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On the basis of optimal control theory, we numerically study how to optimally manipulate molecular
vibrational dynamics by using cycle-averaged polarizability interactions induced by mildly intense nonres-
onant laser (NR) pulses. As the essential elements to be controlled are the probability amplitudes, namely,
the populations and the relative phases of the vibrational eigenstates, we consider three fundamental con-
trol objectives: selective population transfer, wave-packet shaping that requires both population control and
relative-phase control, and wave-packet deformation suppression that solely requires relative-phase control
while avoiding population redistribution. The nontrivial control of wave-packet deformation suppression
is an extension of our previous study on wave-packet spreading suppression. Focusing on the vibrational
dynamics in the B state of I, as a case study, we adopt optimal control simulations and model anal-
yses under the impulsive excitation approximation to systematically examine how to achieve the control
objectives with shaped NR pulses. Optimal solutions are always given by NR pulse trains, in which each pulse
interval and each pulse intensity are adjusted to cooperate with the vibrational dynamics to effectively utilize the

quantum interferences to realize the control objectives with high probability.
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I. INTRODUCTION

The coherent control of vibrational wave packets of
molecules through electronic and/or vibrational excitations
has attracted much attention as it directly manipulates wave
functions to achieve, for example, specified nuclear con-
figurations associated with target reaction dynamics [1-3].
Although we often adopt resonant laser pulses for this pur-
pose, optical selection rules impose restrictions on optically
accessible regions so that in the optically “dark™ regions, the
vibrational wave packets evolve in time in the absence of con-
trol pulses. This puts a limit on the capability of the resonant
laser pulses to control the vibrational wave packets because
physically and/or chemically important processes such as
nonadiabatic transitions often occur in the optically “dark”
regions [4]. Mildly intense nonresonant (NR) laser pulses
are considered an alternative control tool as they introduce
induced dipole interactions, that is, polarizability interactions,
which are almost unrestricted by the optical selection rules.
The trade-off in NR pulse control is that the polarizability
interactions are cycle averaged over the optical frequencies,
resulting in the loss of optical-frequency-dependent control
knobs. To overcome the lack of control knobs, the NR pulse
envelopes should be suitably shaped to effectively cooper-
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ate with the vibrational wave packets to achieve the control
objectives.

The cycle-averaged polarizability interactions manipulate
the vibrational wave packets through the dynamic Stark shifts
(energy shifts) and the Raman transitions even though they
are inseparable from each other [5-16]. Examples include the
so-called dynamic Stark control of reaction dynamics [5—-12],
which mainly utilizes the dynamic Stark shifts to distort the
potential energy surfaces to selectively enhance/suppress the
specified reactions. The population transfer achieved by the
stimulated Raman transitions has been studied particularly
in the adiabatic excitation regimes because of the robust-
ness [17-22]. Typical examples with and without the (near)
resonant intermediate states include the stimulated Raman
adiabatic passage (STIRAP) [17,18] and the Stark-induced
adiabatic Raman passage (SARP) [19-21], which are often
discussed by using the three-state lambda and the two-level
systems, respectively. Another example is the amplification
of torsional motion by impulsive Raman transitions, the ef-
fectiveness of which has been demonstrated in a variety of
systems [13—16]. Recently, we proposed a control scheme
for suppressing vibrational wave-packet spreading (dephas-
ing) [23,24] by periodic NR pulse irradiation, although we
restricted ourselves to the vibrational wave packets created
by the Fourier transform-limited (TL) pump pulses, which are
characterized by zero initial relative phases. This control is
nontrivial because the relative phases among the vibrational
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eigenstates are solely adjusted while avoiding the population
redistribution during the control period so that the controlled
wave packets evolve in time as if they are in a harmonic
potential. Note that the intensity of the NR pulses used in the
dephasing suppression is not sufficient to distort the potential
energy surface. In addition to the vibrational dynamics, the
(shaped) NR pulses are also applied to molecular rotational
dynamics in which the rotational wave packets are controlled
mainly by the rotational Raman transitions [25-35]. Examples
include molecular alignment control and the realization of
specified rotational population distributions [34,35].

Motivated by recent developments in the coherent control
with NR pulses, in this study, we systematically examine how
effectively the NR pulses control the probability amplitudes
in nonadiabatic regimes on the basis of quantum optimal
control theory [36-38] through a case study of vibrational
dynamics. Because of experimental feasibility, we consider
the vibrational dynamics in the B state of I, as in the previous
study. We discuss the effectiveness and the limitations of NR
pulse control by focusing on three fundamental objectives:
(i) nonadiabatic selective population transfer, (ii) wave-packet
shaping that requires both population and relative-phase con-
trol, and more importantly (iii) wave-packet deformation
suppression that solely requires relative-phase control without
changing the population distribution. The nontrivial control of
wave-packet deformation suppression is an extension of our
previous study on wave-packet spreading suppression [23,24].
Specifically, we require the wave packet, which moves in an
anharmonic potential, to periodically oscillate as if it is in
a harmonic potential and therefore, the wave packet recov-
ers its original shape in (almost) every vibrational period.
Our numerical results will show that the shaped NR pulses
control the three fundamental objectives as effectively as
shaped resonant laser pulses [1-3,38]. On the other hand,
with regard to the control mechanisms, there are significant
differences between them because the NR pulses lack the
optical-frequency-dependent control knobs, which are one of
the main control knobs of the resonant laser pulses. We deal
with the three fundamental control objectives by focusing
on the single quantum system, i.e., the B state vibrational
system, so that the structural changes of the optimal NR
pulses could be straightforwardly attributed to the objective-
dependent control mechanisms. We thus discuss the control
mechanisms achieved by the optimal NR pulses on the basis
of the structures of the numerically designed optimal NR
pulses and the model analyses under the impulsive excitation
approximation [39,40].

In Sec. II, we outline the optimal control simulation with
the polarizability interactions, the numerical details of which
are provided in Appendixes A and B. In Sec. III, we show
the numerical results associated with the selective population
transfer, the wave-packet shaping, and the suppression of
wave-packet deformation. We also adopt an impulsive exci-
tation model to qualitatively discuss the control mechanisms.
We summarize the present study in Sec. I'V.

II. OPTIMAL CONTROL SIMULATION WITH NR PULSES

We consider a two-electronic-state system composed of the
X and B electronic states of I, which is assumed to be initially
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FIG. 1. Schematic illustration of laser pulse sequence during the
pump period [#;, #] and the control period [fy, f].
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in the lowest vibrational state |Oyx) in the ground X electronic
state. As illustrated in Fig. 1, we first prepare specified initial
vibrational states in the B electronic state by adjusting the
shapes of weak pump pulses Epymp(f) during the pump period
[#, to]. We briefly summarize the initially excited states and
the molecular parameters in Appendix A. By suitably choos-
ing the optical frequency, we can safely assume that the NR
pulses do not induce electronic transitions so that the initially
excited states evolve in time within the B state potential while
being controlled by the linearly polarized NR pulses during
the control period [y, #;]. Because of this, the time evolution
of the vibrational wave packet in the B state is described by
the Schrodinger equation

d
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where the (normalized) initial state in the B state is given by
[V (t9)) (Appendix A). Here, the B state vibrational Hamil-
tonian Hp(t) is composed of the field-free part H,g and the
polarizability interaction cycle averaged over the optical fre-
quency of the NR pulse. In Eq. (1), Exr(t) and ap(r) are
the envelope of the NR pulse and the polarizability function
with » being the internuclear distance, respectively. The vi-
brational eigenvalue fiw, and eigenstate |v) are defined by
H g |v) = hw,|v), where v is the vibrational quantum number.
Note that we can safely ignore the rotational motion in the B
state because the rotational period 571 ps, which is estimated
from the rotational constant B = 0.0292 cm™! [41], is much
longer than the control periods considered in the present study.

We consider the general optimal control problem [36,42]
defined by

J = (Y @)IX|¥ () +/ dr{yOY Oy @), (2)

fo
which is expressed in terms of the target operators X and Y (¢)
that quantify our physical objective at the final time # and
during the control period [#y, #], respectively. If we apply the
calculus of variations to Eq. (2) subject to the constraint given
by Eq. (1), we will obtain the maximal condition

Im (& (@) lap (MY (1))Enr (1) = 0. 3)

Here, the Lagrange multiplier |£(¢)) associated with the
constraint [Eq. (1)] obeys the equation of motion

ad .
ihalé(t» = Hp(0)|&(1)) — ihY (1)|y (1)), “)
with the final condition |£ (t;)) = X |¥ (%)).
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The so-called coupled pulse-design equations composed of
Egs. (1), (3), and (4) are solved iteratively by using the pre-
viously developed monotonically convergent algorithm that
can deal with the nonlinear interaction with respect to Exg(?)
[43-45]. Note that we introduce the instantaneous penalty
[46] through the polarizability interaction to suppress the in-
tensities of the optimal NR pulses so that we replace ap(r)
with e, (r) = (1 + iy )ap(r) when solving the coupled pulse-
design equations. We choose the value of the positive constant
parameter y to adjust the pulse intensity. In practice, we divide
the iteration steps into several partially converged stages as
explained in Appendix A in Ref. [24]. Each stage is charac-
terized by the suitably defined specified threshold value of the
peak amplitude of Eng (7). To achieve the partial convergence,
we adopt the stage-dependent values of y typically in the
range of [1 x 107* fs=!, 3 x 107* fs~'] and if necessary, we
further adjust the values depending on the degree of overall
convergence. After obtaining the optimal NR pulses in the
presence of the instantaneous penalty, we substitute the opti-
mal NR pulses into the original equation of motion [Eq. (1)] to
calculate the dynamics without being affected by the artificial
parameter y.

III. RESULTS AND DISCUSSION

Three kinds of control objectives are considered in the
present study to illustrate how the NR pulses control the
probability amplitudes in the vibrational dynamics. The first
two control objectives are (i) the selective population transfer
(Sec. IIT A) that solely requires the population control, and
(ii) the wave-packet shaping (Sec. IIIC) that requires the
control of both the population distribution and the relative
phases. The third control objective is (iii) the suppression
of the wave-packet deformation (Sec. IIID), in which we
need to solely control the relative phases without changing
the population distribution. In the first two applications, the
system is assumed to be initially prepared in a specified vi-
brational eigenstate |y (fp = 0)) = |v = 30), whereas in the
third application, various pump pulses are used to prepare the
specified initial vibrational wave packets.

In the following numerical examples, we will use the
dimensionless envelope function f(¢) defined by Eng(?) =
EXrf(1). Referring to the previous study [47], we mea-
sure the magnitude of the interaction in units of V,(r.) =
aB(re)(egR)2 = 1.3 x 1072 a.u. with r, being the equilibrium
internuclear distance in the B state. Here, the polarizabil-
ity interaction expressed in terms of f(¢) is given by

—ag(NIEROT /4 = =V (D[f ()] /4.

A. Selective population transfer

We start the discussion with the selective population trans-
fer, in which the temporal width of the pump pulse is
assumed to be sufficiently long to initially prepare the spec-
ified vibrational eigenstate | (fo = 0)) = |v = 30). Our aim
is to achieve the selective population transfer into the state
|v = 31) within the specified control period [ty = 0, #¢]. The
target operators in Eq. (2) are set to X = |v = 31){(v = 31|
and Y () = 0. One of the difficulties of the selective popula-
tion transfer originates in the frequency resolution associated
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FIG. 2. Population of the target state [v = 31) as a function of the
final time #; (purple line with solid circles) measured in units of the
vibrational period defined by 73, 30 = 482 fs. The blue line with solid
squares shows the relative pulse fluence with respect to the fluence
in the case of #; = 80173 39, i.e., the Raman 7 pulse.

with the adjacent vibrational Raman transitions that are close
to each other in energy. For example, the present system gives
w3130 = 69.1 cm~! and 30,29 = 71.3 Cl’l’l_l, where Wyl =
Wy+1 — wy. Distinguishing the two Raman transition frequen-
cies w31 30 and wsg o9 takes ~3373; 30 =~ 15.8 ps with T3; 39 =
482 fs, where the vibrational period is defined by 7,41, =
2r / Wy+41,v-

With this in mind, we numerically calculate the optimal
NR pulse envelopes that maximally achieve the selective
population transfer for several final times 7;. We see from
Fig. 2 that the optimal NR pulses achieve almost complete
population transfer even when # ~ 10 73 39, which is much
shorter than that expected from the frequency resolution, i.e.,
tr > 3373 30. Figure 2 also shows the relative pulse fluence
with respect to the fluence associated with the so-called Ra-
man 7 pulse, where the Raman pulse area is defined by the
temporal integral of the polarizability interaction over the
control period [ty, ;] divided by 7 [48]. The relative fluence
rapidly decreases as #; increases and becomes almost constant
(the Raman 7 pulse) after #; = 3373 3.

Before examining the nontrivial control mechanisms in
the case of # < 337339, we consider the results when #; =
337330 because the control mechanisms are expected to be
easier to understand than when #; < 33 73, 3¢. Figure 3 shows
(a) the envelope f(¢) of the optimal NR pulse and (b) the
major populations as a function of time when #; = 3373 3.
We see from Fig. 3(a) that the optimal solution is the pulse
train composed of 33 pulses appearing regularly at every
vibrational period ~ T3; 39, which is indicated by the purple
solid squares. As expected from the Fourier spectrum (not
shown here) of the optimal pulse train, the initial population
of the state [v = 30) is gradually and selectively transferred
to the target state |v = 31) while only a small portion of the
population is distributed in the other states during the control
period [see Fig. 3(b)]. The gray solid triangles show the popu-
lation of the state [v = 31) derived from the analytical model,
which will be discussed in the next section. If we scrutinize
the structure of the pulse train, we see that pulses with slightly
high intensities appear around both ends and the middle of
the control period. The wave packet around the initial (final)
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FIG. 3. (a) Optimal pulse envelope as a function of time (blue
line) when #; = 33 T3, 39. The intervals between the adjacent pulses
are shown by purple solid squares. The black dashed line shows
Ts1 30 = 482 fs. (b) Populations of four major vibrational eigenstates
involved in the population transfer control. Gray solid triangles show
the population of the target state [v = 31), which is derived from the
three-state model under the impulsive excitation approximation (see
Sec. III B).

time is approximated by the vibrational eigenstate |v = 30)
(Jv = 31)), which minimizes the interference effects between
[v =30) and |v = 31). Slightly intense pulses are required
to overcome the minimal quantum interference effects to
induce the population transfer. Contrary to this, the intense
pulses around the middle of the control period actively utilize
the interference effects to efficiently induce the population
transfer.

We next consider t; = 2573, 30 as an example of the non-
trivial population transfer control, the results of which are
summarized in Fig. 4. Although the optimal pulse in Fig. 4(a)
looks like a simple pulse train composed of 25 pulses, the
intervals between the adjacent pulses are no longer constant
as indicated by the solid purple squares. Roughly speaking,
the intervals longer than ~ T3 39 appear in the first half and
those close to ~ T30 29 (= 468fs) appear in the second half.
The pulse train with irregular pulse intervals could lead to
a broader Fourier spectrum than the pulse train with regular
pulse intervals and could cause population transfer among
the unwanted vibrational eigenstates. In fact, certain amounts
of populations appear in states |[v = 29) and |v = 32) during
the control period in Fig. 4(b), although an almost perfect
population transfer is achieved at the final time. We will
examine these nontrivial control mechanisms by adopting the
analytical model in the next section.

Finally, we note that when the control times are set to
shorter than # < 1573 30, highly structured optimal pulse
trains (not shown here) with large pulse fluence are obtained,
as shown in Fig. 2. The highly structured pulse trains would
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FIG. 4. (a) Optimal pulse envelope as a function of time (blue
line) when #; = 2573, 39. The intervals between the adjacent pulses
are shown by purple solid squares. The black dashed line shows
T51.30 = 482 fs. (b) Populations of four major vibrational eigenstates
involved in the population transfer control. Gray solid triangles show
the population of the target state [v = 31), which is derived from the
three-state model under the impulsive excitation approximation (see
Sec. III B).

actively manipulate the quantum interferences through mul-
tiple Raman transitions to achieve the selective population
transfer (Fig. 2), although it is difficult to interpret the control
mechanisms.

B. Three-state model with impulsive excitation approximation

Referring to the numerically designed optimal NR pulses
in Figs. 3(a) and 4(a), we assume that the pulse train is ex-
pressed as temporally separated N pulses such that Exg (t) =
22;1 &,(t — 1,) with the time delay {7,}. If we further as-
sume the impulsive excitation approximation, the wave packet
at time #; is expressed as

[ (te)) =UQt — wn)e®™ U P (y — 1)
x e @B UO (g, —1, 1) &PUO(71—10)|¥0),
(5)

with 79 =1y and the initially excited state |y (%)) = |vo)-
The free propagator and the operator R associated with the
polarizability interaction are, respectively, defined by

_iHl(i’)(Tn - Tn—l))(n —1.2 N)

(6)

U(O)(Tn - fn—l) = exp ( )

and

Ry=— / " U O aU OO e P, ()

[ee]
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As a minimal model of the present vibrational system,
we consider a three-state model composed of the vibrational
eigenstates |v + 1), |v), and |v—1). In the matrix representa-
tion, we denote the initially excited state |1) and the wave
packet at time 7, (immediately after the nth pulse) [ (z,))
as ¥y and ¥(7,) = [Cpr1(T0), Co(T0), Cy1(T0)]', respectively,
where the superscript “¢” means the transposed matrix. The
operators R, and U (t, — 7,_|) are expressed as R, and
U9, — 1), respectively. Because we can safely ignore
the vibrational quantum number dependence of the dynamic
Stark shifts in the vibrational eigenstates considered here, we
will remove the shifts as the global phase. Then, we have

'R/X
e U(O)(Tn - Tn—l)

A =i e iB, A i Brnmi
n n 5
= | iB,e ! ®nim A,(f) +Af,_) iB,é' din,nfl , (8
Ag_)e_’q}"»”*‘ iB, A’(j‘)e’ Pt
where q>n,n—l = (wv-H - wv)(Tn - Tn—l) and dSn,n—l = (wv -

@y—1)(Ty — Tu—1). The matrix elements are defined by A*) =
(+1 4+ cos ﬁan)/Z and B, = sin ﬁan/ﬁ, where a, =
(V'|Ry|v)8y vx1. Here, we only consider the |Av|=1
Raman transitions because of the small absolute values of the
|Av| > 2 Raman transition elements in the present system.

To verify Eq. (8), we apply Eq. (8) to the selective pop-
ulation transfer considered in Sec. I A with v =30 and
¥, =(0, 1, 0). By expressing the Raman 7 pulse as a
pulse train composed of identical N pulses with the regular
pulse interval @, ,_; = (w31 — w30) 131,30 = 27, we assume
the n-independent value of a, = —m /2N in Eq. (8), where the
negative value comes from the present definition of the phases
of the vibrational eigenstates and the factor 1/2 is also due to
our definition. We plot the time evolution of the population
of the state |[v = 31) by setting N = 33, which is shown by
the gray solid triangles in Fig. 3(b). This simplified treat-
ment reasonably reproduces the time-dependent population
induced by the optimal NR pulse and justifies the qualitative
description of the vibrational dynamics by using Eq. (8) as
a minimal model. For reference, we also calculate the time
evolution of the population of the state [v = 31) by assum-
ing the simplified pulse train with N = 25 in Fig. 4(b). As
expected, such a simplified pulse train no longer reproduces
the time-dependent behavior of the |v = 31)-state population,
which again indicates the nontrivial control mechanisms when
tr = 25731 30.

To qualitatively discuss the nontrivial control mechanisms
in Fig. 4, it is convenient to simplify the expression up to
the lowest-order terms with respect to the matrix elements
{a,}, although the lowest-order approximation cannot di-
rectly reproduce the entire population transfer. Under the
approximations, it is straightforward to derive the probability
amplitude of the |v % 1) state immediately after the nth pulse:

n

n
Coti(my) = Zaj
Jj=1

k=j+1
and Coi(m) =Y a;| JT ¢*|. ©)
=1 \k=j+1

where ®; ;) =27 + § and &Dk,k,l =27 + 8. In Eq. (9),
the phases 8, and &; do not appear in Eq. (9) because of the
initial state ¥, = (0, 1, 0), and the notations 8, = —§,
and Sn+1 = —4, are introduced when k = n + 1. To focus
on the roles of the two types of pulse intervals in Fig. 4(a),
we further assume the n-independent value of a, = a (n =
1, 2, ..., N). We then have the expression of the population
of the |v + 1) state as

Pyyi(ta) =lal*{n + 2(cos 8, + - - - + cos 8,,)
+2[cos(8y + 83) + -+ - + cos(8,_1 + 8,)]

44200882+ - 4 8] (10)

If we replace {§;} with {Sj} in Eq. (10), we will have the
expression of the population of the [v—1) state, P,_;(7,).

We first consider a simple case in which a pulse appears at
every T3 39, that is, {8; = 0}, corresponding to the optimal
pulse train in Fig. 3(a) (# = 3373;,30). The substitution of
v = 30 into Eq. (10) yields the target population P3;(t,) =
|a|?>n?, which is proportional to the square of the number of
pulses. The purely constructive quantum interference plays an
active role in selectively achieving the population transfer to
the target state |v = 31). For the unwanted population Pso(7,),
on the other hand, the phase shifts {§ j = 0.19} are constantly
added to the population of the state v = 29) at every T3, 3.
The accumulated phase shifts weaken the constructive inter-
ference, turning it into the destructive interference, and finally
leading to Pro(ty=33) =~ 0 when #; = 3373 30.

In the case of #; = 2573 39 (Fig. 4), it may be convenient
to start our discussion by examining the unwanted popula-
tion Py(Ty=p5) =~ 0. To realize Pr9(Tn—25) >~ 0, we need to
introduce larger phase shifts into Px9(7,) than those in the
case of fy = 3373 30, to more quickly realize the destructive
interference. Once the destructive phase shifts are adequately
accumulated in the first half of the control period, the optimal
pulse train tends to keep the destructive phase shifts in the
second half by setting small values of {| 5 ;i |} to finally lead to
Pro(ty=25) >~ 0. The introduction of such large phase shifts,
however, inevitably results in the introduction of some phase
shifts even into the target population P;;(t,), which makes
the constructive interference effects in P;; (t,,) insufficient. We
thus need to adopt more intense pulses to make up for the in-
sufficient constructive interferences to achieve P3;(ty—ps) = 1.
This could explain the increase in the pulse fluence to achieve
the population transfer when # < 3373, 30 in Fig. 2.

C. Wave-packet shaping

We consider a more general objective than the selective
population transfer, that is, the wave-packet shaping control,
in which we need to adjust both the population distribution
and the relative phases, simultaneously. The initially excited
state is assumed to be the vibrational eigenstate | (tp = 0)) =
|v = 30). For the sake of systematic analyses, we consider the
target wave packet

[
|x () ﬁ(e 129) +130) + [31)), (1D
which is expressed as a function of the relative phase 6. As
our purpose is to create the target wave packet in Eq. (11)
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FIG. 5. Optimal pulse envelopes that create the target wave pack-
ets as a function of time defined by Eq. (11) with (a) 8 =0, (b)
0 =m/2,(c) 8 =m,and (d) 8 = 37 /2. Time is measured in units
of T = (Tz1.30 + T30.29)/2. In the case of (a) & = 0, another optimal
solution exists as shown by the light-blue line. The interval between
the two optimal solutions ~337 is indicated by a red double arrow.
In (b), the overall temporal width of the optimal pulse train ~257T is
indicated.

at a specified final time #, the target operators are set to
X =1x0)){x(@)| and Y(¢) =0 in Eq. (2). We measure
the time in units of the averaged vibrational period T =
(T31.30 + T30.29)/2 for convenience. We assume a slightly
longer final time # = 60 T to avoid the restriction due to the
lack of a control period.

We numerically design the (dimensionless) optimal pulse
envelopes f(¢) while systematically changing the values of
0 =0, m/2, m, and 37 /2, as shown in Fig. 5. The optimal
pulse envelopes have the same temporal structure but are tem-
porally shifted according to the value of 6. The 6-dependent
temporal shifts mean that the relative phases in the target wave
packet are mainly adjusted by the free time propagation of the
wave packet after the NR pulse control, which can explain
the presence of the two optimal solutions in Fig. 5(a). The
temporal shift between the two optimal solutions in Fig. 5(a)
corresponds to the so-called revival time of the vibrational
wave packet ~33T due to the anharmonicity of the potential.
Note that in many case studies that adopt resonant laser pulses
as control knobs, we also see such cooperation between the
control laser pulse and the wave-packet motion to adjust the
relative phases, thereby achieving the control objectives. One
example is the vibrational wave packet prepared by the neg-
atively chirped pump pulse in the electronically excited state,
which becomes a spatially localized wave packet after freely
propagating in the anharmonic potential [49,50].

We next consider the control mechanisms regarding the
population distribution. As the population distribution of the
present target wave packet in Eq. (11) is independent of 6,
we focus on the 8-independent features of the optimal pulse

3.0 — - 0.9 §

(@) | Tson0y/ T ) (b)
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8 A 1 0.61
2 i g
= 20 R S 0.4 30 1
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3] [ 2R .
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FIG. 6. (a) Contour map of the populations of states |[v = 31) and
v = 29) as a function of the pulse interval and the relative fluence
with respect to the total fluence of the optimal pulse in Fig. 5(a).
Here, the populations are calculated by using the model pulse train
composed of equally distributed 25 identical 80-fs Gaussian pulses
when the initially excited state is set to |v = 30). (b) Cut of the
contour map along the fixed pulse interval T = (T3;.30 + T30.29)/2,
in which the populations of the three states are shown as a function
of the relative fluence.

trains such as the overall temporal width ~25T and the
appearance of each pulse at the regular interval ~7. To ex-
amine these two features, we adopt a model pulse train that is
composed of 25 identical 80-fs Gaussian pulses with a regular
pulse interval. Then, we calculate the populations of the vi-
brational eigenstates as a function of the pulse interval and the
relative pulse fluence with respect to the fluence of the optimal
pulse train in Fig. 4(a). Figure 6(a) shows a contour map of
the populations of states |[v = 31) and |v = 29). For reference,
when the pulse intervals are set to 731 39 and T3 29, 90% of the
populations at most are distributed in the states [v = 31) and
|[v = 29), respectively, reflecting the lack of frequency resolu-
tion due to the short overall temporal width ~ 257 . If the pulse
interval is set to T, the three vibrational eigenstates in the
target wave packet [Eq. (11)] are almost equally distributed,
which is clearly illustrated by the cut of the contour map along
T in Fig. 6(b). The results in Fig. 6 strongly suggest that the
optimal pulses actively utilize the lack of frequency resolution
to excite multiple vibrational eigenstates simultaneously to
realize the target population distribution.

D. Suppressing wave-packet deformation

We quantify the degree of wave-packet deformation by
using the absolute square of the overlap integral | (o[ (7)) 1%,
where [¥o) = Y, |C,| e*%|v) is the initially excited state
(Appendix A). In the absence of the control pulse, the tem-
poral behavior of | (| (¢))|* is solely dependent on the
magnitude of the coefficients {|C,|} and independent of the
initial phases {6,}. Roughly speaking, it shows a damped
oscillation due to the relative-phase mismatches caused by the
anharmonic potential. Our control objective in this section is
to suppress the wave-packet deformation such that the wave
packet simply repeats the regular oscillation as if it were mov-
ing in a harmonic potential. We will examine how effectively
we can suppress the wave-packet deformation by focusing
on the effects of the initial relative phases. The suppression
of the wave-packet deformation is nonintuitive in the sense
that we have to adjust the relative phases of the eigenstates in
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the wave packet by using a moderately intense NR pulse while
avoiding the population redistribution. We also note that the
intensities of the NR pulses considered here are not suffi-
ciently strong to directly manipulate the shape of the potential
curve.

From the perspective of experimental feasibility, we adopt
chirped pump pulses [51] to prepare various initially ex-
cited states [yo) =Y., |C,| e~ |v). This is because the
chirped pump pulses solely change the phases {6,} without
changing {|C,|}, which is suitable for the above-mentioned
purpose. The Fourier transform of the (linearly) chirped pulse
Epump() is defined by

Epump(@) = ES, (@) exp [i%(w - wo)z], (12)
where w and ¢, are the angular frequency and the linear chirp
rate, respectively. Here, Egmp(a)) is the Fourier transform of
the Gaussian TL pump pulse with the central frequency wy
and the temporal width (FWHM) of the intensity 20 +/In2.
In the following numerical examples, we assume an 80-fs
FWHM Gaussian TL pump pulse and adopt several values of
@, to prepare the initially excited states |yy) during the period
[# = =300 fs, #p = 300 fs]. When the central wavelength is
set to 535 nm, |y) is mainly composed of the vibrational
eigenstates |v = 29), |[v = 30), and |v = 31) with minor con-
tributions from |v = 28) and |v = 32). In this section, the
initially excited wave packets |y) created by TL, the nega-
tively chirped pump pulses, and the positively chirped pump
pulses will be referred to as the TL, NC, and PC wave packets,
respectively. Some numerical examples of |y) are shown in
Appendix A.

The target operators in Eq. (2) are set to X = [v) (| and
Y (t) = |¥o)y()(Yo|, where the positive envelope function
y(1) specifies the timings for evaluating | (¥o|v (r)) |* during
the control period [fy = 300 fs, #]. Here, we assume that y(t)
is expressed as the sum of the Gaussian functions,

g (t — )
y(t)—A—tnX_l:exp[— 7 ]

where the set of {t,} specifies the peak positions. The peak
height and the temporal width of each Gaussian function in
Eq. (13) are set to the inverse of the numerical temporal grid
1/At =1/0.1fs and d = 8.5 x 107> fs, respectively. The
small value of d is used to evaluate | (| (1)) |* only around
a specified set of {t,}. In practice, the values of {t,} are
updated in each iteration step of the solution algorithm, that is,
if |(1/f0|1,ﬁ(k)(t))|2 has maximal values at {t,fk)} with [ ® (1))
being the wave packet at the kth iteration step, we substitute
{t®} into Eq. (13) to define new peak positions used in
the next (k 4 1)th iteration step. From the maximal values
of |(¥ol¥*D(t))|°, we obtain the revised peak positions
{t,fkﬂ)} used in the (k 4 2)th iteration step, and so on. As
shown in Appendix B, we numerically solve the inhomoge-
neous differential equation associated with the Lagrange mul-
tiplier instead of introducing the approximation method [24].

We numerically optimize the NR pulse envelopes for
several values of |¢,| < 2.0 measured in units of 0% =

(80 fs/2«/1n2)2. The final time is set to # = 17T, which
corresponds to N =16 in Eq. (13), where the time is

13)

1.0

0.9+ l I /.-.\x\ I .
% 0.8/ \ _
0.7 1 \.1

20 -10 00 10 20
@, (units of 6*)

FIG. 7. Degree of deformation suppression (F) defined by
Eq. (14) as a function of the linear chirp rate ¢,, which is measured in
units of the Gaussian pump pulse width o2 = (80fs/ 2\/@)2. Here,
the control time is set to # = 17T with T = (T31.30 + T30.29)/2 =
475 fs.

measured in units of the average vibrational period T =
(T3130 + T30.29)/2 = 475 fs. The results are summarized in
Fig. 7 by using the degree of “deformation suppression,”
which is defined by the averaged value

N+1

> 1 Woly ),
n=1

(F>:N—+1 4 (14)

with 7,541 = tr. According to the definition in Eq. (14), per-
fect deformation suppression leads to (F) = 1. On the other
hand, (F) = 0.56 in the absence of the control pulse. We see
from Fig. 7 that the values of (F') are greater than 0.95 when
—0.5 < ¢ < 0.25. We also see an asymmetric structure, that
is, there is a lack of symmetry with respect to ¢,. When
the value of |@,| exceeds the above range, the deformation
suppression control becomes less effective although the opti-
mal NR pulses always suppress the deformation of the wave
packets to some degree.

To consider the ¢,-dependent control mechanisms, we
examine the results focusing on some typical values of ¢,.
Figure 8 shows the results when ¢, = 0 fs? (TL pump pulse).
The degree of deformation suppression [Eq. (14)] has a value
of (F) = 0.988, which is close to the ideal value. The optimal
NR pulse in Fig. 8(a) is a pulse train composed of almost iden-
tical pulses that appear precisely at every T within &1 fs (see
the purple solid squares). The optimal NR pulse makes the
TL wave packet oscillate regularly [Fig. 8(b)] as if the wave
packet is in a harmonic potential. In addition, the population
transfer is minimized to keep the wave packet in the original
shape even under the influence of mildly intense laser pulses
[Fig. 8(c)].

It is also useful to see the results when the deformation
suppression control is not so effective owing to the increase in
the value of |¢,|. As an example, we show the results when the
chirp rates are set to ¢, = —1.00> (Fig. 9) and ¢, = +1.00>
(Fig. 10), which lead to the optimal values of (F') = 0.889
and (F') = 0.846, respectively. The reduction of the values
of (F) may be qualitatively attributed to the spatially de-
localized structures of |v). That is, the wave packets are
controlled by the nuclear-coordinate-dependent polarizability
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FIG. 8. Deformation suppression control when #; = 177 in the
case of ¢, = 0 fs?. (a) Optimal pulse envelope in which the inter-
vals between the adjacent pulses are shown by purple solid squares.
The black dashed line shows T = 475 fs. (b) Degree of deformation
suppression is (F) = 0.988. Absolute square of the overlap integral,
[{(Wolw (1)) | in the presence (absence) of the control pulse is shown
by the blue (dotted black) line. (c) Populations of the five major states
as a function of time (units of 7).

interaction, which may not be favorable for some parts of
the wave packets to suppress the deformation. Scrutinizing
the results in Fig. 9, the first two pulses [Fig. 9(a)] are so
weak that they essentially let the NC wave packet freely
move, suggesting the limited capability of the polarizability
interaction to keep the original shape of the NC wave packet.
During the (almost) free propagation, the NC wave packet is
modified such that it is spatially more localized than |v) and
approaches the shape of the TL wave packet. The localized
feature of the modified wave packet would make it easier
to suppress the deformation while leading to the loss of the
original shape. These contradictory factors would lead to the
optimal solution in Fig. 9 as a compromise.

The initial relative phases of the PC wave packet are
consistent with the anharmonic potential to accelerate the
deformation of the PC wave packet. Contrary to the NC wave
packet, the PC wave packet in Fig. 10 is on the way to the
so-called collapse. Therefore, the control pulse should stop
the spatial delocalization of the PC wave packet as soon as
possible, which explains the first intense pulse in Fig. 10(a).
As shown in Fig. 10(b), this feature of the PC wave packet
makes the deformation suppression even more difficult than
that in Fig. 9(b), leading to the highly structured optimal NR
pulse envelope with irregular pulse intervals [Fig. 10(a)]. The
very last pulse, in particular, is w-phase shifted and appears

3.0/
2 @ . O LL 480
5200 M 470
= o
2 <z
21.0] E
a2 5
0.0 =
o 10l (6)0.889
> s
s
——
0.0
0.6
[=}
=
= 0.4
=
o
8 0.2

=
=}

time (units of T')

FIG. 9. Deformation suppression control when #; = 17T in the
case of ¢, = —1.002, where o? = (SOfS/ZM)Z. (a) Optimal
pulse envelope in which the intervals between the adjacent pulses
are shown by purple solid squares. The black dashed line shows
T = 475 fs. (b) Degree of deformation suppression is (F) = 0.889.
Absolute square of the overlap integral, | (| (¢)) |?, in the presence
(absence) of the control pulse is shown by the blue (dotted black)
line. (c) Populations of the five major states as a function of time
(units of 7).

when the wave packet is localized around the outer turning
point. In fact, the optimal NR pulse in Fig. 10(a) induces
a large temporal change in the populations in Fig. 10(c). In
this regard, the control in Fig. 10 would partly include the
wave-packet reshaping processes in addition to the deforma-
tion suppression.

So far, we have restricted ourselves to the cases where
the initially excited states are prepared by the chirped pump
pulses. We now consider the initial-phase dependence of the
degree of deformation suppression (F') by adopting the three-
state model under the impulsive excitation approximation
(Sec. III B). The initial state is generally expressed as

|Cz?+1 |e_i0
Vo = || , (15)
|C8—1|eié

where 6 = 0,1 — 0, and f=6,—6,_,; with 6, being the
initial phase associated with the vibrational eigenstate |v),
etc. In Eq. (15), we remove the phase 6, as a global phase.
Although the condition for suppressing the deformation, for
instance, immediately after the first pulse, would be given
by |1ﬁ81ﬁ(1’1)|2 = 1, we could not derive the approximate ex-
pression that is simple enough to clearly examine the control
mechanisms. We thus directly apply Eq. (8) to the model

033112-8



OPTIMAL CONTROL FOR MANIPULATING VIBRATIONAL ...

PHYSICAL REVIEW A 109, 033112 (2024)

3.0 (a) /
) 480
E /)‘/\.
S 2.01 \\/ 470
5 L460
2 1.0 )
=i )
= =
0.0 &
101, (b)0.846 £
a_ : ’ -=
- P
=
p—
> s
S INiRE
0.0
0.6
g
§ 0.41 (C) 30
=2 29
&

5 0
time (units of 7')

FIG. 10. Deformation suppression control when #; = 17T in the
case of ¢y = +1.002%, where o2 = (80fs/2\/H)2. (a) Optimal
pulse envelope in which the intervals between the adjacent pulses
are shown by purple solid squares. The black dashed line shows
T = 475 fs. (b) Degree of deformation suppression is (F) = 0.846.
Absolute square of the overlap integral, | (| (¢)) |?, in the presence
(absence) of the control pulse is shown by the blue (dotted black)
line. (c) Populations of the five major states as a function of time
(units of T).

to calculate (F) as a function of # and 6 in the range of
- <0, 0 <.

Referring to the results in Fig. 8, we assume an NR
pulse train composed of 17 identical pulses, the total pulse
area of which is set to the Raman m pulse. The fixed
pulse interval T = (T3130 + T30.29)/2 = 475 fs is assumed.
On the basis of our definition of the phases of the vibrational

eigenstates, we consider the three sets of coefficients
(ICy+1l, |Gy, |Cy—1]) with v =30 in Fig. 11, that is, (a)
(176, /2/3,/1/6) that leads to the spatially localized
wave packet around the inner turning point when § =6 =0
and (c) (/1/3,4/1/3, /1/3) that leads to that around the
outer turning point when || = |f| = 7. As an example of
the intermediate case between (a) and (c), we also consider
(b) (1/2,4/1/2,1/2) that does not lead to the spatially lo-
calized wave packet. Although the asymmetric distribution
of (F) is apparent in Fig. 7, we see almost the symmet-
ric distributions of (F) with respect to 6 and 6 in Fig. 11,
which could be attributed to the simplified model analyses.
In Fig. 11(a) [Fig. 11(c)], the wave-packet deformation is
highly suppressed in the region around =8 =0 (|6] =
|6] = ), which corresponds to the pulse irradiation timing
when the wave packet is localized around the inner (outer)
turning point. Contrary to the results in Figs. 11(a) and 11(c),
the largest value of (F) is 0.92 in the intermediate case
[Fig. 11(b)]. Considering all the results in this section, we
conclude that the NR pulse can suppress the deformation
of the spatially localized wave packet if the mildly intense
NR pulse is regularly applied to the wave packet at the time
when it is spatially localized. For spatially delocalized wave
packets, on the other hand, it would be difficult to suppress
the deformation although shaped NR pulses could improve
the degree of deformation suppression to some extent.

IV. SUMMARY

On the basis of optimal control theory, we have discussed
how accurately we can control the probability amplitudes of
the vibrational eigenstates by using the cycle-averaged polar-
izability interactions induced by mildly intense NR pulses,
which lack the control knobs originating from the optical
frequencies and their relative phases. For this purpose, we
have considered three kinds of typical and fundamental con-
trol objectives: (i) the selective population transfer that solely
requires the control of the absolute value of the probability
amplitude, (ii) the wave-packet shaping that requires both
the population control and the relative-phase control, and
(iii) the suppression of wave-packet deformation that solely

<F>
1.0

3-3 =2 -1
0 (rad)

0

0.9
0.8
0.7
0.6
0.5

0.4
1 2

FIG. 11. Contour plots of the degree of deformation suppression (F') derived from the three-state model as a function of the initial relative
phases @ and @ [see Eq. (15)]. The sets of the absolute values of the coefficients are given by (a) (|Cyi1, |C,l, |Co—1]) = (176, /273, /1/6),
(b) (1/2,4/1/2,1/2), and (c) (/1/3,4/1/3,+4/1/3). In (a) and (c), the bold and thin black contour lines show the values of 0.98 and 0.95,

respectively.
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requires the control of the relative phases without chang-
ing the population distribution. From the perspective of
experimental feasibility, we have considered the vibrational
dynamics in the electronically excited B state of I, as a case
study because we can precisely prepare the specified initial
states by (shaped) pump pulses. We have numerically de-
signed the optimal NR pulses associated with the three kinds
of control objectives and examined the control mechanisms
with the aid of the three-state model under the impulsive exci-
tation approximation. The results are summarized as follows.

(i) When the control period is sufficiently long to fre-
quency resolve the target Raman transition, the optimal
solution is a Raman 7 pulse composed of almost identical
pulses with regular intervals. Interestingly, even if the con-
trol periods are not sufficiently long to resolve the Raman
transition frequency, the optimally shaped NR pulses achieve
almost complete selective population transfer. In fact, we have
numerically shown that the control periods can be shortened
to less than one-third of that expected from the frequency res-
olution. The shaped optimal pulses adjust the pulse intervals
to actively introduce constructive and destructive quantum
interferences to the target state and the unwanted state, re-
spectively, although the pulse fluence monotonically increases
with the decrease in the control period.

(i) The optimal pulse is the pulse train, the overall tempo-
ral width of which is adjusted to induce multiple population
transitions due to the lack of frequency resolution, whereby
the target population distribution is achieved. On the other
hand, the relative phases are largely adjusted through the free
propagation in the anharmonic potential, which is similar to
the way of shaping wave packets, etc., with resonant laser
pulses [49,50].

(iii) In the present study of the suppression of wave-
packet deformation, we have focused on the effects of
the relative phases {6,} in the initial wave packet |p) =
>, ICyl e7i%|v), which is prepared by the chirped pump
pulses so that a fixed value of {|C,|} is assumed. From the
simulation and the model analyses, we have shown that the
pulse trains that are composed of almost identical pulses that
appear regularly in every vibrational period can suppress the
deformation in a long control period with a high probability,
provided that the wave packets are spatially localized. As the
degree of the spatial delocalization of the initially excited
wave packets is increased, the effectiveness of the deformation
suppression control is gradually reduced to a certain extent
although the shaped NR pulses could improve the deformation
suppression to some degree.

From the successful control systematically demonstrated
by focusing on the vibrational dynamics, we conclude that
the shaped NR laser pulses can be as effective as the shaped
resonant laser pulses to nonadiabatically manipulate the prob-
ability amplitudes of multilevel quantum systems. This would
increase the degree of freedom for choosing laser pulses to
manipulate quantum dynamics for achieving the specified
control objectives with high accuracy.
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APPENDIX A: INITIALLY EXCITED STATE |v,) IN THE B
STATE AND NUMERICAL DETAILS

We assume a two-electronic-state model that consists of
the X (ground) and B states of I,, the vibrational wave packets
of which are given by |¥x (r)) and |¥(t)), respectively. They
obey the Schrodinger equation

A O[] _[ Hs) — 1 (1) Epump )
at|1¥x () _,U«XB(r)Epump(t) Hy (1)
(1))
x [|1ﬁx(f))i|’ @A

where Hy (t) and Hg(t) are the vibrational Hamiltonians that
include the polarizability interactions. The electronic transi-
tion is induced by the pump pulse Epump(#) with the electric
dipole moment function gy (r) = [uxz(r)]" with r being the
internuclear distance. Assuming that the molecule is initially
in the lowest vibrational state in the X state |¥x (f;)) = |Ox)
(see Fig. 1) and that the pump pulse is sufficiently weak to be
treated by the first-order perturbation, we have

i * 1 —i(tg—t’ /
Vst = & / e OO () o)

% eii([’,[i)Hg/ﬁK)X) = e*ngto/h|Wg> (AZ)

at t =ty (after the pump pulse) when the control by the NR
pulse starts. Here, HY and Hy describe the field-free Hamil-

tonians. We will call |yo) = [¥p)/\/(¥ol¥)) the initially

excited state in the present study.

We assume the rotating wave approximation and nu-
merically integrate Eq. (A2) with the temporal grid size
At = 0.1 fs to obtain the (normalized) initial state |y (ty)) =
e~ H50/h |0y in Eq. (1). We adopt the same molecular param-
eters as those used in our previous study, namely, the potential
energies and the transition dipole moment function are taken
from Refs. [52-54]. We assume the polarizability interaction
function in the B state in Ref. [47]. The time evolution of the
wave packets is calculated by using the split-operator method
combined with fast Fourier transform (FFT) [3,55,56], in
which the spatial range [2.1 A, 6.0 A] is equally divided into
512 grid points. When the pump pulse is given by Eq. (12),
some numerical examples of the initially excited states are
shown in Fig. 12.

APPENDIX B: BACKWARD TIME EVOLUTION
OF THE LAGRANGE MULTIPLIER IN EQ. (4)

When we numerically calculate the time evolution of the
vibrational wave packet, we often adopt a procedure that
combines the split-operator method and FFT because the latter
considerably reduces the computational cost [3,55,56]. When
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FIG. 12. Examples of the initially excited states when the linear
chirp rates are set to (a) ¢, = —2.002, (b) ¢, = —1.002,(c) o =0
(TL pump pulse), (d) ¢, = +1.002, and (e) ¢, = +2.002, ¢, =
—2.002, where 02 = (80fs/2Jm7)2. Here, ¢, <0 and ¢, > 0
correspond to negatively and positively chirped pump pulses, respec-
tively. The arrows in each inset circle schematically illustrate the
probability amplitudes of the vibrational eigenstates in the initially
excited state in the complex plane. The radius of the circle is set to
the magnitude of the probability amplitude of the state |[v = 30).

calculating the time evolution of the Lagrange multiplier in
Eq. (4), we may have to modify the procedure to deal with
the inhomogeneous term. Here, we examine the modifica-
tion. Note that Eq. (4) describes the time backward evolution
because the final condition is specified. We may introduce
s =ty —t to rewrite Eq. (4) in the form of the time forward

propagation:

0 - i _ _
alé(S)) = £HB'(S)|$(S)) +Y Y (s), (BD)
where [E(s)) = [E(tr — ), Hj(s) = Hj(tr —s), Y(s)=
Yt — ), fmd | (s)) = |¥(ty — s)). The “initial” condition is
given by [£(0)) = [£(tr)). ]

We try to find the solution having the form of |£(s)) =
U (s, 0)|g(s)) where the time evolution operator is defined by
U(s,0) = T exp [%/ ds’ Hg(s’)} (B2)
0
with the time-ordering operator T.The equation of motion for
|8(s)) is expressed as
d _ _ _
<186 = U7 (s, OF (P (), (B3)
where the initial condition is |g(0)) = |£(0)) = |£(%;)). If we
integrate both sides of Eq. (B3) over [0, At], we have

At
18(Ar)) —13(0)) = /0 ds U~ (s, 0)Y ()9 (s))

Ar _ -
~ 7[U (A1, 0)Y (AD)[¥ (At))
+ YOy O], (B4)

where Ar is the temporal grid size. Here, we adopt the
trapezoid formula to approximately calculate the integral.
Substituting Eq. (B4) into |£(s)) = U (s, 0)|g(s)), we have

- _ - At_ o
§(A)) = U (Ar, 0)[|E(0)> + %Y(O)Iw(o))}

At _ _
+ TY(At)IW(At)). BS)

Repeating the procedure, we obtain
= - = At _
|‘i:(sn)) = U(sn’ Sn—1 ) |:|i:(sn—l )) + Ty(sn—l )h[/(sn—l ))]

At _ _
+ ?Y(Sn)hh(sn)) (B6)
for the nt{l step, where s, = 5,—1 + At. The time evolution
operator U (s,, s,—1) can be numerically calculated by using
the standard split-operator method in combination with FFT.
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