − W 2
2

D
γ 0

12,01

)
〈p2ν0〉

]
, (33)

ω〈p2kν0〉 = q

3m
〈p2k+1ν1〉 + iβ

(
h̄2q2

4mnc0
− g

)
γ 0

12,0kW2kδnc

− i

[(
γ 0

12,0k − γ 0
12,22 − γ 0

22,22

)W2kW4

D

− (
γ 0

12,1k − γ 0
12,22 − γ 0

22,22

)W2k+2W2

D

]
〈ν0〉

− i

[(
γ 0

1k,12 − γ 0
12,22 − γ 0

22,22

)W2k+2W0

D

− (
γ 0

12,0k − γ 0
12,22 − γ 0

22,22

)W2kW2

D

]
〈p2ν0〉

− i
[
γ 0

12,22 + γ 0
22,22

]〈p2kν0〉, (34)

ω〈p2k+1ν1〉 = q

m
〈p2k+2ν0〉 + 2q

5m
〈p2k+2ν2〉

+ β
q

m
W2k+2[2gδnc + 2g〈ν0〉 + Uext]

− i

[
− [

γ 1
12,11 + γ 1

22,11

]W2+2k

W2
〈pν1〉

+ [
γ 1

12,11 + γ 1
22,11

]〈p1+2kν1〉
]
, (35)

ω〈pl+2kνl〉 = q

m

l

2l − 1

〈
pl+2k+1

1 νl−1
〉

+ q

m

l + 1

2l + 3

〈
pl+2k+1

1 νl+1
〉

− i
(
γ 2

12,00 + γ 2
22,00

)〈pl+2kνl〉, (36)

where D = W0W4 − W 2
2 . Equations (31)–(36) can be derived

from the moment equation of order (l = 0, k = 0), (l =
1, k = 0), (l = 0, k = 1), (l = 0, k � 2), (l = 1, k 
= 0), and
(l � 2), respectively. The condensate equations in Eqs. (11)
and (12) can be expressed in terms of the moments as

ωδnc = nc0qδvc − iβ

(
h̄2q2

4mnc0
− g

)
γ 0

12,00W0δnc

+ i

[
γ 0

12,00 − W 2
2

D

(
γ 0

12,01 − γ 0
12,00

)]〈ν0〉

+ i

[
W2W0

D

(
γ 0

12,01 − γ 0
12,00

)]〈p2ν0〉, (37)

mωδvc = h̄2q3δnc

4mnc0
+ gqδnc + 2gqδñ + qUext. (38)

We emphasize that the relaxation-time approximation intro-
duced above satisfies the required conservation laws for the
number of particles, momentum, and local energy [25].

In short, using the relaxation-time approximation, we de-
veloped the ZNG moment equations as in Eqs. (31)–(36).
Our moment equations generalize previous studies for normal
gases [19,21] to Bose-condensed gases, which are more com-
plicated because of the coupling to the condensate component.
We note that the ZNG moment equations are not closed due
to their hierarchical nature. Therefore, in order to solve them,
we need to truncate at a sufficiently high moment term. In the
next section, we discuss the connection between the Landau
two-fluid equation and the ZNG moment equation in detail.

III. REDUCTION TO THE LANDAU TWO-FLUID
EQUATION

By taking the hydrodynamic limit, we show that the ZNG
moment equations can be reduced to the Landau two-fluid
equations including transport coefficients. The derivation pre-
sented in this section has a close resemblance to the standard
Chapman-Enskog approach [14,16], which expands the dis-
tribution function around the local equilibrium distribution
function f (0). In the framework of the moment method, we
expand the Boltzmann equation by the dimensionless param-
eter ω/γ l

α,kk′ . A similar approach is presented in the case of the
two-component Fermi gas by using the linearized Boltzmann
equation [19,22].

To obtain the two-fluid equations, one needs to relate the
moments to the hydrodynamic variables. Indeed, using the lo-
cal equilibrium solution, we can obtain the following relations
(see Appendix F for details):

〈ν0〉 = δñ, 〈pν1〉 = 3mñδvn, 〈p2ν0〉 = 3mδP̃, (39)

where the moments 〈ν0〉, 〈pν1〉, and 〈p2ν0〉 are proportional
to the fluctuations of the noncondensate density δñ, velocity
field δvn, and pressure δP̃.

To derive the two-fluid equations, we introduce the
Thomas-Fermi approximation [16]. For notational concise-
ness, we omit the sub(super)script zero in the equilibrium
thermodynamic quantities. Equations (31)–(33) can be rewrit-
ten in terms of the above hydrodynamic quantities as

ωδñ = qñδvn − i
β0gnc

τ12
δnc − i

σ2nc

τ12ñ
δñ − i

σ1βnc

τ12ñ
δP̃, (40)

ωδvn = q

mñ
δP̃ + 2q

15m2ñ
〈p2ν2〉 + q

m
(2gδnc + 2gδñ + Uext ),

(41)

ωδP̃ = q

9m2
〈p3ν1〉 + i

2βg2n2
c

3τ12
δnc

+ i
2gn2

cσ2

3ñτ12
δñ + i

2βgn2
cσ1

3ñτ12
δP̃, (42)

where we used the relation between collision rates
Eqs. (D47)–(D50) (see Appendix D). We also defined the
hydrodynamic coefficients

σ1 = −W2W0

D

(
2mgnc + W2

W0

)
, (43)

σ2 = βW2

3D

(
W4

m
+ 2gncW2

)
, (44)
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with the use of the relation

ñ = W2

3mkBT
. (45)

By writing the coefficient Wn in terms of the Bose-Einstein
function gn(z) = ∑

l=1 zl/ln using Eq. (E2), one can show
that the above definition is consistent with the hydrodynamic
coefficients discussed by ZNG [12,14,16].

Due to the hierarchical structure of the moment equation,
Eqs. (40)–(42) are not closed, which are coupled to the higher
order of the moments through the terms 〈p2ν2〉 or 〈p3ν1〉.
Taking the hydrodynamic limit ω/γ l

α,kk′ → 0, we can relate
〈p2ν2〉 and 〈p3ν1〉 with the hydrodynamic variables δñ, δvn,
and δP̃ as (see Appendix C)

〈p2ν2〉 = − 10imηqδvn, (46)

〈p3ν1〉 = 15m2P̃δvn + i
6qσ4m2T κ

ñ
δñ

− i
6qσ3m2T κ

P̃
δP̃, (47)

where the pressure is given by

P̃ = W4

15m2kBT
. (48)

We also defined dimensionless hydrodynamic coefficients

σ3 = 2W4W0

5D
, (49)

σ4 = 2W 2
2

3D
, (50)

and the shear viscosity η and the thermal conductivity κ given
by

η = τη

β0W4

15m2
, (51)

κ = τκ

kBβ2

12m4

(
W6 − W 2

4

W2

)
, (52)

where τη = (γ 2
12,00 + γ 2

22,00)−1 and τκ = (γ 1
12,11 + γ 1

22,11)−1

are the relaxation time associated with the shear viscosity and
thermal conductivity, respectively. We note that the detailed
expression of τη and τκ slightly differs from the ones derived
by the Chapman-Enskog methods [14] (see Appendix E for
the discussion in detail).

By substituting the first-order correction shown in
Eqs. (46) and (47) into Eqs. (41) and (42), we obtain the
two-fluid equations including transport coefficients, which are
given by

ωδnc = ncqδvc + i
βgnc

τ12
δnc + i

σ2nc

τ12ñ0
δñ + i

σ1βnc

ñτ12
δP̃, (53)

ωδvc = gq

m
δnc + 2gq

m
δñ + q

m
Uext, (54)

ωδñ = qñδvn − i
βgnc

τ12
δnc − i

σ2nc

τ12ñ
δñ − i

σ1βnc

ñτ12
δP̃, (55)

ωδvn = q

mñ
δP̃ + q

m
(2gδnc + 2gδñ + Uext ) − i

4q2η

3mñ
δvn,

(56)

ωδP̃ = 5P̃

3
qδvn + i

2βg2n2
c

3τ12
δnc

+ 2i

3

(
σ2gn2

c

τ12ñ
+ q2σ4T κ

ñ

)
δñ

+ 2i

3

(
σ1βgn2

c

ñτ12
− q2σ3T κ

P̃

)
δP̃. (57)

The two-fluid equations in the above form were first
introduced in Refs. [12,26]. Since the above two-fluid equa-
tion includes the dissipation from the relaxation time τ12 and
the transport coefficients η and κ , we shall call Eqs. (53)–(57)
dissipative Landau two-fluid equations.

We now discuss the eigenmodes (solutions in the case
Uext = 0) in the dissipationless limit τ12, κ, η → 0. We first
notice that terms associated with τ12 in Eqs. (53), (55), and
(57) are originating from the linearized source term:

δ�12 = −βgnc

τ12
δnc − σ2nc

τ12ñ
δñ − βnc

ñτ12
σ1δP̃. (58)

Introducing the velocity potential in the Fourier space,
δvc,n(q, ω) = iqφc,n(q, ω), and inserting Eqs. (53), (55), and
(57) into Eqs. (54) and (56), we have

mω2φc = gnc0q2φc + 2gñ0q2φn + gδ�12, (59)

mω2φn = q2

ñ0

5P̃

3
φn − 2gnc

3ñ
δ�12 + 2gq2(ncφc + ñφn), (60)

where we have used Eq. (58). The hydrodynamic limit is
also assumed (κ, η = 0). Combining Eqs. (55) and (57), we
can express the linearized source term δ�12 in terms of the
velocity potential φc,n as

δ�12 = − σHnc

1 − iωτμ

(
φc − 2

3
φn

)
q2, (61)

where we defined the relaxation time characterizing the diffu-
sive equilibrium between the condensate and noncondensate:

1

τμ

= βgnc

τ12

(
5
2 P̃ + 2gñnc + 2

3βgW0gn2
c

5
2βgW0P̃ − 3

2 gñ2
− 1

)
≡ βgnc

τ12σH
.

(62)

Taking Landau limit ωτμ → 0, one can show that sound ve-
locity u = ω/q obtained from Eqs. (59) and (60) is given as
the solution of[

u2 − gn

m
(1 − σH )

][
u2 − 5P̃

3mñ
− 2gñ

m

(
1 − 2σH n2

c

9ñ2

)]

− 4g2ñnc

m2

(
1 + σH nc

3ñ

)2

= 0. (63)

It has been shown that Eq. (63) determines the first and second
sound velocities in a dilute Bose gas in precise agreement
with those determined by the usual Landau two-fluid equa-
tions without dissipation [12,26,27]. In the next section, we
shall compare the results obtained from the ZNG moment
equations in Eqs. (31)–(36) with those obtained by the dissipa-
tive Landau two-fluid hydrodynamics given in Eqs. (53)–(57)
and its dissipationless limit given in Eq. (63).
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IV. DENSITY RESPONSE FUNCTION

We numerically solve the moment equations in Eqs. (31)–
(36) and the generalized GP hydrodynamic equations in
Eqs. (37) and (38) to study the crossover of collective exci-
tations between the hydrodynamic and collisionless regimes.
In the framework of the moment method, the density response
function is directly accessible and extremely useful for inves-
tigating collective excitations. Using the relation δñ = 〈ν0〉,
one finds that the response function χ is given by

χ (q, ω) =χnc (q, ω) + χñ(q, ω), (64)

where

χnc (q, ω) = δnc(q, ω)

Uext (q, ω)
, (65)

χñ(q, ω) =〈ν0〉(q, ω)

Uext (q, ω)
. (66)

Here, χnc and χñ are condensate and noncondensate density
response functions, respectively.

In the finite-temperature Bose-condensed gas, there are two
distinct regions: hydrodynamic and collisionless regimes. The
first and second sounds emerge in the hydrodynamic limit,
whereas in the collisionless regime, the Bogoliubov mode
emerges alone [15]. We are interested in the crossover regime
between them and tackle this problem by using the moment
method. In the following, we take the moment up to l = k =
50 for the ZNG moment equation.

To numerically solve the moment equations, one must
evaluate the equilibrium condensate density. In equilibrium,
the distribution function is given by the Bose-Einstein dis-
tribution f = [z−1 exp(p2/2mkBT ) − 1]−1 with fugacity z =
e(μ−2gn)/kBT . Using this equilibrium distribution function, we
self-consistently determine the equilibrium noncondensate
density in Eq. (3) and the chemical potential μ. Within the
Hartree-Fock mean-field approximation, the critical tempera-
ture TBEC is known to be identical to that of the ideal Bose
gas.

Figure 2(a) shows the imaginary part of the density re-
sponse function as a function of the frequency ω and the wave
number q for gn0 = 0.3kBTBEC. We choose the temperature
at T = 0.5TBEC. The density response function is scaled by
χ0 = n/(kBTBEC), where n = ζ ( 3

2 )/�BEC with the thermal de
Broglie wavelength evaluated at the BEC critical temperature
TBEC, given by �BEC = √

h/(2πmkBTBEC).
By changing the wave number q, the collisionless regime

ωτ � 1 and hydrodynamic regime ωτ 
 1 are achieved,
where ω is the frequency of the collective modes and τ is
a characteristic relaxation time. We note that the linearized
Boltzmann equation is only valid for the long-wavelength
limit q 
 1/�BEC [19]. Even within this limitation, one can
address the crossover regime. In the small wave-number re-
gion, there are two sharp peaks corresponding to the first and
second sounds emerging at the higher and lower frequencies,
respectively. With increasing the wave number, the second-
sound peak vanishes because of the coupling with incoherent
modes. In contrast, the peak from the first sound becomes
significantly broadened, which shows the crossover to the
collisionless regime.

FIG. 2. (a) Imaginary part of the density response function
−Imχ (ω, q) in the ω-q plane. (b) Imaginary part of the normalized
density response function −Imχ̃ (ω) for several values of the wave
number q. In both panels (a) and (b), the dashed and dotted lines
show the dispersion relations of the first and second sounds in the
dissipationless Landau limit obtained from Eq. (63). The tempera-
ture and interaction strength are T = 0.5TBEC and gn0 = 0.3kBTBEC,
respectively.

To compare the results of the moment method with the
hydrodynamic two-fluid theory, we show the imaginary part
of the density response function as a function of ω [Fig. 2(b)].
Since the peak heights of the two methods are different,
we normalize each function by the total weight, given by
χ̃ (ω) = χ (ω)/

∫
dω(−Imχ ). The two methods reasonably

provide almost the same results in the long-wavelength limit
q�BEC = 0.0055 since the moment method reduces to the
two-fluid equations with small transport coefficients.

However, at q�BEC = 0.0355, the dissipative Landau two-
fluid equations given by Eqs. (53)–(57) predict a broader
peak for the second sound compared to the moment method,
whereas peak position is shifted. Moreover, unlike the predic-
tion by the moment method, the first sound is no longer visible
in the dissipative Landau two-fluid model. This observation
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FIG. 3. The dimensionless parameter ωτμ as a function of tem-
perature. The value of q�BEC is 4 × 10−5 (thin line) and q�BEC =
0.0319 (thick line). The eigenfrequency of the collective mode ω1,2

is approximately obtained from Eq. (63) and the relaxation time τμ

is given by Eq. (62).

for the first sound holds at q�BEC = 0.0596. As for the second
sound, on the other hand, incoherent excitations emerge and
violate the response peak of the second sound.

This incoherent excitation significantly affects the second
sound mode. In the moment method at q�BEC = 0.0758, the
peak height from the second sound becomes lower than the
first sound.

This observation reveals that the weight of the two modes
in the density response function switches in the crossover
regime. While the first sound peak smoothly decays in the
crossover regime, the second sound loses its weight abruptly
due to the coupling with incoherent excitations. In the colli-
sionless limit, there are neither distinct first nor distinct second
sound modes. The damping rate obtained by the dissipative
Landau two-fluid equations Eqs. (53)–(57) is significantly
large, which results in the vanishing first sound peak. More-
over, the incoherent excitations, which are important in the
crossover regime, cannot be captured by the two-fluid equa-
tion as expected. These are in stark contrast to the moment
method.

In order to address the crossover regime from the hydro-
dynamic (first or second sound) modes to the collisionless
(Bogoliubov) sound mode, we investigate the temperature
dependence of the imaginary part of the density response
function. First, we discuss the dimensionless parameter ω1,2τ ,
where ω1 and ω2 are the first and second sound frequencies,
respectively.

Figure 3 shows ω1,2τμ, where ω1,2 is the eigenfrequency
in the hydrodynamic limit evaluated by Eq. (63) and the
τμ is the relaxation time defined by Eq. (62). We note that
the comparison in Fig. 2(b) shows that the eigenfrequencies
predicted by the dissipationless Landau two-fluid model in
Eq. (63) are located around the peak of those predicted by
the moment method for all the wave number q. Thus, we shall
make use of this observation and approximate the eigenfre-
quencies ω1,2 by the Landau two-fluid model Eq. (63), even in
the crossover regime. Moreover, we choose the representative
relaxation time as τμ. This is because, although we are deal-
ing with the generalized relaxation rates γ l

α,kk′ , the moment

FIG. 4. The imaginary part of the density response function as
the function of the frequency ω and temperature T at q�BEC = 4 ×
10−5. The rest of the parameter choice is the same as Fig. 2.

ZNG equation reduces to the dissipationless Landau two-fluid
equations with the limit ωτμ 
 1 as we saw in Sec. III.

The hydrodynamic region (ωτ 
 1) can be achieved, ex-
cept the region very close to the zero temperature, by choosing
the wave number as q�BEC = 4 × 10−5 as shown in Fig. 3
[thin (dashed) line]. As expected, ω1,2τμ increases with de-
creasing temperature, indicating that the collective modes are
in the collisionless regime.

The corresponding density response function obtained by
the moment ZNG equations is shown in Fig. 4. The response
peak is located on the prediction given by Landau two-fluid
equations at all the temperatures. At high temperatures, the
weight of the density response function is dominated by the
second sound, although the first sound also emerges. Around
T ≈ 0.2TBEC, the two modes are hybridized. At lower temper-
atures, the first sound smoothly crossovers to the collisionless
Bogoliubov sound, and this branch dominates the density
response function.

By taking the wave number q�BEC = 0.0319, the
crossover is achieved at the higher temperature. The dimen-
sionless parameter ωτ is plotted as thick lines in Fig. 3. While
the first sound is relatively in the crossover regime ωτμ ≈ 1
even at high temperatures, the second sound is almost in the
hydrodynamic regime ωτ < 10−1 above T ≈ 0.2TBEC.

In Figs. 5(a) and 5(b), we plot the temperature and fre-
quency dependence of the imaginary part of the density
response function obtained from the moment method. In the
high-temperature regime, both the first and second sound
peaks coincide with the eigenfrequencies in the hydrodynamic
limit given by Eq. (63). As noted in the discussion on Fig. 2,
even in the crossover regime with a small noncondensate frac-
tion, the density response function is peaked at the first-sound
frequency predicted by the Landau two-fluid equations. As
can be seen in Figs. 5(a) and 5(b), this observation holds for
all the temperatures above the hybridization temperature.

Around the temperature T ≈ 0.2TBEC, the two modes are
hybridized. As seen in Fig. 5(a), the response peaks from the
first and second sounds merge around this temperature and
lose weight at lower temperatures. Figures 3 and 5(b) show
that, at this temperature, both first and second sound modes
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FIG. 5. The imaginary part of the density response function as
the function of the frequency ω and temperature T at q�BEC =
0.0319. The dotted line is the Bogoliubov sound frequency. The dot-
dashed and dashed lines are the first and second sound frequencies
obtained from Eq. (63).

are in the crossover regime, where no collective excitation
is visible. This crossover region is relatively broad compared
with the case shown in Fig. 4. At sufficiently low tempera-
tures, the Bogoliubov sound appears as expected.

Here, we comment on the relation between the second-
sound density response weight and the superfluid density.
In the two-dimensional Bose gas, the observation of the
second sound is used to detect the superfluid density and draw
the critical temperature of the Berezinskii-Kosterlitz-Thouless
transition, whereas in the case of the dilute Bose gas in three
dimensions, the superfluid density is almost the same as a
condensate density [16]. Although the second sound (and the
first sound around the hybridization temperature) loses the
response weight due to the coupling to the thermal incoher-
ent modes in the crossover regime, this does not imply the
absence of the superfluid density.

In the present paper, we could not find evidence of the re-
laxational mode predicted by the ZNG equation [28], which is
expected to appear in the dynamical structure factor at ω = 0,
analogous to the classical thermal diffusion mode [29]. This
is because one needs a short relaxation time τμ to observe the
relaxational mode, which is not achievable in current uniform
ultracold atomic BECs.

Figure 6 shows the interaction-strength dependence of
the density response function, where this parameter is con-

FIG. 6. Imaginary part of the (a) condensate and (b) nonconden-
sate response function. The temperature is T = 0.2TBEC and wave
number is q�BEC = 0.004�BEC. The dotted line shows the frequency
of the Bogoliubov sound. The dashed and dot-dashed lines are the
first and second sound frequencies obtained by Eq. (63).

trollable in the ultracold atomic gases through Feshbach
resonance. Strictly speaking, the Hartree-Fock mean-field ap-
proximation used in the present paper requires gn0 
 kBTBEC.
However, as long as the system is at a much lower temperature
than the critical temperature, we can address the crossover
between the collisionless and hydrodynamic regimes by
changing the interaction parameters. Figure 6 shows the
imaginary part of (a) condensate and (b) noncondensate re-
sponse functions defined in Eqs. (65) and (66), respectively.
The hybridization occurs around gn0 ≈ 0.3kBTBEC, which is
consistent with the case in Fig. 5. One can see that the non-
condensate response function −Imχñ takes negative values in
the case of the second sound, which reflects the out-of-phase
oscillations. In the relatively large interaction strength region,
the condensate response function keeps a significant contri-
bution to the first sound, as shown in Fig. 6(a), whereas the
contribution of the noncondensate density response function
to the first sound is reduced as shown in Fig. 6(b).
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V. CONCLUSION

We developed the framework of the moment method ap-
plicable to collective sound modes in the finite-temperature
BECs by using the coupled equations for the condensate
and noncondensate. The relaxation-time approximation in the
moment method is discussed in detail in this paper. In the
collision-dominated hydrodynamic limit, the truncated mo-
ment equations are shown to be equivalent to the Landau
two-fluid equations. This paper complements the study of the
two-fluid sound in the hydrodynamic limit with [4,30] and
without [12] the harmonic trap.

This paper provides an alternative approach to the standard
Chapman-Enskog theory [14]. Unlike the Chapman-Enskog
theory, the moment method has the advantage of dealing with
the collisionless limit by simply considering higher moments.
We numerically solved the moment equations to investigate
the crossover from the hydrodynamic to collisionless regimes.
Unlike the prediction of the dissipative Landau two-fluid the-
ory, the moment method uncovered that the response weight
of the second sound is significantly reduced due to incoherent
excitations. As a result, in the crossover region, the collective
mode that gives the dominant weight switches between the
first and second sound modes. It would be possible to ob-
serve the behavior of the q dependence of the second sound
using the experimental scheme recently developed by Hilker
et al. [31] by simply varying the excitation wave vector,
which was fixed to be comparable to the (cylindrical) box-trap
size in Ref. [31]. Comparing the results from the moment
method with those from the Landau two-fluid equations, we
found that the dimensionless parameter ω1,2τμ can be used as
an indicator of the hydrodynamic and collisionless regimes,
where ω1,2 are first and second sound frequencies obtained
from the Landau two-fluid equations and τμ is the relaxation
time associated with equilibration between the condensate and
noncondensate.

We also investigated the hybridization of the first and
second sounds in the crossover regime. Interestingly, the
observed response function is qualitatively different from
Landau two-fluid hydrodynamic theory. Finally, we found
that the relaxational mode predicted by the ZNG two-fluid
equations [28] is not visible in the dynamic structure factor be-
cause of small τμ. In the typical experimental setup, harmonic
traps are used to confine atomic clouds. This makes the local
condensation density larger than in homogeneous systems and
makes τμ smaller [32], making the observation of relaxation
modes much more difficult [see Eq. (62)].

The moment method systematically developed in this paper
can potentially be extended to the various systems described
by the Boltzmann equation with or without BECs. In par-
ticular, studying the crossover of the collective excitation of
the dipolar gas systems, where sound velocity depends on
the alignment of the dipoles [33–35], would be an important
application for future work. Moreover, studying the crossover
between the hydrodynamic and collisionless regime of two-
dimensional Bose gas, where Berezinskii-Kosterlitz-Thouless
transition plays a crucial role [36–38], is an important applica-
tion of the moment method. However, since the ZNG scheme
assumes the existence of the Bose-condensate order param-
eter, it cannot be applied directly to the description of such

a two-dimensional system. A suitable theoretical framework
would be the classical field theory [6,39,40]. The extension
of the ZNG scheme to describe the classical coherent field
including the collisional process with the incoherent field is
important future work and the moment method would be a
powerful tool to describe the crossover between hydrody-
namic and collisionless regimes.
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APPENDIX A: EXPANSION OF THE LINEARIZED
COLLISION TERM

In the present paper, we expand the linearized collision
term by the spherical harmonics. In this Appendix, we give
the derivation of Eq. (19).

One can rewrite the linearized collision integral in terms of
integral kernels as follows [41]:

L22[ν(1)] = −
∫

d p2

(2π h̄)3
K22(1, 2)ν(2), (A1)

where the kernel K22(1, 2) is defined as

K22(1, 2) ≡ (2π h̄)3δ(p1 − p2)M22(1)

+ Q22(1, 2) − 2S22(1, 2), (A2)

in conjunction with

Q22(1, 2) ≡
∫

d p3

(2π h̄)3

∫
d p4W22(1, 2, 3, 4), (A3)

S22(1, 3) ≡
∫

d p2

(2π h̄)3

∫
d p4W22(1, 2, 3, 4), (A4)

M22(1) ≡
∫

d p2

(2π h̄)3

∫
d p3

(2π h̄)3

∫
d p4W22(1, 2, 3, 4).

(A5)

Similarly, one can express L12 as

L12[ν(1)] = −
∫

d p2

(2π h̄)3
K12(1, 2)ν(2), (A6)

where the kernel K12(1, 2) is given by

K12(1, 2) ≡ Q12(1, 2) − 2S12(1, 2), (A7)

Q12(1, 2) =
∫

d p3

∫
d p4W12(1, 2, 3, 4), (A8)

S12(1, 3) =
∫

d p2

∫
d p4W12(1, 2, 3, 4). (A9)

Taking into account the spherical symmetry in the mo-
mentum space, we find that the kernel M22(1) merely
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depends on p1, whereas Kα (1, 2) depend on p1, p2, and p̂1 ·
p̂2 = cos θ . Therefore, we expand Kα (1, 2) by the Legendre
polynomial:

Kα (1, 2) =
∑

l

2l + 1

4π
Kl

α (p1, p2)Pl (cos θ ), (A10)

where the expansion coefficient is given by Kl
α (p1, p2) =

2π
∫ 1
−1 d (cos θ )Kα (1, 2)Pl (cos θ ). Making use of the spherical

harmonic addition theorem, one can rewrite Eq. (A10) as

Kα (1, 2) =
∑

l

Kl
α (p1, p2)

l∑
m=−l

Y ∗
l,m( p̂2)Yl,m( p̂1), (A11)

where the expansion coefficient is given by Kl
α (p1, p2) =∫

d p̂1

∫
d p̂2Y

∗
l,0( p̂1)Kα (1, 2)Yl,0( p̂2). Inserting Eqs. (A11) and

(18) into Eqs. (A1) and (A6), we obtain

Lα (p1) =
∑

l

l∑
m=−l

√
4π

2l + 1
Lml

α (p1)Yl,m( p̂1), (A12)

Lml
α (p1) = −

∫
p2

2d p2

(2π h̄)3
Kl

α (p1, p2)νm
l (p2). (A13)

In this way, it is possible to expand the linearized collision
term directly by the spherical harmonics.

APPENDIX B: RELAXATION-TIME APPROXIMATION

In this Appendix, we shall show the derivation Eqs. (31)–
(36) in detail. First, the polynomial expansion of the
fluctuation νl leads to the following expression for the mo-
ment and collision integral:

〈pl+2kνl〉 =
∑

k′
Cl

k′W2l+2k+2k′ , (B1)

Jl [pl+2k, νl (p)] =
∑

α

∑
k′

γ l
α,kk′W2l+2k+2k′Cl

k′ . (B2)

For simplicity, we specify the (l, k)th order of moment equa-
tion as the (l, k)-moment equation.

Let us consider the (0,0)-moment equation. The collisional
process of C22 conserves the number of particle, which gives
the relation J0,22[1, ν] = J0,22[ν, 1] = 0 for any function ν.
Thus the collision term of the (0,0)-moment equation only
involves C12 collision rate γ 0

12,0k′ , given by

J0[1, ν0] =
∑

k′
γ 0

12,0k′W2k′C0
k′ . (B3)

The moments 〈ν0〉 and 〈p2ν0〉 are related to the fluctuation
of the number of particles and energy in local equilibrium
(see Appendix F). When one develops the relaxation-time
approximation, the contribution from such moments has to
be included. This can be done systematically as follows. We
expand the summation in Eq. (B3) up to k′ = 2, and for
k′ > 2, we replace the relaxation rate γ 0

12,0k′ with γ 0
12,02. This

is the relaxation-time approximation used in this paper. After
this replacement, we obtain

J0[1, ν0] = γ 0
12,00W0C

0
0 + γ 0

12,01W2C
0
1

+ γ 0
12,02

(∑
k′

W2k′C0
k′ − W0C

0
0 − W2C

0
1

)

= (
γ 0

12,00 − γ 0
12,02

)
W0C

0
0

+ (
γ 0

12,01 − γ 0
12,02

)
W2C

0
1 + γ 0

12,02〈ν0〉, (B4)

where Eq. (B1) is used. We use the local equilibrium solution
(see Appendix F)

ν
leq
0 = C0

0 + C0
1 p2, (B5)

to determine C0
0 and C0

1 . Using Eq. (B5), we have relations

〈ν0〉 ≈ 〈
ν

leq
0

〉 = C0
0W0 + C0

1W2, (B6)

〈p2ν0〉 ≈ 〈
ν

leq
0

〉 = C0
0W2 + C0

1W4. (B7)

We then obtain

C0
0 = 1

D
[W4〈ν0〉 − W2〈p2ν0〉], (B8)

C0
1 = 1

D
[W0〈p2ν0〉 − W2〈ν0〉], (B9)

where D ≡ W0W4 − W 2
2 . By inserting the above local equilib-

rium solution to Eq. (B4), one finds

J0[1, ν0] =
[
γ 0

12,00 − W 2
2

D

(
γ 0

12,01 − γ 0
12,00

)]〈ν0〉

+ W2W0

D

(
γ 0

12,01 − γ 0
12,00

)〈p2ν0〉. (B10)

Substituting this form of the collision integral to Eq. (23), we
obtain the (0,0)-moment equation as in Eq. (31). As in Sec. II
and Appendix C, the above equation is exactly the same as
the continuity equation for the noncondensate atoms Eq. (40).
This justifies our choice of the relaxation-time approximation
in Eq. (B4).

The collision term of the l = 0 and k = 1 moment equa-
tion can be related to the energy conservation law, which is
given by

J0,12

[
p2

2m
, ν0

]
= −gnc0J0,12[1, ν0] (B11)

and J0,22[p2, ν] = J0,22[ν, p2] = 0 for any function ν. Follow-
ing the same procedure as in the (0,0)-moment equation, we
obtain the following relation:

J0[p2, ν0] = W2W4

D

(
γ 0

12,01 − γ 0
12,11

)〈ν0〉

+
(

W4W0

D
γ 0

12,11 − W 2
2

D
γ 0

12,01

)
〈p2ν0〉, (B12)

where we used the relation between two relaxation times given
by

γ 0
12,01 = J0,12[1, p2]

W2
= −2mgnc

W0

W2
γ 0

12,00, (B13)

γ 0
12,11 = J0,12[p2, p2]

W4
= −2mgnc0

W2

W4
γ 0

12,01. (B14)

This leads us to find Eq. (33).
The above analysis can be extended to the (0, k)-moment

equation at k � 2. Using the relaxation-time approximation,
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where we replace γ 0
α,kk′ with γ 0

α,22, and using the local equi-
librium solution in Eqs. (B8) and (B9), we find

J0[p2k, ν0] =
[(

γ 0
12,0k − γ 0

12,22 − γ 0
22,22

)W2kW4

D

− (
γ 0

12,1k − γ 0
12,22 − γ 0

22,22

)W2k+2W2

D

]
〈ν0〉

+
[(

γ 0
12,1k − γ 0

12,22 − γ 0
22,22

)W2k+2W0

D

− (
γ 0

12,0k − γ 0
12,22 − γ 0

22,22

)W2kW2

D

]
〈p2ν0〉

+ (
γ 0

12,22 + γ 0
22,22

)〈p2kν0〉. (B15)

We intentionally keep the k dependence in the collision term
γ 0

12,0k and γ 0
12,1k in order to reproduce the local equilibrium

solution.
In the case of the (1,0)-moment equation, the momentum

conservation law reduces the collision integral as J1,α[p, ν] =
J1,α[ν, p] = 0 for both C12 and C22 collision processes. There-
fore, this mode only contributes to the local equilibrium
solution of the system, and the moment equation is given in
Eq. (32).

In the case of the (1, k)-moment equation for k 
= 0, we
take the relaxation-time approximation, where we replace
γ 1

α,kk′ for k′ 
= 0 with γ 1
α,11. Then, we find

J1[p1+2k, ν1] = − (
γ 1

12,11 + γ 1
22,11

)
W2+2kC

1
0

+ (
γ 1

12,11 + γ 1
22,11

)〈p1+2kν1〉. (B16)

In order to express C1
0 in terms of the moment, we use the

local equilibrium solution ν1 ≈ ν
leq
1 = C1

0 p, which provides
〈pν1〉 = W2C1

0 . Substituting the result into Eq. (B16), one
finds

J1[p1+2k, ν1] = − (
γ 1

12,11 + γ 1
22,11

)W2+2k

W2
〈pν1〉

+ (
γ 1

12,11 + γ 1
22,11

)〈p1+2kν1〉, (B17)

which provides the moment equation in Eq. (35).
Finally, in the (l, k)-moment equation for l � 2, we replace

the collision rate γ l
α,k′k for l � 2 with γ 2

α,00. We thus find only
the diagonal term

Jl [pl+2k, νl ] =
∑

α

γ 2
α,00

∑
k′

W2l+2k+2k′Cl
k′

= (
γ 2

12,00 + γ 2
22,00

)〈pl+2kνl〉, (B18)

which provides Eq. (36).
In general, the diffusive local equilibrium solution in

Eq. (F4) is defined as the solution of d〈pl+2kν
leq
l 〉coll/dt = 0.

The collision term with the relaxation-time approximation
developed above satisfies this condition for all l and k. More-
over, we explicitly showed that the moment equation with
the relaxation-time approximation becomes equivalent to the
Landau two-fluid equations in the hydrodynamic limit in
Sec. III.

APPENDIX C: HYDRODYNAMIC APPROXIMATION
OF THE MOMENT EQUATION—THE LANDAU

TWO-FLUID EQUATION

In this Appendix, we present the details of the reduction
of the moment equation to the Landau two-fluid equations in
the hydrodynamic regime. Our starting point is the moment
equation with hydrodynamic variables in Eqs. (40)–(42).
Due to the hierarchical structure of the moment equation,
Eqs. (40)–(42) are not closed, but coupled to the higher order
of moments through 〈p2ν2〉 or 〈p3ν1〉.

In the following, we show that considering the hydro-
dynamic approximation, one can obtain the closed set of
two-fluid equations. For notational conciseness, we omit the
sub(super)script zero.

To find the approximate expression of 〈p2ν2〉, we con-
sider the l � 2 moment equation. Defining the total relaxation
time

1

τη

= γ 2
12,00 + γ 2

22,00, (C1)

in Eq. (36), we find

ωτη〈pl+2kνl〉 = τη

(
q

m

l

2l − 1
〈pl+2k+1νl−1〉

+ q

m

l + 1

2l + 3
〈pl+2k+1νl+1〉

)
− i〈pl+2kνl〉.

(C2)

The lowest approximation gives the local equilibrium so-
lution. That is, in the hydrodynamic limit, where all the
relaxation times are extremely short, we can let τη be zero,
which leads to 〈pl+2kνl〉 = 0. This lowest approximation
leads to the two-fluid equations without shear viscosity [see
Eq. (C7)]. Most importantly, this approximation also gives
the physical meaning of the truncation of the moment equa-
tion. When one truncates the moment equation, the higher
moments will be set to zero such that the resulting hierarchy
is closed. This effectively means that we take the local equi-
librium solution for the moments higher than the cutoff.

We consider the first-order approximation with respect to
the small ωτη, which gives the deviation from the local equi-
librium solution, given by

i〈pl+2kνl〉 = τη

(
q

m

l

2l − 1
〈pl+2k+1νl−1〉

+ q

m

l + 1

2l + 3
〈pl+2k+1νl+1〉

)
. (C3)

The first and second terms on the right-hand side are cou-
pled with the (l − 1, k + 1)- and (l + 1, k)-moment equation,
respectively. Subsequently using Eq. (C3), we see that the
right-hand side has the factor of τ n

η , where n(� 2) depends
on the truncation of the moment equation, and we reproduce
the linearized Boltzmann equation with n → ∞. Therefore,
in the two-fluid hydrodynamic regime, the effect of the l > 2
moments would become exponentially small and decouple
from the lower order of moments.

However, the first-order correction to the moment 〈p2ν2〉
from Eq. (C3) is important since this is directly coupled to
the fluctuation of the noncondensate velocity field δvn. Using
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Eq. (C3), the correction for 〈p2ν2〉 is given by

i〈p2ν2〉 ≈τη

2q

3m
〈p3ν1〉, (C4)

where we ignored 〈p3ν3〉, since this term is of the order of τ 2
η .

Defining the total relaxation rate

1

τκ

= γ 1
12,11 + γ 1

22,11, (C5)

and taking ωτκ = 0 in Eq. (35), we find for the (1,1)-moment
equation

i〈p3ν1〉 = i
W4

W2
〈pν1〉 + τκ

qβ

m
W4(2gδnc + 2g〈ν0〉 + Uext )

+ τκ

q

m
〈p4ν0〉 + τκ

2q

5m
〈p4ν2〉. (C6)

This is the correction of 〈p3ν1〉 to the first order in τκ , which
couples to 〈p4ν0〉. Substituting this into Eq. (C4) and letting
O(τκτη ) be zero, we find the first-order correction of 〈p2ν2〉, as
in Eq. (46), proportional to the noncondensate velocity field,
given by

〈p2ν2〉 = −iτη

q

m

2

3

W4

W2
〈pν1〉 = −10imηqδvn, (C7)

where we defined the shear viscosity

η = τηβ0W4

15m2
. (C8)

Different from the transport coefficients obtained by
Chapman-Enskog approach [14], the relaxation time related
to the shear viscosity is given by the relaxation rate of the
(2,0)-moment equation, γ 2

12,00 and γ 2
22,00. Although the analyt-

ical form of the relaxation time related to the shear viscosity
in Eq. (C8) and the one derived in Ref. [14] are different,
we numerically confirmed that both formulas have similar
temperature dependence.

To estimate the first-order correction of 〈p3ν1〉, we shall
use the (1,0)-moment equation in Eq. (32), given by

β
q

m
W2[2gδnc + 2g〈ν0〉 + Uext]

= ω〈pν1〉 − q

m
〈p2ν0〉 − 2q

5m
〈p2ν2〉. (C9)

Substituting this into Eq. (C6) with the hydrodynamic limit
approximation ωτκ = 0, we find the relation

〈p3ν1〉 = W4

W2
〈pν1〉 − iτκ

[
q

m
〈p4ν0〉

− W4

W2

(
q

m
〈p2ν0〉 + 2q

5m
〈p2ν2〉

)]
, (C10)

where we neglected the term proportional to 〈p4ν2〉, since this
is an order of τη, as one can see from Eq. (C3). The moments
〈pν1〉, 〈p2ν0〉, and 〈p2ν2〉 are given by Eqs. (F21), (F22), and
(C7), respectively. The lowest approximation τκ → 0 gives
the local equilibrium solution that leads to the two-fluid equa-
tions without thermal conductivity [see Eq. (C14)].

To determine the moment 〈p3ν1〉 to the first order in τκ , we
need the local equilibrium solution of the moments 〈p4ν0〉.

Defining γ 0
12,00 + γ 0

22,00 = 1/τtot , and taking ωτtot → 0 with
Thomas-Fermi approximation in Eq. (34), we have

i〈p4ν0〉 = τtot
q

3m

W6

W2
〈pν1〉 − iβgτtotγ

0
12,02W4δnc

− i

[(
τtotγ

0
12,02 − 1

)W4W4

D

− (
τtotγ

0
12,12 − 1

)W6W2

D

]
〈ν0〉

− i

[(
τtotγ

0
12,12 − 1

)W6W0

D

− (
τtotγ

0
12,02 − 1

)W4W2

D

]
〈p2ν0〉. (C11)

Taking the hydrodynamic limit ωτ12 = 0 in the (0,0)-moment
equation in Eq. (40), we have the equation

iβgδnc = qτ12

3mnc
〈pν1〉 − i

σ2

ñ
〈ν0〉 − i

σ1β

ñ

〈p2ν0〉
3m

. (C12)

Substituting this result into Eq. (C11), we have

i〈p4ν0〉 = − i

(
W6W2

D
− W 2

4

D

)
〈ν0〉

+ i

[
W0

D

(
W6 − W 2

4

W2

)
+ W4

W2

]
〈p2ν0〉 + O(τtot ),

(C13)

where we used γ 0
12,12 = −2mgnc(W4/W6)γ 0

12,02 and 〈pν1〉 =
O(τtot ). Substituting this into Eq. (C10), we obtain Eq. (47),
given by

〈p3ν1〉 = 15m2P̃δvn + i
6qσ4m2T κ

ñ
δñ − i

6qσ3m2T κ

P̃
δP̃,

(C14)

where we have replaced the moments with the hydrodynamic
variables in Eq. (39) and introduced the thermal conductivity
given by

κ = τκ

kBβ2

12m4

(
W6 − W 2

4

W2

)
. (C15)

APPENDIX D: COLLISION INTEGRAL
IN THE MOMENT EQUATION

In this Appendix, we provide an explicit expression for the
collision integral defined by Eq. (29). Let us introduce a di-
mensionless momentum variable p = √

2mkBT0ξ, and rewrite
the collision integral as

Jl,22[pl+2k, pl+2k′
] = (2l + 1)C(T )I22, (D1)

where the dimensionless integral I22 and the coefficient C(T )
are given by

I22 ≡
∫

dξ1

∫
dξ2

∫
dξ3

∫
dξ4

× δ(ξ1 + ξ2 − ξ3 − ξ4)δ
(
ξ 2

1 + ξ 2
2 − ξ 2

3 − ξ 2
4

)
× f 0(1) f 0(2)[1 + f 0(3)][1 + f 0(4)]ξ l+2k

1 Pl (cos θ1)
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× [
ξ l+2k′

1 Pl (cos θ1) + ξ l+2k′
2 Pl (cos θ2)

− ξ l+2k′
3 Pl (cos θ3) − ξ l+2k′

4 Pl (cos θ4)
]
, (D2)

C(T ) ≡ (2mkBT )9/2+l+k+k′

(2π h̄)9kBT

4πg2

h̄
, (D3)

where f 0 = [z−1
0 exp(β0

p2

2m ) − 1]−1 with the fugacity z0 =
eβ0(μ0−2gn0 ) is the equilibrium Bose distribution function.
Following Refs. [14,42], we shall introduce a variable trans-
formation given by

ξ1 = (ξ0 + ξ′)/
√

2, (D4)

ξ2 = (ξ0 − ξ′)/
√

2, (D5)

ξ3 = (ξ′
0 + ξ′′)/

√
2, (D6)

ξ4 = (ξ′
0 − ξ′′)/

√
2. (D7)

With this variable transformation, the delta function appear-
ing in Eq. (D2) can be written as δ(ξ1 + ξ2 − ξ3 − ξ4) =
δ[

√
2(ξ0 − ξ′

0)] and δ(ξ 2
1 + ξ 2

2 − ξ 2
3 − ξ 2

4 ) = δ(ξ ′2 − ξ ′′2).
We introduce the polar coordinate to ξ0, given by

ξ0 = ξ0(sin θ0 cos φ0, sin θ0 sin φ0, cos θ0). (D8)

Given all the variables appearing in Eqs. (D4)–(D7) with polar
coordinates similar to Eq. (D8), the integral in Eq. (D2) can
be reduced to a numerical calculation friendly form with eight
variables after the integration of the delta function. One can
reduce the integral further by defining the following local
coordinate: We define the local coordinate system (x′, y′, z′)
for ξ′ such that the z′ axis coincides with ξ0, then one can
express ξ′ in terms of the polar coordinates of ξ0 as

ξ ′
x = ξ ′

x′ cos θ0 cos φ0 − ξ ′
y′ sin φ0 + ξ ′

z′ sin θ0 cos φ0, (D9)

ξ ′
y = ξ ′

x′ cos θ0 sin φ0 − ξ ′
y′ cos φ0 + ξ ′

z′ sin θ0 sin φ0, (D10)

ξ ′
z = − ξ ′

x′ sin θ0 + ξ ′
z′ cos θ0. (D11)

In terms of the rotation matrix, this can be written as⎛
⎝ξ ′

x
ξ ′

y
ξ ′

z

⎞
⎠ = Rz(φ0)Ry(θ0)

⎛
⎝ξ ′

x′
ξ ′

y′

ξ ′
z′

⎞
⎠, (D12)

where Ry and Rz are the rotation matrices around y and z axis,
respectively. The two successive rotations R ≡ Rz(φ0)Ry(θ0)
can be written as

R =
⎛
⎝cos φ0 cos θ0 − sin φ0 cos φ0 sin θ0

sin φ0 cos θ0 cos φ0 sin φ0 sin θ0

− sin θ0 0 cos θ0

⎞
⎠. (D13)

The variable transformation by R is schematically shown in
Fig. 7. Expressing (ξ ′

x′, ξ
′
y′ , ξ

′
z′ ) in terms of the polar coordinate

defined in the local coordinate system (x′, y′, z′), one also has

ξ ′
x′ = ξ ′ sin θ ′ cos φ′, (D14)

ξ ′
y′ = ξ ′ sin θ ′ sin φ′, (D15)

ξ ′
z′ = ξ ′ cos θ ′. (D16)

FIG. 7. The variable transformation by the matrix R given by
Eq. (D13).

Substituting the above expressions into Eq. (D11), one
has ξ ′

z = −ξ ′ sin θ0 sin θ ′ cos φ′ + ξ ′ cos θ0 cos θ ′. Using ξ1z =
(ξ0z + ξ ′

z )/
√

2, we obtain

ξ1z = ξ0 cos θ0 + ξ ′(cos θ0 cos θ ′ − sin θ0 sin θ ′ cos φ′)√
2

.

(D17)

On the other hand, the polar coordinate of ξ1 defined in
the global coordinate system (x, y, z) can be written as ξ1z =
ξ1 cos θ1. Thus, inserting this into Eq. (D17), we find the angle
cos θ1 as follows:

cos θ1 = ξ0 cos θ0 + ξ ′(cos θ0 cos θ ′ − sin θ0 sin θ ′ cos φ′)√
2ξ1

.

(D18)

The expression of ξ1 in terms of ξ0 and ξ′ can be written as

ξ 2
1 = 1

2

(
ξ 2

0 + ξ ′2 + 2ξ0 · ξ′), (D19)

where owing to the definition of the local coordinate system
(x′, y′, z′), we have

ξ0 · ξ′ = (ξ0x ξ0y ξ0z )R

⎛
⎝ξ ′

x′
ξ ′

y′

ξ ′
z′

⎞
⎠ = ξ0ξ

′ cos θ ′, (D20)

where Eqs. (D8)–(D11) and (D13) are used. In this way, one
can express cos θ1 in terms of the new coordinate variables
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ξ0, ξ
′, θ0, θ

′, and φ′. In the same manner one can obtain ξ 2
2,3,4,

which can be summarized as

ξ 2
1 = 1

2

(
ξ 2

0 + ξ ′2 + 2ξ0ξ
′ cos θ ′), (D21)

ξ 2
2 = 1

2

(
ξ 2

0 + ξ ′2 − 2ξ0ξ
′ cos θ ′), (D22)

ξ 2
3 = 1

2

(
ξ 2

0 + ξ ′2 + 2ξ0ξ
′ cos θ ′′), (D23)

ξ 2
4 = 1

2

(
ξ 2

0 + ξ ′2 − 2ξ0ξ
′ cos θ ′′), (D24)

and angle components yi = cos θi given by

y1 = ξ0 cos θ0 + ξ ′(cos θ0 cos θ ′ − sin θ0 sin θ ′ cos φ′)√
2ξ1

,

(D25)

y2 = ξ0 cos θ0 − ξ ′(cos θ0 cos θ ′ − sin θ0 sin θ ′ cos φ′)√
2ξ2

,

(D26)

y3 = ξ0 cos θ0 + ξ ′(cos θ0 cos θ ′′ − sin θ0 sin θ ′′ cos φ′′)√
2ξ3

,

(D27)

y4 = ξ0 cos θ0 − ξ ′(cos θ0 cos θ ′′ − sin θ0 sin θ ′′ cos φ′′)√
2ξ4

.

(D28)

Introducing another variable transformation ξ0 =√
2η cos ψ and ξ ′ = √

2η sin ψ , where η > 0 and
ψ ∈ [0, π/2], the function F (ξ0, ξ

′, y′, y′′) = f 0(1) f 0(2)[1 +
f 0(3)][1 + f 0(4)] can be rewritten as

F (η,ψ, y, y′′) = 1

4

1

cosh[η − β0μ0 + 2β0gn0] − cosh(ηy′ sin 2ψ )

1

cosh[η − β0μ0 + 2β0gn0] − cosh(ηy′′ sin 2ψ )
. (D29)

Using the above variable transformations, the collision integral can be reduced to

I22 = 2π

∫ ∞

0
dη

∫ π/2

0
dψ

∫ 1

−1
dy0

∫ 1

−1
dy′

∫ 1

−1
dy′′

∫ 2π

0
dφ′

∫ 2π

0
dφ′′ηl+k+k′+5/2 cos2 ψ sin3 ψF (η,ψ, y′, y′′; z)ζ l+2k

1 Pl (y1)

× [
ζ l+2k′

1 Pl (y1) + ζ l+2k′
2 Pl (y2) − ζ l+2k′

3 Pl (y3) − ζ l+2k′
4 Pl (y4)

]
, (D30)

where we defined ξ 2
i = ηζ 2

i . For l = 0, we have Pl=0(yi ) = 1, which is irrelevant to yi, and one can integrate out the variables
y0, φ

′, and φ′′ analytically. Then, we recover the expression for the collision integral previously developed for the Bose gas
[14,16,42].

Similarly, one can reduce the collision integral Jl,12[pl+2k, pl+2k′
] to

Jl,12[pl+2k, pl+2k′
] = (2l + 1)nc0�

3
0C(T )I12, (D31)

where the temperature-dependent coefficient C(T ) is given by Eq. (D3), and the collision integral I12 is given by

I12 ≡ π3/2
∫

dξ1

∫
dξ2

∫
dξ3

∫
dξ4δ(ξ2 − ξ3 − ξ4)δ

(
ξ 2

2 − ξ 2
3 − ξ 2

4 + β0μc0 − 2β0gn0
)

× [δ(ξ1 − ξ2) − δ(ξ1 − ξ3) − δ(ξ1 − ξ4)][1 + f 0(2)] f 0(3) f 0(4)ξ l+2k
1 Pl (y1)

[
ξ l+2k′

2 Pl (y2) − 2ξ l+2k′
3 Pl (y3)

]
. (D32)

Introducing the variable transformation

ξ2 = 1
2 (ξ0 + ξr ), ξ3 = 1

2 (ξ0 − ξr ), (D33)

and following the method developed in the calculation of the integral I22, we find

ξ 2
2 = 1

4

(
ξ 2

0 + 2ξ0ξr cos θr + ξ 2
r

)
, (D34)

ξ 2
3 = 1

4

(
ξ 2

0 − 2ξ0ξr cos θ cos θr + ξ 2
r

)
, (D35)

y2 = 1

2ξ2
[ξ0y0 + ξr (y0yr − sin θ0 sin θr cos φr )], (D36)

y3 = 1

2ξ3
[ξ0y0 − ξr (y0yr − sin θ0 sin θr cos φr )]. (D37)

Performing all the integrals involving the delta functions, we find

I12 =π3/2 π

4

∫
dξr

∫ 1

−1
dy

∫ 1

−1
dy0

∫ 2π

0
dφrξ

2
r

√
ξ 2

r + 2β0gnc0F (ξr, y, z0)

× [
ξ l+2k

1 Pl (y0) − ξ l+2k
2 Pl (y2) − ξ l+2k

3 Pl (y3)
][

ξ l+2k′
1 Pl (y0) − ξ l+2k′

2 Pl (y2) − ξ l+2k′
3 Pl (y3)

]
, (D38)

where the function F = [1 + f 0(1)] f 0(2) f 0(3) is given by

F (ξr, y, z0) = z0e−ξ 2
1(

1 − z0e−ξ 2
1
)(

1 − z0e−ξ 2
2
)(

1 − z0e−ξ 2
3
) , (D39)
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where ξi and yi can be given by

ξ 2
1 = ξ 2

0 = ξ 2
r + 2β0gnc0, (D40)

ξ 2
2 = (

ξ 2
0 + 2ξ0ξryr + ξ 2

r

)
/4 = 1

2

(
ξ 2

r + β0gnc0 + ξryr

√
ξ 2

r + 2β0gnc0
)
, (D41)

ξ 2
3 = (

ξ 2
0 − 2ξ0ξryr + ξ 2

r

)
/4 = 1

2

(
ξ 2

r + β0gnc0 − ξryr

√
ξ 2

r + 2β0gnc0
)
, (D42)

y2 = y0

√
ξ 2

r + 2β0gnc0 + ξr (y0yr − sin θ0 sin θr cos φr )

2ξ2
, (D43)

y3 = y0

√
ξ 2

r + 2β0gnc0 − ξr (y0yr − sin θ0 sin θr cos φr )

2ξ3
. (D44)

Figure 1 shows the collision rate in Eq. (29) associated with the hierarchy of the moment equations. For reference, we also
plot the inverse relaxation time 1/τα for α = {12, 22} associated with the Cα collision process, given by

1

τ12
= 4πg2

h̄

∫
d p1

(2π h̄)3

∫
d p2

(2π h̄)3

∫
d p3δ(p1 − p2 − p3)δ(μc0 + ε̃1 − ε̃2 − ε̃3)(1 + f (1)) f (2) f (3), (D45)

1

τ22
= 4πg2

ñ0 h̄

∫
d p1

(2π h̄)3

∫
d p2

(2π h̄)3

∫
d p3

(2π h̄)3

∫
d p4δ(p1 + p2 − p3 − p4)δ(ε̃(1)

+ ε̃(2) − ε̃(3) − ε̃(4)) f 0(1) f 0(2)[1 + f 0(3)][1 + f 0(4)]. (D46)

By using the explicit expression in Eq. (D38), we can find the
following formulas between two collision rates:

γ 0
12,00 = nc0

W0τ12
, (D47)

γ 0
12,01 = − 2β0gW0nc0

3ñ0
γ 0

12,00, (D48)

γ 0
12,11 = (2mgnc)2W0

W4
γ 0

12,00, (D49)

γ 0
12,12 = − 2mgnc0W4

W6
γ 0

12,02. (D50)

APPENDIX E: RELAXATION TIME τκ,η

In Sec. III, truncating the moment equation, we obtained
the Landau two-fluid equation, including dissipation from the
thermal conductivity κ and η. As we mentioned in the main
text, the associated relaxation times τκ and τη slightly differ
from the ones obtained by employing the Chapman-Enskog
approach [14,16]. Here, we discuss this difference in detail.

The obtained thermal conductivity is associated with the
characteristic time scale τκ , given by

1

τκ

= 1

τ κ
22

+ 1

τ κ
12

, (E1)

where τ κ
12 and τ κ

22 originate from C12 and C22 collision pro-
cesses. To highlight the difference, we shall discuss the
difference in τ κ

22.
To compare the relaxation time obtained by both methods,

it is convenient to rewrite the collision integral Eq. (29) in
terms of the Bose-Einstein function gn(z). To this end, we use

the formula

Wn = 2hn

π1/2+n/2�3+n
0

�

(
n + 3

2

)
g(n+1)/2(z0). (E2)

Inserting this formula into Eqs. (29) and (D1), we obtain

1

τ κ
22

≡ γ 1
22,11

= 2

15

m3(kBT0)2g2

π13/2h̄7

3I22[ξ 3 cos θ, ξ 3 cos θ ]
7
2 g7/2(z0)

, (E3)

where the detailed expression of the collision integral I22 is
given by Eq. (D2) for l = k = k′ = 1.

Employing the Chapman-Enskog method, Nikuni and
Griffin obtained the Landau two-fluid equations, including the
transport coefficients κ and η [14]. The expression for 1/τ κ

22
in this case is given by [16]

1

τ κ
22

= 2

15

m3g2(kBT0)2

π13/2 h̄7

Iκ
22(z0)

7
2 g7/2(z0)D

, (E4)

D = g3/2(z0) − 5g2
5/2(z0)

7g7/2(z0)
, (E5)

where Iκ
22 is the collision integral associated with 1/τ κ

22. Defin-
ing the nondimensional linearized collisional operator

L22[ν] = m3(kBT0)2

2π5h̄7 g2L′
22[ν], (E6)

the collision integral Iκ
22 can be written as follows:

Iκ
22 = −

∫
dξ1ξ

2
1 ξ1 · L′

22

[
ξ 2

1 ξ1

]
= − 3

∫
dξ1ξ

2
1 ξ z

1L′
22

[
ξ 2

1 ξ z
1

]
, (E7)

033302-16



COLLECTIVE EXCITATIONS OF A BOSE-CONDENSED … PHYSICAL REVIEW A 109, 033302 (2024)

where we used the spherical symmetry of the collision inte-
gral. Introducing the spherical coordinate, we find

Iκ
22 = − 3

∫
dξ1ξ

3
1 cos θ1L′

22

[
ξ 3

1 cos θ1
]

= 3I22[ξ 3 cos θ, ξ 3 cos θ ]. (E8)

Comparing Eqs. (E3)–(E5) and (E8), we see that the relax-
ation time obtained by the two methods differs only from the
factor in the denominator D.

However, this is not the case for τη ≡ (1/τ
η

22 + 1/τ
η

12)−1.
In this case, the associated collision integral from Chapman-
Enskog theory for the C22 collision process is given by

Iη

22 =
∑

μ,ν=x,y,z

∫
dξξμξνL′

22[ξμξν] ≡
∑

μ,ν=x,y,z

Iμν,μν
η,22 , (E9)

whereas the collision integral from the moment method is
given by l = 2, k = k′ = 0 in Eq. (D2). Since the collision
integral Eq. (D2) only depends on the polar angle θ , it can
only reproduce the diagonal element Iμμ,μμ

η,22 . The cross term,
such as Ixy,xy

η,22 , involves the azimuthal angle.
In this Appendix, we highlighted the difference in the ex-

pression of τκ and τη obtained by the moment method and
the Chapman-Enskog approach. Nonetheless, we emphasize
that the resultant transport coefficients κ and η show similar
temperature dependence [14,16]; thus, the resultant eigenfre-
quencies coincide almost perfectly.

APPENDIX F: LOCAL EQUILIBRIUM SOLUTION

In Appendix B, we developed the relaxation-time ap-
proximation by considering the deviation from the local
equilibrium solution. This solution is also used to associate
the moments with the physical quantities to derive the Landau
two-fluid equations. Here, we present the derivation of the
local equilibrium solution. The distribution function f (0) is
the local equilibrium solution if f (0) satisfies the following
condition:

C12[ f (0)] + C22[ f (0)] = 0. (F1)

The solution satisfying this condition is given by the local-
equilibrium Bose distribution function

f (0)(p, r, t ) = 1

exp β[(p − mvn)2/2m + U − μ̃] − 1
, (F2)

where β, vn,U, and μ̃ all depend on the position r and time t .
Let us consider the deviation from the equilibrium distribution
function f 0 in the uniform system [16,19]:

f (0) − f 0 = f 0(1 + f 0)

[
β2

0

(
p2

2m
+ 2gn0 − μ̃0

)
δθ

+ β0δμ̃ − 2β0gδn + β0 p · vn

]
. (F3)

Comparing with the definition of the fluctuation of the
distribution function f (0) − f 0 = ν f 0(1 + f 0), we find that

the fluctuation ν around the local equilibrium is given by

ν leq(p) = β2
0

(
p2

2m
+ 2gn0 − μ̃0

)
δθ

+ β0δμ̃ − 2β0gδn + β0 p · δvn. (F4)

In terms of the polynomial expansion Eqs. (18) and (26), one
has a relation given by

ν(p) =
∑

l

∑
k

Cl
k pl+2kYl ( p̂). (F5)

Therefore, one can write the local equilibrium solution as

ν leq(p) = a + b · p + cp2, (F6)

where a = C0
0 , b · p = C1

0 pY1( p̂), and c = C0
1 .

In a normal gas, we can determine the coefficients C0
0 ,C1

0,
and C0

1 by using the conservation lows of the collision inte-
grals [19,21]. Comparing Eqs. (F4) and (F6), one can find
the coefficients a, b, and c in terms of the fluctuations from
equilibrium, given by

a = βgncδθ − βgδnc + βδμ̃ − 2β0gδn, (F7)

b = β0δvn, (F8)

c = β2

2m
δθ. (F9)

Since the density and pressure are given by

ñ = g3/2(z)

�3
, (F10)

P̃ = g5/2(z)

β�3
, (F11)

one can expand them to the first order in the fluctuation, given
by

δñ = 3ñ0

2

δθ

θ0
+ γ0θ0

δz

z0
, (F12)

δP̃ = 5P̃0

2

δθ

θ0
+ ñ0θ0

δz

z0
, (F13)

where we used the equilibrium distribution function for the
thermodynamic quantities to evaluate the expansion coeffi-
cients. Using this equation, one can rewrite δθ and δz in terms
of δñ and δP̃. Using the definition of the fugacity, we can also
have the relation

δz

z0
= 1

θ

[
−(μ̃0 − 2gn0)

δθ

θ0
+ δμ̃ − 2gδn

]
. (F14)

One can solve Eq. (F14) with respect to δμ̃ by making use of
Eqs. (F12) and (F13). Substituting the results into Eqs. (F7)
and (F9), one finds

a = β0σ40

ñ0
δP̃ + 5β0σ30

2�0
δñ, (F15)

c = β2
0

2m

(
σ30

δP̃

P̃0
− σ40

δñ

ñ0

)
, (F16)

where we used the nondimensional hydrodynamic coefficients
defined in Eqs. (43), (44), (49), and (50).
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On the other hand, taking a moment directly on Eq. (F6),
we find

〈ν leq〉 = aW0 + cW2, (F17)

〈pν leq〉 = 1
3 bW2, (F18)

〈p2ν leq〉 = aW2 + cW4. (F19)

Using the expansion form given in Eq. (F5) and taking
the moments, one can also show that 〈pnν〉 = 〈pnν0〉 and

〈pn+1 cos θν〉 = 〈pn+1ν1〉/3. Thus, imposing the local equi-
librium condition 〈ν〉 = 〈ν leq〉, 〈pν〉 = 〈pν leq〉, and 〈ε̃(p)ν〉 =
〈ε̃(p)ν leq〉, we find

〈ν0〉 =δñ, (F20)

〈pν1〉 =3mñ0δvn, (F21)

〈p2ν0〉 =3mδP̃. (F22)
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