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Ouroboros-pattern-like electron spirals by synchronous crossed chirped laser pulses
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By means of analytical calculations based on first-order perturbation theory within the electric dipole, laser,
and rotating wave approximations, we investigate the linear (in intensity) process of one-photon single ionization
of the hydrogen atom by two synchronous crossed linearly chirped pulses in the configuration where one
pulse is linearly polarized along the propagation direction of another circularly polarized pulse. We show that
transform limited or identically chirped pulses create a monopole (horseshoelike) pattern in the photoelectron
momentum distribution, whereas a single-arm reversible spiral resembling the patterns of a snake biting its own
tail (Ouroboros patterns) emerges when these pulses are differently chirped. This self-splitting spiral is controlled
by varying the amount and sign of chirp, the pulse duration, the helicity, and the ellipticity of the second pulse. We
show that the use of an elliptically polarized second pulse can destroy the Ouroboros spirals when the ellipticity
is less than 0.4. Our results are valid for any S-state atoms, as illustrated here for the hydrogen atom as well as
the helium atom.
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I. INTRODUCTION

The 2015 discovery of two-arm Archimedean spirals [1]
by Ramsey interference [2] following atomic attosecond pho-
toionization by time-delayed oppositely circularly polarized
(OCP) single-color laser pulses and its 2017 experimental
confirmation from atomic femtosecond multiphoton ioniza-
tion of K [3,4] have opened a new area of research for
applications of this wave property of matter [5] and for
searches of the same pattern from different targets, processes,
and regimes (see, e.g., Refs. [6–30]). A great deal of attention
has been paid to the control of the number of spiral arms,
with a focus on the sensitivity to the target, initial-state orbital
symmetry, and pulse parameters (carrier frequency, helicity,
intensity).

Focusing on the multiphoton regime, various pulse config-
urations, including single-color and two-color, corotating, and
counter-rotating circularly polarized laser pulses delayed in
time, were designed to produce spirals with an even or odd
number of arms depending on the number of photons required
to dislodge an electron by multiphoton transition in He [6].
For the resonance-enhanced multiphoton ionization (REMPI)
of K by a sequence of OCP single-color femtopulses, the
experiments [3,4] observed spirals with six arms for threshold
electrons and eight arms for the first above-threshold ion-
ization (ATI) peak because these final-state continua were
created by three- and four-photon transitions in this pertur-
bative (low pulse intensity) regime. When employing instead
two very intense π laser pulses, the total inversion population
from the ground state to an excited state led to a change of
number of spiral arms (for the threshold electrons) from 6 to
4 [3,4]. The year 2019 was marked by additional hallmark
REMPI experiments of K and Na by the Wollenhaupt group
[19,20], where two-color femtosecond fields were used to
observe, for the first time, spirals with odd number of arms,
in concert with the prediction for He in the attosecond regime

[6]. As a rule of thumb, the number Nsa of spiral arms from
quantum control involving an N1- and N2-photon route from
the same initial state is [4] Nsa = η̂1N1 − η̂2N2, where η̂1,2 are
the helicities of the first and second pulse.

Restricting our discussion to the case of single-color
copropagating fields, a key result is that spirals do not occur
when one of the laser pulses is linearly polarized (LP). In
2021, we studied one-photon single ionization of H or He by
crossing two laser pulses elliptically polarized and delayed
in time, and predicted the detection geometries for which
spirals do occur with a controllable number of arms [24]. The
particular case where one of the two pulses is LP while the
second is circularly polarized (CP) depicted in Fig. 1 turns
out to be very instructive, as we forecasted the emergence
of single-arm spiral patterns if the photoelectron momentum
distribution (PMD) is registered on a cone surface for a range
of semiangles θ .

However, a major problem with a physical experiment
arises. For copropagating pulses, the time delay τ between
subsequent pulses seen by every atom in a reaction zone of
an atomic cloud is the same. Consequently, the ionization
events recorded by a photoelectron detector correspond to
the same ionization process. This is not so in general when
such atomic clouds are exposed to crossed pulses [24]. For
crossed pulses, the time delay between pulses coming from
different directions depends on the position of an atom in the
reaction zone. For smaller value of τ , the integration of the
triply differential probability (TDP) over time delays (corre-
sponding to different atoms in the reaction zone) will spoil
interference effects since atoms in a gas phase are placed ran-
domly. Our perturbation theory (PT) analysis [24] prescribed
a class of detection geometries that mitigates this problem,
namely, a tilted detection plane with respect to the polariza-
tion plane of the first pulse, which could have application
for polarimetry. Of course, having no time delay mitigates
this issue, but no spiral pattern would appear for the case of
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FIG. 1. Detection scheme as shown in Ref. [24] for observing
clear Ouroboros-pattern-like spirals in the PMD of atomic photoion-
ization by perpendicular LP and CP or EP pulses with different
amounts of chirp. The LP pulse has a polarization vector ε1||ẑ and
propagation vector k1||x̂. The CP or EP pulse has a propagation
vector k2 perpendicular to its polarization plane defined by the major
axis εx and minor axis εy of the polarization ellipse. The detected
photoelectrons with momentum p ejected from the atom A are on the
cone surface with half angle θ , where ϕ is its azimuthal angle.

unchirped pulses considered in Ref. [24]. However, by cross-
ing LP and CP pulses at zero time delay such picture regarding
the absence of spirals can change dramatically if the ionizing
pulses are differently chirped, which is the main topic of this
paper.

In this paper, we study the process of one-photon single
ionization of the hydrogen atom using two orthogonal syn-
chronous linearly chirped pulses [where one pulse is LP and
the other pulse is CP (see Fig. 1)] by performing exact analyt-
ical first-order PT calculations. Our findings are fourfold.

(i) For transform limited pulses (TLPs) or identically
chirped pulses, a monopole (horseshoelike) pattern appears in
the PMD.

(ii) For pulses with different chirp rates, a single-arm
reversible spiral (i.e., with energy-dependent handedness) re-
sembling the pattern of a snake biting its own tail (coined
the Ouroboros-pattern-like spiral) emerges in the PMD, which
is our main finding. An animation of the evolution of the
Ouroboros spiral with a variation of the chirp rate ξ in the
case ξ ≡ ξ1 = −ξ2 is provided [31].

(iii) An exquisite control of this self-splitting spiral is
achieved by varying the sign of the chirp, the pulse duration,
and the helicity of the second pulse, and by considering the
atomic target dependence.

(iv) As purely CP pulses are difficult to be realized experi-
mentally, we examine the sensitivity of this Ouroboros spiral
to the ellipticity of the second pulse and find that an ellipticity
less than 0.4 is needed to destroy it.

This paper is timely since our 2022 prediction of reversible
spirals [30], exquisitely controlled by means of time delays
using arbitrary chirps [32], has just been confirmed exper-
imentally [33] in 2023, but that was for the case of two
synchronous single-color OCP copropagating pulses linearly
chirped, not crossed pulses considered here.

This paper is structured as follows. In Sec. II, we
parametrize the linearly chirped pulses of any polarization. In
Sec. III, we derive the ionization transition amplitude within
the first-order PT formalism. In Sec. IV, we present, discuss,
and analyze the PMD when H and He atoms are ionized by
a pair of orthogonal, synchronous, linearly chirped pulses,
where one pulse is LP and the other is arbitrarily polarized.
Sections IV A and IV C are devoted respectively to the case
of CP and elliptical polarization for the second pulse, while
Sec. IV B discusses the sensitivities of the self-splitting spiral
to the pulse duration and atomic target. In Sec. V, we present
a brief summary of our results. Atomic units (a.u.) are used
throughout the text unless otherwise specified.

II. PARAMETRIZATION OF LINEARLY CHIRPED PULSES

Here, we provide a realistic experimental parametriza-
tion of chirped pulses. There are two common ways used
to parametrize a linearly chirped pulse. One way (see, e.g.,
Refs. [34–36]) is based on chirp-independent laser duration
and peak intensity, and chirp-dependent laser carrier fre-
quency:

ω j (t ) = ω0 + b jt, (1)

that is linear in time t , with b j being the chirp parameter
for the jth laser field. The other way is based on the fact
that the frequency bandwidth of the chirped laser pulse is
kept the same as that of the corresponding transform limited
pulse [30,37–41]. This paper employs the second formulation
in which besides the carrier frequency (1), both the pulse
duration and peak intensity are also affected by the chirp in
a way that keeps constant the total energy per pulse.

We consider two different pulse envelopes. The first one is
a Gaussian-shaped envelope function [42,45]:

Fj (t ) = √
I j exp

(
−2 ln 2

t2

τ 2
j

)
, (2)

where I j = I0/(1 + ξ 2
j )1/2 is the intensity and τ j = τ0(1 +

ξ 2
j )1/2 is the duration of the linearly chirped jth pulse ( j =

1, 2), which depend on the dimensionless chirp rate ξ j . The
quantities I0 = F 2

0 , τ0, and ω0 are respectively the peak inten-
sity, duration [full width at half maximum (FWHM)] of the
intensity profile, and central carrier frequency of the equiva-
lent TLP. Below, we assume that all these parameters for the
equivalent TLP are the same for the two laser pulses. The
relation between b j and the group delay dispersion (GDD)
[42–45], φ′′

j = k′′
j d j = ξ jτ

2
0 /4 ln 2 [42–44], is well known to

be bj ≡ (2 ln 2)ξ j/τ
2
j . These above relations can be obtained

from the expression of the output pulse in the time domain
after the input pulse has gone through the dispersive medium
with thickness d j and group velocity dispersion k′′

j . Indeed,
passing through the medium results in a frequency-dependent
phase accumulation φ(ω) = k(ω)d , where k(ω) = n(ω)ω/c,
with n(ω) being the medium refraction index. The impact
of the index of refraction can then be obtained by replacing
k(ω) with its Taylor expansion centered about ω0. Because the
input pulse in the frequency domain for a Gaussian envelope
is again a Gaussian [45], the inverse of the Fourier transform
leads to an analytical expression for the postmedium electric
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field in the time domain from which the intensity, duration,
and carrier frequency can be read out.

The second pulse envelope is a symmetric exponential
function [45]:

Fj (t ) = √
I j exp

(
− ln 2

|t |
τ j

)
, (3)

where I j is the intensity and τ j is the duration of the linearly
chirped jth pulse ( j = 1, 2), which depend on the chirp pa-
rameter bj . The requirement that the total energy per pulse
remains constant leads to I j/I0 = τ0/τ j = α j , where the di-
mensionless positive constant α j is less than 1, meaning that
the intensity I j decreases while the duration τ j increases for a
chirped pulse. In contrast to Gaussian pulses, the exact rela-
tion between b j and the GDD is nontrivial because the input
pulse in the frequency domain for a symmetric exponential en-
velope is a Lorentzian [45], which complicates the evaluation
of the inverse Fourier transform and will not lead to a closed
form relation. Given this difficulty for symmetric exponential
envelopes, we restrict our investigation in this contribution to
the case of Gaussian envelopes.

Of note is that the chirp parameter b j or dimensionless
chirp rate ξ j can be positive (up-chirp) or negative (down-
chirp). As time goes on, the carrier frequency ω j (t ) and the
corresponding optical period 2π/ω j (t ) would respectively
increase and decrease for the up-chirp case, or decrease and
increase for the down-chirp case.

III. IONIZATION AMPLITUDE BY TWO PULSES
WITHIN THE PT FRAMEWORK

In the multiphoton regime the electron spiral pattern
[1,3,4,6–20,22,24–29] in the PMD is known to originate from
Ramsey interference [2] between the pair of electron wave
packets created with a time delay. The observation of electron
spiral patterns requires broad bandwidth—characteristic of
isolated attosecond pulses—to support several dark and bright
Ramsey interference fringes. Since current techniques to pro-
duce isolated attopulses, either from high-order harmonic
generation [46–53] or free-electron lasers [54], introduce a
chirp (i.e., a time-varying carrier frequency), it becomes pri-
mordial to include the effects of chirp in any treatment of
light-matter interactions. Atomic photoionization examined in
the following is just an example of processes from light-matter
interactions.

Throughout this paper, each equivalent TLP has a peak
intensity I0 = 1014 W/cm2 and a central carrier frequency
ω0 = 16 eV. These lead to a ponderomotive energy of Up =
0.056 eV (which is much less than ω0) and a Keldysh param-
eter of γ = 11.02, meaning that we are in the perturbative
multiphoton regime, where the first-order PT is valid and
thus adopted. In calculating the ionization transition ampli-
tude within the PT framework in this section, we will show
how the chirp affects only the phase of the pulse bandwidth
(i.e., Fourier transform of the pulse envelope). Next, we will
examine in the next section whether this phase is reflected
in the PMD for the linear process of photoionization of the
H atom by two crossed LP and CP or EP pulses.

According to first-order PT, the transition amplitude for the
linear process of single-photon single ionization of an atom

reads [55]

A = −i
∫ +∞

−∞
eiE f t 〈 (−)

p |[D · F(t )]|i〉e−iEit dt, (4)

where | (−)
p 〉 is the final-state continuum of the photoelectron

with momentum p and energy E f ≡ E = p2/2 [56]; |i〉 is
the initial ground state of the hydrogen atom with energy
Ei = −Eb, where Eb = 13.6 eV is the binding energy of H;
D is the operator of the electric dipole momentum of the
atom. In Eq. (4), the electric field F(t ) of two arbitrarily
polarized, linearly chirped, laser pulses delayed in time by τ

is parametrized as

F(t ) = F1(t ) Re {e1e−i[ω1(t )t+φCE,1]}
+ F2(t − τ ) Re {e2e−i[ω2(t )(t−τ )+φCE,2]}, (5)

where for the jth pulse ( j = 1, 2), Fj (t ) is the envelope
function given either by Eq. (2) or Eq. (3), φCE, j is the
carrier-envelope phase (CEP), and ω j is the instantaneous
carrier frequency defined by Eq. (1). The transition ampli-
tude (4) involves a photoabsorption term described by the
pulse polarization vector e j , and a photoemission term de-
scribed by its complex conjugate e∗

j . For pulse intensities
below 1014 W/cm2, we adopt the rotating wave approxi-
mation (RWA) by ignoring the small photoemission term,
described by the complex conjugate part of the electric field
in Eq. (5).

When retaining only the term of the electric field de-
scribing photoabsorption processes in the amplitude (4), a
positive-frequency component F̂+

j (ε) of the Fourier transform
of the pulse envelope Fj (t ) appears [41]:

F̂+
j (ε) = 1

2

∫ +∞

−∞
Fj (t )ei(E+Eb−ω j )t dt, (6)

where ε = E + Eb − ω0. For the case of the Gaussian shaped
envelope (2), the aforementioned positive-frequency compo-
nent can be evaluated analytically and it simplifies to the
following expression [30]:

F̂+
j (ε) = F0, jτ0

√
π

8 ln 2

× exp

(
− ε2τ 2

0

8 ln 2

)
exp

[
i

(
ε2τ 2

0 ξ j

8 ln 2
− β j

2

)]
, (7)

where the chirp-induced phase shift is given by

β j = tan−1(ξ j ). (8)

A key feature is that Eq. (7) shows that the chirp rate ξ j

only affects the phase of the pulse bandwidth, i.e., the Fourier
transform of the pulse envelope describing photoabsorption
processes. As a fundamental example of interference phenom-
ena, electron spirals are a purely spectral phase effect. Thus,
having the chirp to only affect the phase of the pulse band-
width is a property that should be sought when considering
other pulse shapes beyond the Gaussian one.

The resulting ionization transition amplitude expression
can be parametrized in terms of the vectors of the problem,
namely, the photoelectron momentum unit vector p̂ and the
pulse polarization vector e j (not the wave vector k j because
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the electric dipole approximation is valid and adopted). To
consider the more general case where the strengths of the
pulse fields may differ, we introduce f = F0,2/F0,1 the relative
field strength between the two pulses, and also the quantity
Jj such that F̂+

j (ε) = F0, jJ j . From Eq. (7), the expression for
Jj can be read out. Our parametrization for the ionization
transition amplitude in terms of those two vectors and the
quantities f and Jj reads [24]

A = A0(p)[J1(p̂ · e1) + f J2(p̂ · e2)ei�], (9)

where the following phase,

� = (E + Eb)τ + (φCE,1 − φCE,2), (10)

includes the Ramsey interference phase (E + Eb)τ and the
CEP difference, φCE,12 ≡ (φCE,1 − φCE,2), between the two
pulses. In Eq. (9), the dynamical amplitude parameter,

A0(p) = F0,1

2
D0(p)ei(π/2−φCE,1 ), (11)

involves D0(p), the radial matrix element of the electric dipole
momentum vector between the initial and final states by
one-photon transition. Before concluding this section, it is
important to highlight that the parametrization (9) holds for
any S-state atom (H, He, Li, Be, K, Na, etc.), any configuration
and polarization state of the two pulses delayed in time by τ ,
under the assumption that the depletion of the ground state is
negligible after its interaction with the first laser pulse.

For the H atom, D0(p) can be calculated analytically:

D0(p) = −eiδ1
4e−(2/p) tan−1(p)

p(1 + p2)5/2
√

π (1 − e−2π/p)
, (12)

where δ1 = arg �(1 − i/p) is the Coulomb scattering phase.
For other S-state atomic targets, although the analytical cal-
culation for D0(p) is challenging, its numerical value can
be extracted using the energy spectra from time-dependent
Schrödinger equation (TDSE) calculations (as done here
for the illustrative case of the helium atom) or from
experimental data.

IV. IONIZATION TRIPLY DIFFERENTIAL
PROBABILITY WITHIN the PT FRAMEWORK

The square modulus of the transition amplitude (9) from
first-order PT gives the TDP for single-electron ionization by
two pulses:

W = |A0(p)|2{|J1|2|p̂ · e1|2 + | f J2|2|p̂ · e2|2

+ 2 f Re [J∗
1 (p̂ · e∗

1 )J2(p̂ · e2)ei�]}. (13)

Let us now consider the specific case where the first pulse is
LP and the second pulse is arbitrarily polarized. In accordance
with Fig. 1, the corresponding pulses’ polarization vectors are

e1 ≡ ε1 = εz, (14)

e2 = εx + iηεy√
1 + η2

, (15)

where η ≡ η2 is the ellipticity of the second pulse. The con-
nection of the Cartesian coordinates of the unit vector p̂ ≡
p/p with its spherical angles (θ, ϕ) is known:

p̂x = sin θ cos ϕ, (16)

p̂y = sin θ sin ϕ, (17)

p̂z = cos θ. (18)

Combining Eqs. (14)–(18), one can then easily calculate
the geometric factors (p̂ · e j ) for j = 1, 2 and their complex
conjugates needed to calculate the TDP (13). For instance,
one has p̂ · e1 = cos θ for our LP first pulse, and p̂ · e2 =
(sin θ/

√
2) e±iϕ for our right (+) or left (−) CP second pulse.

Below, we show our analytical and numerical results for the
TDP in the cases of circular polarization and elliptical polar-
ization for the second pulse, while the first pulse is always LP
along the propagation direction of the second pulse.

A. Creation of the Ouroboros spirals using an orthogonal
synchronous LP pulse and a circularly polarized pulse

In the case where the second pulse is CP, either left cir-
cularly polarized (LCP) where η̂ = −1 or right circularly
polarized (RCP) where η̂ = +1, it is instructive to write the
TDP (13) in the following compact form:

W (p) = |A0(p)J1|2 sin2 θ

{
(g − cot θ )2

+ 4gcot θ cos2

[
(� + η̂ϕ)

2
+ ξ (E )

]}
, (19)

where g = f /
√

2 = F0,2/F0,1

√
2 is a renormalized relative

field strength in accordance to the circular polarization factor
(1 + η2)1/2 = √

2. It is remarkable that the TDP (19) and
Eq. (27) in Ref. [24] have the same structure, but differ only
by the chirp-induced spectral phase term ξ (E ), which is
given by

ξ (E ) = �β

4
+ ε2τ 2

0 �ξ

16 ln 2
, (20)

which is exactly one half of the difference of the phases of
the bandwidths F̂+

j (ε) [defined in (7)] of the two pulses.
Here, �β = β1 − β2 is the difference of the chirp-induced
phase shifts, �ξ = ξ2 − ξ1 is the chirp rate difference,
and ε = E + Eb − ω0. For TLPs where ξ1 = ξ2 = 0 or for
identical linearly chirped pulses where ξ1 = ξ2, one has
�β = 0 and �ξ = 0, meaning that the TDP (19) reduces to
Eq. (27) in Ref. [24]. The quantity |J1|2 entering the TDP (19)
for this pulse envelope shape reads

|J1|2 = π

8 ln 2
τ 2

0 exp

(
− ε2τ 2

0

4 ln 2

)
. (21)

In the detection geometry considered, the polar angle
θ is fixed and the TDP depends on the magnitude p
of the momentum vector p and its azimuthal angle ϕ,
i.e., Wθ = W (p, ϕ). Let us analyze the PMD when the
photoelectron momentum p ≡ (p, θ, ϕ) is directed along
the surface of one of the cones in Fig. 1. An important
result is that the PMDs corresponding to the upper and
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FIG. 2. Photoelectron energy dependence of the quantity |J1|2
defined by Eq. (21) normalized to unity for several values of τ0 and
the duration (FWHM); see the legend. Those values correspond to
three, four, five, and six cycles.

lower cones in Fig. 1 are mirror images of each other. This
is so because the TDP is invariant under the replacement
(θ, ϕ) → (π − θ, π + ϕ), meaning that W (p) = W (−p).

Because the dynamical parameter |A0|2 defined in (11)
for the hydrogen atom monotonically decreases with energy
[see Eq. (12) entering Eq. (11)], while |J1|2 defined in (21)
exhibits a bell shape (see Fig. 2), the shape of the PMD highly
depends on both the angular and energy dependences of the
kinematical factor, given by sin2 θ times the two terms inside
the curly brackets in the TDP (19). The first term in the curly
brackets is �(1)( f , θ ) = (g − cot θ )2, whereas its second term
is the one proportional to �(2)( f , θ ) = 4gcot θ , with the co-
efficient of proportionality called here the kinematical factor,
ϒ = cos2[(� + η̂ϕ)/2 + ξ (E )].

Since the first term is independent of both the energy E
and azimuthal angle ϕ of the photoelectron, it provides a
constant background signal in the PMD registered on cone
surfaces defined by the condition θ = const. Meanwhile,
in the second term ∝ �(2)( f , θ ) = 4gcot θ , the kinematical
factor, ϒ = cos2[(� + η̂ϕ)/2 + ξ (E )], depends on both the
energy E and azimuthal angle ϕ of the photoelectron momen-
tum. This kinematical factor is similar to cos2[(� + β )/2 +
ξ (E ) − η̂ϕ] obtained for the case of the single-photon single
ionization process of an S-state atom by a pair of synchronous
OCP copropagating pulses with equal and opposite chirp rates
[30]. As explained in Ref. [30], the minima and maxima of
these kinds of kinematical factors have the form of reversible
spirals. This similarity and the 1/2 and sign in η̂ differences
in the ϕ dependence suggest that for our linear ionization
process of interest, spirals with an odd number of arms and
opposite handedness can emerge in the PMD for some par-
ticular detection geometries depending on the relative field
strength f = F0,2/F0,1 between the two pulses, as well as on
the observation semiangle θ .

In general, whenever �(1)( f , θ ) � �(2)( f , θ ), the vis-
ibility of the spirals in the PMD can be masked by a
strong constant background signal. In contrast, whenever

�(1)( f , θ ) � �(2)( f , θ ), the dominance of the second term
will lead to a clearly visible spiral signal in the PMD. For
the sake of illustration, Figs. 4(a) and 4(b) in Ref. [24] show
the θ dependence of both �(1)( f , θ ) and �(2)( f , θ ) for the
case where the relative field strength is fixed to f = 2. Clearly
visible on those two figures are the wide ranges for angles θ

that favor the occurrence of spirals.
Despite this wide range for the angles θ , there are two

clean cases within this range for which the occurrence of
spirals is guaranteed because the first term (constant back-
ground signal) vanishes. These correspond to the cases when
recording the TDP (19) on a cone surface with semiangle θ1,
such that cot θ1 matches perfectly the renormalized relative
electric-field strength +g for the upper cone or −g for the
lower cone in Fig. 1.

In the six panels of Fig. 3, we show the numerical results
for the PMDs calculated using Eq. (19) for the upper cone
detection geometry in Fig. 1, where each laser pulse has a cen-
tral carrier frequency of ω0 = 16 eV, duration of τ0 = 1.55 fs,
intensity of 1014 W/cm2, and zero CEP. Thus, the relative field
strength is f = F0,2/F0,1 = 1 and g = 1/

√
2. The correspond-

ing opening angle θ1 for the detection geometry obtained by
solving cot θ = +g is then θ1 = 54.7◦. In all panels, the LP
first pulse and the CP second pulses are synchronous, i.e.,
there is no time delay τ between them. While Figs. 3(a)–3(e)
involve a RCP second pulse, Fig. 3(f) involves a LCP.

We first consider the chirp-free case in Fig. 3(a). Ac-
cording to Eq. (10), the phase � vanishes because τ = 0
and φCE,1 = φCE,1 = 0. Because �ξ = 0 and �β = 0 for
the chirp-free case or the case of identical linearly chirped
pulses, the TDP (19) reduces to the simple form W (p) =
2g|A0J1|2 sin(2θ1) cos2(η̂ϕ/2), which exhibits a rightward
horseshoelike monopole pattern. It is obvious that changing
the helicity of the second pulse from RCP to LCP under the
replacement η̂ → −η̂ does not change this pattern. However,
for the opening angle θ̃1 = π − θ1 = 125.3◦, the PMD (not
shown) recorded on the surface of the lower cone detection
geometry in Fig. 1 is the mirror image of the horseshoe-
like monopole pattern in Fig. 3(a). This is described by
W (−p) = 2g|A0J1|2 sin[2(π − θ1)] cos2[η̂(π + ϕ)/2], which
can be written as Wπ−θ1 = 2g|A0J1|2 sin(2θ1) sin2(η̂ϕ/2),
leading to a leftward horseshoelike monopole pattern.

Next, four schemes of LP + RCP pulses at zero time
delay and different linear chirps are considered in Fig. 3.
In Fig. 3(b) where ξ1 = −ξ2 = +1, one sees clearly that a
single-arm spiral pattern with energy dependent handedness
emerges in the PMD. Because of its energy dependent hand-
edness, this type of spiral has been dubbed the reversible spiral
in Ref. [30]. However, because this pattern in Fig. 3(b) is
similar to a snake biting its own tail, this pattern is dubbed
hereafter the Ouroboros-pattern-like electron spiral. This new
kind of spiral pattern is our main finding. In the following,
we control this electron phenomenon by investigating how the
Ouroboros-pattern-like electron spiral is sensitive to the pulse
parameters (chirp amount and sign, pulse helicity, and pulse
duration) as well as to the atomic target.

Doubling the chirp rates leads to the pattern in Fig. 3(c),
where now ξ1 = −ξ2 = +2. With respect to Fig. 3(b), one
observes that the length of the snake body from its eyes (ap-
proximately located at the intersecting lips) to its tail remains
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FIG. 3. PMDs [in units of 10−2 a.u. and calculated using
Eq. (19)] produced by photoionization of the hydrogen atom using
a LP pulse and CP pulse that are orthogonal with zero time delay
for different chirp schemes: (a) ξ1 = ξ2 = 0, (b, f) ξ1 = −ξ2 = +1,
(c) ξ1 = −ξ2 = +2, (d) ξ1 = −ξ2 = −1, and (e) ξ1 = 2, ξ2 = 0.
Panels (a)–(e) involve a RCP pulse, and panel (f) involves a LCP
pulse. Each pulse has a zero CEP, intensity I = 1014 W/cm2, carrier
frequency ω = 16 eV, and duration (FWHM) τ0 = 1.55 fs. The ratio
of the electric-field strengths is thus f = F0,2/F0,1 = 1 and one has
g = f /

√
2 = 1/

√
2. Therefore, the upper cone of detection has an

opening angle of θ1 = 54.7◦, determined by solving cot θ = g.

almost constant upon increasing the chirp rates. The parts
that are very sensitive to any variation of the chirp amount
are the snake lips, including the infralabial (lower lip) and
supralabial (upper lip). One sees that the self-splitting pattern
in Fig. 3(c) has no longer the Ouroboros shape as it is hard to
imagine a snake with its lips taking two thirds of its body.
For another comparison with Fig. 3(b), shown in Fig. 3(e)
is the result for ξ1 = 2, ξ2 = 0, for which the chirp rate dif-
ference �ξ = ξ1 − ξ2 = +2 is the same as in Fig. 3(b). The
difference between the Ouroboros patterns in Figs. 3(b) and
3(e) is due to the different global rotation induced by the
different values of the chirp-induced phase shifts �β in these
two cases. When viewed from the meeting point of the upper

and lower lips, one sees that the infralabial spirals inward,
while the supralabial spirals outward. In the Supplemental
Material [31], we provide an animation of the evolution of the
Ouroboros-pattern-like spiral with a variation of the chirp rate
ξ in the special case ξ ≡ ξ1 = −ξ2 over the range 0 � ξ � 3,
with a step in changing ξ fixed to 0.2. It is observed from
the animation that a Ouroboros pattern (a snake biting its own
tail with its lips not too long) is present for ξ in the range
0.5–1.0.

The full understanding of the shape or behavior of this
uncharted type of spirals resides in the structure of the chirp-
induced spectral phase, ξ (E ) [see Eq. (20)], present in
the kinematical factor, ϒ = cos2[(� + η̂ϕ)/2 + ξ (E )], of
the TDP (19). Given that ε = (E + Eb) − ω0, it is evident
that an expansion of Eq. (20) leads to ξ (E ) = �β/4 +
(τ 2

0 �ξ/16 ln 2)[(E + Eb)2 + ω2
0 − 2ω0(E + Eb)]. It is strik-

ing that the chirp-induced spectral phase ξ (E ) involves
a linear spectral phase −2ω0(E + Eb)�ξ and a quadratic
spectral phase (E + Eb)2�ξ with opposite signs. As the pho-
toelectron energy E increases outward from the center, the
linear spectral phase dominates over the quadratic spectral
phase for low energy and thus dictates the handedness of
the spiral at low energy. Since the second pulse is RCP in
Figs. 3(b), 3(c), and 3(e), one has η̂ = +1, meaning that a
clockwise spiral (because of the negative sign of the linear
spectral phase) viewed from the center takes place, which
corresponds to the infralabial spiral behavior. At intermediate
photoelectron energy, both the linear and quadratic spectral
phases with opposite signs become comparable. As the energy
increases, the clockwise spiral driven by the linear spectral
phase fades out while the counterclockwise spiral driven by
the quadratic spectral phase now fades in. At high energy, the
quadratic spectral phase takes over and a counterclockwise
(because of its positive sign) spiral is clearly observed, which
corresponds to the supralabial spiral behavior. One sees from
Figs. 3(b), 3(c), and 3(e) that larger chirp rate difference
results in spirals that are wound more densely for both the
infralabial and supralabial.

It should be noted that the explanations provided above are
qualitative. A quantitative analysis based on the astrophysical
concept of the pitch angle (the angle between the tangents of
a spiral arm and of a perfect circle of radius E ) [30] provides
a deeper insight into the shape of the Ouroboros-pattern-like
spiral. In particular, it can be used to determine the location of
the intersecting upper and lower lips of the snake. We find
that it is a node in the cotangent of the pitch angle and it
is located at Ec = ω0 − Eb, i.e., at the one-photon ATI peak.
The implication is that measuring the intersecting supralabial
and infralabial experimentally allows one to identify the target
under investigation by determining its binding energy Eb.
As discussed in Ref. [30], the pitch angle could be used to
measure the chirp rate difference, indicating thus application
for attochirpmetry.

To discuss the sensitivity of the handedness of the
Ouroboros-pattern-like spiral to both the sign of chirp rate
difference and the helicity of the second pulse, we show in
Fig. 3(d) the PMD for ξ1 = −ξ2 = −1 and η̂ = +1, which
corresponds to Fig. 3(b) with just a flip in the sign of the two
chirp rates. For comparison, shown in Fig. 3(f) is the PMD for
the same chirp rates ξ1 = −ξ2 = +1 as in Fig. 3(b) but with a
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flip in the helicity (i.e., η̂ = −1) of the CP second pulse. One
sees clearly that the PMDs in Figs. 3(d) and 3(f) are identical,
and they are mirror images of the pattern in Fig. 3(b). All
these patterns are recorded on the surface of the upper cone
detection geometry. If recorded on the surface of the lower
cone detection geometry, because of the mirroring effects the
identical pattern from the corresponding Figs. 3(d) and 3(f)
coincides (not shown) with the pattern in Fig. 3(b).

All these predictions are for the magic angle θ1 in the
upper or lower cone in Fig. 1 determined by the reduced ratio
g = f /

√
2 between the electric-field strengths of the orthog-

onal LP and CP pulses. One of the experimental challenges
could be to find those angles. If F1 and F2 are measured exper-
imentally, then a simple plot of �(1)( f , θ ) = (g − cot θ )2 and
�(2)( f , θ ) = 4gcot θ as a function of θ would reveal the range
of angles θ that favor the occurrence of the Ouroboros-pattern-
like electron spirals, i.e., when �(2)( f , θ ) � �(1)( f , θ ). For
θ �= π/2, the visibility of the Ouroboros spirals driven by the
second term in the TDP (19) can be controlled (enhanced) by
tuning (increasing) the relative field strength f = F0,2/F0,1.
This can be achieved by decreasing the field strength F1 of
the LP pulse, noting that CP pulses are much more difficult to
control experimentally than LP pulses.

B. Sensitivity of the Ouroboros pattern to the pulse
duration and atomic target

1. Sensitivity of the Ouroboros pattern to the pulse duration

The Ouroboros pattern was predicted in the previous
section and controlled by varying the amount and sign of
the chirp rates, and the pulse helicity was done for a fixed
pulse length (FWHM) τ0 = 1.551 fs, corresponding to six
optical cycles. In order for this pattern to be measured, it
is crucial to investigate how this pattern is modified as the
pulse duration varies. For the pulse parameters in Fig. 3(b)
where ξ1 = −ξ2 = +1 and η̂ = +1, we show in Fig. 4(a) the
PMD produced for τ0 = 1.293 fs (five cycles). Immediately,
one sees that the shape of the PMD in Fig. 4(a) differs from
the Ouroboros pattern in Fig. 3(b) by two key features. First,
while the length of the snake body remains unchanged, its
width as seen in Fig. 4(a) gets broader for a shorter pulse dura-
tion. Second, while the snake’s supralabial spiraling outward
is a bit stretched, the snake’s infralabial width gets substan-
tially broader as it is spiraling inward in a tightly wound
fashion with significant signal appearing at low photoelectron
energies. The Ouroboros pattern has now transformed to a
seashell pattern.

This transformation is attributed to the combined effect of
the pulse bandwidth |J1|2 (21) and the chirp-induced phase
ξ (E ) in (20) entering the TDP (19). The effect of the pulse
bandwidth is visible in Fig. 2, where |J1|2 normalized to unity
is plotted for six and five cycles. One observes that decreasing
τ0 results in widening the width of the Bell curve, explaining
thus any broadening of the spiral width and body snake width.
Moreover, as the radial matrix element |D0(p)|2 between the
ground state and continuum state decreases monotonically
with E , the small values of |J1|2 for six cycles at low energies
(less than 0.5 eV) in Fig. 2 dominates over |D0(p)|2, resulting
thus in the absence of any signal at low energies for the fixed
plotting scale. For five cycles, the pulse bandwidth widens,

FIG. 4. (a)–(c) Sensitivity of the Ouroboros pattern to the pulse
duration (FWHM) by considering photoionization of the H atom for
three values of τ0: (a) τ0 = 1.293 fs, (b) τ0 = 1.034 fs, and (c) τ0 =
775.5 as. All the other parameters in panels (a)–(c) are the same as in
Fig. 3(b). (d) Sensitivity of the Ouroboros pattern to the atomic target
by considering the He atom. The FWHM in panel (d) is τ0 = 344
as, corresponding to three cycles, with a carrier frequency of ω0 =
36 eV. In all panels, because each pulse intensity is 1014 W/cm2, one
has f = F0,2/F0,1 = 1 and the upper cone of detection has an opening
angle of θ1 = 54.7◦, determined by solving cot θ = g = 1/

√
2. The

PMDs in units of 10−2 a.u. are calculated using Eq. (19).

resulting in an increase of |J1|2 at these lower energies (see
Fig. 2). Being now comparable, both the |J1|2 and |D0(p)|2
contribute to turn on the low-energy signal seen in Fig. 4(a)
that is absent in Fig. 3(b). The tightly wound spiral behav-
ior now uncovered at low energies is the signature of the
dominant linear spectral term −ω0(E + Eb)(τ 2

0 �ξ/8 ln 2) in
the chirp-induced phase ξ (E ) (20). Decreasing the pulse
duration further to τ0 = 1.034 fs (four cycles) [see Fig. 4(b)]
and then to τ0 = 0.776 fs (three cycles) [see Fig. 4(c)] results
in significant reduction of the length of the snake’s infralabial
winding, which is again the fingerprint of the dominant linear
spectral term −ω0(E + Eb)(τ 2

0 �ξ/8 ln 2) in the chirp-induced
phase ξ (E ) (20), as it is proportional to τ 2

0 �ξ/16 ln 2. More-
over, not only the width of the seashell pattern becomes
broader and broader, but the magnitude of the TDP decreases
as indicated by the crescent-moon-like feature pertaining to
the PMD and located at around E = ω0 − Eb which becomes
dimmer and dimmer. These last two effects are attributed to
the quantity |J1|2 (21), which gets wider as τ0 decreases to
four and three cycles (see Fig. 2) and is proportional to τ 2

0 .

2. Sensitivity of the Ouroboros pattern to the atomic target

All these results for the PMDs for photoionization of the
hydrogen atom initially on the 1s ground state are calculated
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using the PT formula Eq. (19). A natural question arises on
whether this PT formula holds for other atomic targets. As
a result, the first-order PT formalism [see Eqs. (4)–(19)] dis-
cussed here is applicable for any S-state atomic target, such as
H, He, Li, Be, K, and Na.

We demonstrate this for the case of a helium atom initially
in its 1Se ground state by two means: (i) a direct TDSE
calculation for the two synchronous and orthogonal pulses as
described in Ref. [24] and (ii) using the PT formula Eq. (19)
when extracting the dynamical parameter |D0(p)|2 from a
TDSE calculation by a single pulse that is circularly polar-
ized. Indeed, from the parametrization of the photoionization
amplitude given by Eq. (14) in Ref. [57], the dynamical pa-
rameter α+ in the first term of that equation is A0(p)J1, where
A0(p) ∝ D0(p) [see Eq. (11) above]. Within the RWA, the
negligible second term ∝ α− in Eq. (14), describing photoe-
mission processes, can be dropped for weak intensity (which
is the case considered here). Thus, knowing the exact expres-
sion for |J1|2 as is the case here for Gaussian envelopes, one
can use the TDP from a TDSE calculation by a single pulse
circularly polarized (for which |e · p̂|2 = 1/2) when the pho-
toelectron is detected in the laser polarization plane (θ = π/2)
to extract |D0(p)|2 numerically, needed in the PT formula
Eq. (19) calculation.

As with the hydrogen atom, we find that |D0(p)|2 for
the helium atom also decreases monotonically with the
photoelectron energy E . For the two synchronous and
orthogonal Gaussian-shaped pulses with each having a carrier
frequency of ω0 = 36 eV, intensity of 1014 W/cm2, and du-
ration (FWHM) τ0 = 344 as (corresponding to three cycles),
the PMDs for the chirp schemes ξ1 = −ξ2 = +1 calculated
from methods (i) and (ii) are found to coincide, confirming
the validity of all PT assumptions listed above. Such PMDs,
shown in Fig. 4(d), exhibit an Ouroboros pattern for three
cycles.

Because the helium atom is inert and nonflammable
(unlike hydrogen, which is lighter and highly flammable) it is
more handleable experimentally than the hydrogen atom when
investigating the photoionization process in the attosecond
regime. Other atomic candidates in the femtosecond regime
include K and Na, which have already been considered pre-
viously to observe electron spirals in resonance-enhanced
multiphoton ionization processes [3,4,19,20].

C. Control of the Ouroboros spirals using an orthogonal
synchronous LP pulse and an elliptically polarized pulse

As purely circularly polarized laser pulses are difficult to
be realized experimentally, we examine in this section the
sensitivity of the Ouroboros-pattern-like spiral to the ellip-
ticity of the second laser pulse. For the general case where
a LP Gaussian-shaped pulse orthogonal to an arbitrary EP
Gaussian-shaped pulse strikes the hydrogen atom and releases
the ground-state electron into the continuum, the TDP can
take the following compact form:

W (p) = |A0J1|2 sin2 θ

{
(gη − cot θ )2 + 2gη cot θ

×
[
χ (+)

η cos2

(
� + ϕ

2
+ ξ

)

+χ (−)
η cos2

(
� − ϕ

2
+ ξ

)]

−χ (+)
η χ (−)

η g2
η sin2(ϕ)

}
, (22)

where gη = f /
√

1 + η2 is the renormalized relative field
strength in accordance with the elliptical polarization factor
(1 + η2)1/2, χ (±)

η = 1 ± η is a pulse ellipticity factor, and
ξ ≡ ξ (E ) is the chirp-induced spectral phase given by
Eq. (20). Comparing Eqs. (22) and (19), one sees that the TDP
(22) for LP and EP pulses largely follows the same structure
as the TDP (19) for LP and CP pulses, but with three notable
differences.

The first term �(1)
η ( f , θ ) = (gη − cot θ )2, which con-

tributes to the constant background signal at any specific θ ,
now also depends on η via the factor gη ≡ f /(1 + η2)1/2. One
can thus tune the strengths F1 and F2 of the two pulses together
with the ellipticity η of the second pulse to get the magic angle
θη at which this first term vanishes.

The second term ∝ �(2)
η ( f , θ ) = 2gη cot θ , which acts like

the spiral driven second term in (19), corresponds to a super-
position of a pair of Ouroboros spiral patterns with opposite
helicity, whose magnitudes are fully controlled by the field
strength ratio f and the pulse ellipticity η through gηχ

(±)
η =

f (1 ± η)/(1 + η2)1/2.
Finally, there is an additional third term ∝ sin2(ϕ), that

has a dipolar shape along the y axis with a magnitude
determined by the EP pulse degree of linear polarization
� ≡ g2

ηχ
(+)
η χ (−)

η = (1 − η2)/(1 + η2). It is straightforward to
see that taking η = ±1 in the TDP (22) leads to TDP (19)
since �(1)

η and �(2)
η reduce respectively to �(1) and �(2), while

� = 0 since either χ (+)
η or χ (−)

η vanishes.
The shape of the PMD for this case of LP and EP pulses is

thus determined by the interplay of the shapes of these three
types of patterns. For the observation angle of θη, only the
interplay between the last two terms is accessible. Given that
we want to control the occurrence of the Ouroboros pattern
in Fig. 3(b) produced by orthogonal LP and CP pulses (where
η = ±1), in the following we fix the observation angle to be
θ = θ1 � 54.7◦. The sensitivity of the PMD to the pulse ellip-
ticity η of the second pulse is shown in Fig. 5, where six values
of η are considered, namely, η = 0.75 [Fig. 5(a)], η = 0.5
[Fig. 5(b)], η = 0.4 [Fig. 5(c)], η = 0.3 [Fig. 5(d)], η = 0.25
[Fig. 5(e)], and η = 0.0 [Fig. 5(f)]. As η decreases from 1 to
0 (i.e., from circular to linear through elliptical polarization),
one sees that a clockwise Ouroboros spiral does occur up to
η = 0.5 [see Figs. 3(b), 5(a), and 5(b)]. Next, Figs. 5(c)–5(e)
show that the Ouroboros patterns with distorted lips now
resemble a snake swallowing more and more its own tail as
η goes from 0.4 to 0.25. At η = 0, some parts of lips break
while some merge, leading thus to the pattern in Fig. 5(f) that
exhibits asymmetry along the x axis and symmetry along the
y axis.

To explain these observations, we consider the PMD
in Fig. 3(b), whose shape is described by 2gη(1 +
η) cot θ cos2[(� + ϕ)/2 + ξ ] for η = 1, as our reference. As
η decreases, although the magnitude of the constant back-
ground signal from the first term increases, it is very small
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FIG. 5. PMDs [in units of 10−2 a.u. and calculated using
Eq. (22)] produced by photoionization of the H atom exposed to a
LP pulse with chirp rate ξ1 = +1 and an EP pulse with chirp rate
ξ2 = −1, that are orthogonal and arrive at the target simultaneously.
Shown are results for different values of the ellipticity η of the
second pulse: (a) η = 0.75, (b) η = 0.5, (c) η = 0.4, (d) η = 0.3,
(e) η = 0.25, and (f) η = 0. All the other parameters are the same as
in Fig. 3(b).

compared to other magnitudes. It can thus be discarded from
the analysis of the shape of the PMD. As the other terms in the
TDP (22) are all proportional to gη, it can thus be factored out.
As η decreases, the magnitude of the above-mentioned clock-
wise Ouroboros reference pattern now decreases as 2(1 +
η) cot θ , whereas the magnitude of each of the other two terms
increases almost at the same rate. Indeed, the magnitude of
the y-axis dipolar third term is now controlled by (1 − η2)gη,
whereas the magnitude of the counterclockwise Ouroboros
spiral is now controlled by 2(1 − η) cot θ .

The ratio, R2−,3, between the magnitudes of the counter-
clockwise Ouroboros pattern and the y-axis dipolar pattern
is shown in Table I for various values of η. One sees that
these two terms are always comparable, with the magnitude
of the dipolar pattern always being a bit smaller. Also shown
in Table I is the ratio, R2+,2−, between the magnitudes of the

TABLE I. Variation with the ellipticity η of the ratio between
the magnitude of the reference clockwise Ouroboros pattern and that
of the counterclockwise Ouroboros pattern, R2+,2− (row 2), or with
that of the y-axis dipolar pattern, R2+,3 (row 3). The ratio between
the magnitudes of the counterclockwise Ouroboros pattern and the
y-axis dipolar pattern is displayed in R2−,3. Here, f = 1, θ = θ1, and
the pulse parameters are the same as in Fig. 5.

η 0.75 0.50 0.40 0.30 0.25 0.00

R2+,2− 7 3 2.3 1.9 1.7 1
R2+,3 7 3.1 2.5 2.1 1.9 1.4
R2−,3 1 1.04 1.07 1.12 1.14 1.4

reference clockwise Ouroboros pattern and the counterclock-
wise Ouroboros pattern. For 0.5 � η � 1, Table I shows that
the magnitude of the clockwise Ouroboros reference pattern
dominates over other terms by a factor at least greater than
3, explaining thus the predictions in Figs. 3(b), 5(a), and
5(b). As η continues to decrease from 0.5 up to 0.25, the
contrast (ratio) in magnitude between the reference clockwise
Ouroboros pattern and the two other patterns gets narrower
(see Table I) in such a way that they become comparable,
differing only by a factor ≈2. Mixing all these three patterns
results in the pattern in Figs. 5(c)–5(e), where one sees a
snake swallowing more and more its own tail while parts
of its lips become distorted. Decreasing of η to zero (i.e., a
purely LP pulse), such mixture leads to a pattern [see Fig. 5(f)]
which is no longer “in-plane chiral” because the arms of the
distorted spirals or lips break and merge to the core pattern,
which is dipolar along the two orthogonal x and y directions
(because the two pulses are LP in this case). The symmetric
signal along the y axis is the signature of the third term
in the TDP (22), whereas the asymmetric signal along the
x axis is the signature of the interaction between two
Ouroboros spirals with opposite handedness given by the sec-
ond term in TDP (22).

V. SUMMARY AND CONCLUSIONS

In summary, we have investigated the linear (in intensity)
process of single-photon single ionization of H and He atoms
using two synchronous orthogonal linearly polarized and cir-
cularly polarized laser pulses and found great sensitivities of
the PMD to the amount and sign of linear chirp inside the
laser pulses, to the pulse duration, ellipticity of the second
pulse, and atomic target. Based upon the first-order perturba-
tion theory framework, our exact analytical calculations have
shown that the PMD presents a monopole pattern, resembling
a horseshoelike pattern for the chirp-free case or for identi-
cally chirped pulses. In contrast, when the two laser pulses
are chirped differently, we have identified an experimentally
accessible uncharted type of spirals. Having one arm, they are
dubbed Ouroboros-pattern-like spirals as they resemble the
patterns of a snake biting its own tail. They stem from the
opposite signs of the linear and quadratic terms in the spectral
phase of the photoelectron introduced by the two differently
chirped pulses. While the present paper focuses on the case
of Gaussian-shaped pulses, the use of other pulse shapes
to investigate whether and how the self-splitting pattern is
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modified sounds attractive and will be explored in future
works.

The scheme and detection geometry required to observe
this electron phenomenon can be realized in experiments with
great manipulation of the electric-field strengths, ellipticity,
and chirp rates of the two pulses. We note that the laser
field configuration proposed here to investigate this linear
process of photoionization is realistic even for attosecond
pulses where the existing pulses from the process of high-
order harmonic generation [46–53] and optical synthesizing
[58] have low intensities. The study of isolated attopulses
from free-electron lasers [54,59–62] with high fluence in the
soft-x-ray or XUV regime is an emerging and compelling field
that has the capability to confirm our predictions. Our predic-
tion holds for any S-state atoms, including H, He, Li, Be, K,
and Na. Because our 2022 prediction of two-arm reversible
spirals [30] has once again been measured by the Wollenhaupt

group in 2023 for multiphoton ionization of K atoms [33], it
is highly likely that Ouroboros spirals (single-arm reversible
spirals) may be soon demonstrated experimentally as least in
the femtosecond regime.
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