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Bichromatic phase control of interfering Autler-Townes spectra

T. Bayer, K. Eickhoff , D. Köhnke , and M. Wollenhaupt
Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany

(Received 15 November 2023; accepted 26 February 2024; published 15 March 2024)

We propose a scheme to control the shape of the Autler-Townes (AT) doublet in the photoelectron spectrum
from atomic resonance-enhanced multiphoton ionization (REMPI). The scheme is based on the interference
of two AT doublets created by ionization of the strongly driven atom from the ground and the resonantly
excited state using tailored bichromatic femtosecond laser pulses. In this scheme, the quantum phase of the
photoelectrons is crucial for the manipulation of the AT doublet. The laser polarization state and the relative
optical phase between the two colors are used to manipulate the interference pattern. We develop an analytical
model to describe the bichromatic REMPI process and provide a physical picture of the control mechanism.
To validate the model, the results are compared to an ab initio calculation based on the solution of the two-
dimensional time-dependent Schrödinger equation for the nonperturbative interaction of an atom with intense
polarization-shaped bichromatic femtosecond-laser pulses. Our results indicate that the control mechanism is
robust with respect to the laser intensity, facilitating its experimental observation.
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I. INTRODUCTION

The use of strong laser fields to control ultrafast quan-
tum dynamics enables efficient population transfer and opens
up new excitation pathways due to the dynamic (ac) Stark
effect. While the nonresonant ac Stark effect generally in-
duces unidirectional energy shifts, the resonant ac Stark
effect induces bidirectional shifts observed in the Autler-
Townes (AT) splitting [1]. Initially, phase control of the AT
doublet in the photoelectron energy spectrum from atomic
(1+2) resonance-enhanced multiphoton ionization (REMPI)
has been demonstrated using shaped single-color femtosec-
ond laser pulses including pulse sequences [2,3] and chirped
pulses [4]. In these experiments, effective switching between
the high-energy (fast) and low-energy (slow) AT components
was observed. The control mechanism was shown to be the se-
lective population of dressed states (SPODS) in the resonantly
driven bound system, mapped into the ionization continuum
by the single-color driving field [5].

Here we propose a scheme to control the shape of AT
spectra using tailored bichromatic femtosecond laser pulses
with commensurable central frequencies. Adding a second
color allows us to map not only the excited-state dynamics as
in the previous single-color schemes, but also the ground-state
dynamics via direct multiphoton ionization (MPI). The fre-
quency of the second color is chosen so that both AT doubles
overlap in the photoelectron energy spectrum, resulting in
an interference pattern in the superposition AT spectrum. In
the following, the bichromatic control scheme is referred to
as interference of AT spectra (IATS). While the single-color
SPODS schemes are based on locking the resonant bound
system in a state of maximum coherence [2,6,7], the IATS
scheme relies on Rabi oscillations between the resonantly
coupled states. Due to the distinct relationship between the
time-dependent amplitudes in the ground and excited states,
described by the Rabi solution [8], the photoelectron wave

packets created via the two different MPI pathways always
interfere constructively in the slow AT component and de-
structively in the fast component. Very recently, the effect
was observed in a single-color study of Rabi dynamics in
helium atoms using extreme ultraviolet femtosecond laser
pulses from a free-electron laser [9]. In the single-color sce-
nario, the resonant and the nonresonant ionization pathway
consist of the same number of photons. As a result, the created
photoelectron partial wave packets have the same angular
momentum state, so the effect can already be observed in
the angle-integrated photoelectron energy spectrum [9,10].
However, because both probe processes are driven by the same
field, they are not controllable independently. In contrast, in
the bichromatic IATS scheme introduced here, each process
is driven by a different field component (color) and there-
fore decoupled. Since each field component can be adjusted
individually, the interference pattern is fully controlled by
the relative optical phase between the two colors or their
polarization state, which we will show below. Overlapping
the AT spectra from both processes requires that the resonant
and the nonresonant ionization pathway consist of different
numbers of photons. As a consequence, the angular momen-
tum states of the partial wave packets are generally different,
which results in an angle-dependent interference. The slow AT
component is selectively observed in certain directions, while
the fast component is detected in other directions. In this case,
the differential, i.e., energy- and angle-resolved measurement
of the photoelectron momentum distribution, is crucial to
observe the effect. In contrast to the photon locking scheme,
the interference pattern in the IATS scheme is independent of
the field amplitude. This robustness of the interference mech-
anism to intensity fluctuations and focal intensity averaging
will facilitate its observation in the experiment.

In this paper we present a combined analytical and numer-
ical study of the IATS scheme. For the showcased example of
a two-state atom perturbatively coupled to a photoionization
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continuum, we derive analytical expressions for the interfer-
ence of AT spectra from REMPI with tailored bichromatic
femtosecond laser pulses. The analytical model provides a
clear physical picture of the interference mechanism and
shows how it can be controlled by the optical phase and
laser polarization. To validate the analytical model, the results
are compared to ab initio calculations based on the solu-
tion of the two-dimensional (2D) time-dependent Schrödinger
equation (TDSE) for the nonperturbative interaction of a
single-active-electron atom with polarization-tailored bichro-
matic femtosecond laser pulses [11,12]. The full calculation
confirms the results of the analytical model and in addi-
tion reveals the influence of additional intermediate states
on the MPI processes, which we recently discussed in more
detail in [13].

II. PHYSICAL MECHANISM

A. General scheme

We start by introducing the scheme on a generic model
system. To this end, we consider a two-state atom with states
labeled 1s and 2p. The states have the eigenenergies ε1s =
0 and ε2p = h̄ω2p and are dipole coupled by the transition
matrix element μ0. In addition, both states are coupled to
an ionization continuum with ionization potential (IP) εIP =
h̄ωIP. Following the experimental scheme in [2], we mimic
the potassium atom by setting h̄ω2p = 1.61 eV and h̄ωIP =
4.34 eV [14]. Initially, we investigate the interaction of the
atom with a corotating circularly polarized (COCP) bichro-
matic laser field, which is described in the spherical basis by
its positive-frequency analytic signal as

E+(t ) = f (t )(E0eiω0t + E1ei(ω1t+ϕ) )e±1. (1)

The two spectral field components are characterized by indi-
vidual amplitudes E j and central frequencies ω j ( j = 0, 1),
a relative phase of ϕ, and a common temporal pulse en-
velope f (t ) with unit peak amplitude. The spherical unit
vectors e±1 = (ex ∓ iey)/

√
2 describe left-handed circularly

polarized (LCP) and right-handed circularly polarized (RCP)
light, respectively, in the x-y plane. The first field component
is tuned to the atomic resonance by setting ω0 = ω2p. By
absorption of two additional photons h̄ω0, the atom is ionized
in a (1+2) REMPI process which maps the dynamics of the
2p state into an f -type photoelectron continuum. Simulta-
neously, the ground-state dynamics is mapped into a d-type
continuum by nonresonant two-photon ionization (2PI) of the
1s state by the second field component. Setting ω1 = 3ω0/2,
the created photoelectron wave packet overlaps energetically
with that from the (1+2) REMPI process. The scheme is
depicted in Fig. 1(a). We note that, according to our full TDSE
calculations, additional photoelectron contributions due to
nonresonant three-photon ionization from the 1s ground state
by the ω0 component, analogous to those observed in [9],
are negligible in our scheme and hence not considered in the
analytical model. In the following, we discuss the analytical
expressions for the interference of the two partial wave pack-
ets derived in the Appendix A.

The photoelectron wave function can be expressed as the
product of an energy-dependent amplitude an(ωk ) and an

angular part Y�,m(ϑ, φ) [15]:

ψn,�,m(ωk, ϑ, φ) = an(ωk )Y�,m(ϑ, φ). (2)

Here the index n labels the bound state from which the
ionization was initiated (1s or 2p) and ε = h̄ωk is the
photoelectron kinetic excess energy. The indices � and m are
the orbital angular momentum quantum numbers. In view
of the comparison between the analytical model and our 2D
TDSE model, we restrict the description to the 2D case and
drop the angular coordinate ϑ , along with the corresponding
quantum number �. The angular part then reduces to
Ym(φ) = eimφ , with m = ±2 for the d-type wave packet
from the 1s ground state and m = ±3 for the f -type wave
packet from the 2p excited state [15]. The plus and minus
signs correspond to LCP and RCP ionization, respectively.
Since the AT doublet manifests in the photoelectron energy
spectrum, we initially discuss their amplitudes an(ωk ). To
this end, we apply second-order time-dependent perturbation
theory, using E−(t ) = [E+(t )]∗, and make the ansatz [2,16]

a1s(δωk ) = α1s,d

∫ ∞

−∞
c1s(t ) f 2(t )eiδωkt dt, (3)

a2p(δωk ) = α2p, f

∫ ∞

−∞
c2p(t ) f 2(t )eiδωkt dt, (4)

where the cn(t ) are the complex-valued bound-state
amplitudes and

δωk = ωk + ωIP − 3ω0 = ωk + ωIP − 2ω1 (5)

is the detuning of three photons h̄ω0 (or two photons h̄ω1,
due to the proper choice of ω1) from the continuum state
h̄(ωk + ωIP). The prefactors

α1s,d = γ
(2)

1s,dE
2
1 e−i2ϕ, α2p, f = γ

(2)
2p, f E

2
0 , (6)

with γ (2)
n,m describing the two-photon coupling of the bound

states to the respective continua, are matched by a suitable
choice of the field amplitudes E j . A constant relative phase of
the γ (2)

n,m can be compensated by an additional relative optical
phase. In the following, we therefore assume α1s,d = α2p, f .
In the resonant case, the bound-state amplitudes are given by
the Rabi solution [8,17] in Eq. (A2) of Appendix A. Using a
cosine-squared pulse envelope with a footprint duration of �t
and a pulse area of θ∞ [see Eqs. (A1) and (A3)], the integrals
in Eqs. (3) and (4) can be solved analytically. The derivation
for the general case of (1 + N ) REMPI vs M-photon ioniza-
tion is given in Appendix A. For the specific case of (1+2)
REMPI vs 2PI, the photoelectron amplitudes take the form

a1s(δωk ) ∝ A2(δωk ) + A∗
2(−δωk ), (7)

a2p(δωk ) ∝ A2(δωk ) − A∗
2(−δωk ). (8)

The function

A2(δωk ) = �t

64
eiθ∞/4

4∑
j=0

(
4
j

)
Jν j (δωk )

(
θ∞
4π

)
(9)

describes a superposition of real-valued Anger functions Jν j

of the order

ν j (δωk ) = −
(

2 − j + θ∞
4π

+ δωk�t

2π

)
. (10)
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FIG. 1. Illustration of the IATS scheme on the example of an (1+2) REMPI vs nonresonant 2PI scenario. (a) Corresponding excitation
scheme. (b) Population amplitudes of the resonantly coupled bound states 1s (black lines) and 2p (red lines) for different pulse areas θ∞.
(c) Amplitudes of the created photoelectron partial wave packets, shown as dashed (real part) and dotted (imaginary part) lines, along with
created partial AT spectra (solid lines). (d) Phase relation between the respective slow and fast components S and F of both spectra, indicated
in the central column by the arrows and exemplified for θ∞ = 3π . For all pulse areas, the slow components are in phase, whereas the fast
components are in antiphase. (e) As a consequence, the fast components always interfere destructively and are eliminated from the total AT
spectra.

The order is a continuous parameter which determines the
spectral position of the Anger functions (see Fig. 5 in Ap-
pendix A for an illustration). We note that Eqs. (7) and (8) not
only are valid for cosine-squared pulses but hold true for any
pulse with a real-valued envelope irrespective of its shape.

To illustrate the analytical results of Eqs. (7) and (8), we
show photoelectron amplitudes for different pulse areas θ∞,
ranging from 0.5π to 6π , in Fig. 1. The pulse duration is set to
�t = 41.2 fs, which corresponds to a full width at half maxi-
mum (FWHM) of the intensity, i.e. f 2(t ), of �tFWHM = 15 fs,
as used in the ab initio calculation in Secs. III A and III B. The
underlying bound-state dynamics is shown in Fig. 1(b). The
ground-state amplitude c1s(t ) (black line) and the excited-state
amplitude c2p(t ) (red line) display Rabi cycling, except for
the weak-field scenario θ∞ = 0.5π shown in the top panel.
Figure 1(c) shows the photoelectron amplitudes a1s(δωk ) cal-
culated using Eq. (7) (left column, black lines) and a2p(δωk )
calculated using Eq. (8) (right column, red lines), decomposed
into real (dashed) and imaginary (dotted) parts, along with the
corresponding energy spectra |an(δωk )|2 (solid shaded). For
pulse areas θ∞ � 3π , the latter reveal a distinct AT splitting
in both partial wave packets. The slow AT components S are

related to the first term in Eqs. (7) and (8), while the fast
components F are associated with the second term. The shape
of each AT component is determined by the function A2(δωk )
in Eq. (9), which describes a superposition of real-valued
Anger functions with a common phase of θ∞/4 for the slow
and −θ∞/4 for the fast components. The amplitudes are there-
fore real valued for pulse areas of even multiples of 2π , e.g.,
for θ∞ = 4π , as shown in the fourth row. For odd multiples
of 2π , they are purely imaginary, e.g., for θ∞ = 6π , as shown
in the bottom row. The key result, however, is the additional
minus sign in Eq. (8), which arises due to the sinusoidal time
dependence of the excited-state amplitude c2p(t ) in the Rabi
solution, in contrast to the cosinusoidal behavior of c1s(t ).
Consequently, the fast components of both AT doublets are in
antiphase with each other, while the slow components are in-
phase. To illustrate the phase relation of the AT components,
the total phase of each component is indicated by arrows
in the central column of Fig. 1(c). A more detailed pointer
diagram is depicted in Fig. 1(d) for clarification, including
an assignment of the phase factors ±e±iθ∞/4 exemplarily for
the pulse area θ∞ = 3π . Considering the full photoelectron
wave function in the direction φ = 0, where the angular parts
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of both partial wave packets are equal, the two wave packets
always interfere constructively in the slow and destructively
in the fast AT component. As a result, the fast AT component
is completely suppressed in the total photoelectron wave func-
tion in this direction:

ψtot(ωk, φ = 0) = ψ1s,d (ωk, 0) + ψ2p, f (ωk, 0)

= a1s(δωk ) + a2p(δωk )

∝ 2A2(δωk ). (11)

Sections through the total photoelectron energy distribution
(PED) P (ωk, φ) = |ψtot (ωk, φ)|2 along φ = 0 are displayed
in Fig. 1(e) (purple solid line). The spectra clearly show the
selective emission of slow AT electrons for all pulse areas
θ∞. This remarkable property will be advantageous for the
experimental implementation of the IATS scheme, since it
makes the scheme robust against focal intensity averaging,
which generally complicates the observation of strong-field
phenomena.

B. Optical control

In the (1+2) REMPI vs 2PI scenario using (2ω:3ω) COCP
pulses discussed so far, the interference of the two partial wave
packets is angle dependent, due to the different azimuthal
phases e±i3φ and e±i2φ of their angular momentum states. In
the opposite direction, i.e., for φ = π , the wave function ψ2p, f

acquires an additional phase of π relative to the wave function
ψ1s,d . The additional sign inverts the interference condition
and switches the photoelectrons selectively to the fast AT
component:

ψtot(ωk, π ) = a1s(δωk ) − a2p(δωk )

∝ 2A∗
2(−δωk ). (12)

Besides the number of absorbed photons, the angular mo-
mentum states are determined by the polarization state of the
two field components. This provides a handle to control the
interference between the two partial wave packets. For exam-
ple, switching the circularity of the second field component,
thus generating a counterrotating circularly polarized (CRCP)
(2ω:3ω) field, the angular parts of the partial wave packets
become e±i3φ and e∓i2φ , respectively. The angle-dependent
relative phase between the two wave functions ψ2p, f and ψ1s,d

then equals e±i5φ , which inverts the interference condition in
the directions φ j = (2 j + 1)π/5 ( j = 0, 1, . . . , 4).

The canonical parameter to control the interference, how-
ever, is the relative phase ϕ between the field components [see
Eq. (1)]. This optical phase enters as a phase of 2ϕ (due to the
two-photon ionization) into the amplitude a1s,d (δωk ) through
the prefactor α1s,d in Eq. (6). Accordingly, a relative phase of
ϕ = π/2 inverts the interference for all angles φ. This type of
optical phase control of the AT doublet is studied in Sec. III A.
The optical polarization control of the AT doublet is studied
in Sec. III B.

III. RESULTS

The results are presented in three parts. In Sec. III A we
demonstrate the AT control scheme using COCP pulses and
exert phase control on the AT doublet by the relative optical
phase. Then we study optical polarization control of the AT

doublet using CRCP pulses in Sec. III B. Finally, in Sec. III C
we discuss the influence of additional MPI pathways which
arise when linearly polarized pulses are used. In all sections,
we employ different levels of theory. The analytical model
introduced in Sec. II is validated against ab initio calcu-
lations presented in Appendix B. Deviations between both
approaches are analyzed using multistate model simulations
building a bridge between the generic two-state model and the
full TDSE calculation.

A. Corotating circularly polarized pulses

In this section we demonstrate the IATS scheme introduced
in Sec. II A. Using COCP (2ω:3ω) pulses with an FWHM
duration of �tFWHM = 15 fs and a pulse area of θ∞ = 4π ,
we calculate the 2D PED P (ωk, φ) according to Eq. (A23).
The analytical PEDs are compared to those obtained from the
2D TDSE model introduced in [11] (see also Appendix B).
The results are presented in Fig. 2(a). The left frame shows
the excitation scheme for the interaction of the atom with
bichromatic RCP pulses driving �m = −1 transitions. Due to
the associated decrease of m with every absorbed photon, the
dipole selection rules allow only transitions with �� = +1
in this case. Therefore, only the 2PI and the (1+2) REMPI
pathway indicated in Fig. 2(a) are dipole allowed. Each field
component addresses only a single � continuum, which is
crucial for the background-free mapping of the bound-state
dynamics as we will discuss in Sec. III C. The analytical PED
takes the form

P (ωk, φ) = 2|A2(δωk )|2[1 + cos(φ + 2ϕ)]

+ 2|A2(−δωk )|2[1 + cos(φ + π + 2ϕ)]. (13)

A visualization of P (ωk, φ) for ϕ = 0 is shown in the cen-
tral column (top frame) of Fig. 2(a). The PED displays two
concentric crescents aligned in the y direction and rotated
against each other by π . The inner crescent is described by
the first term in Eq. (13) and corresponds to the slow AT
component in the photoelectron energy spectrum. The fast
AT component corresponds to the outer crescent, which is
described by the second term in Eq. (13). The extra phase of
π in this second term reflects the minus sign in Eq. (8). Along
φ = 0, therefore, only the slow AT component is observed
while the fast component is completely suppressed. This is
the scenario discussed in Sec. II A and illustrated in Fig. 1.
The corresponding energy-resolved spectrum along φ = 0 is
shown in Fig. 2(b i) as a violet line. Along φ = π , the AT
doublet in the PED is inverted. Here the fast AT component
is observed selectively while the slow component vanishes, in
accordance with the discussion in Sec. II B. The correspond-
ing energy-resolved spectrum is shown as a turquoise line in
Fig. 2(b ii).

Equation (13) also shows that by introducing an optical
phase of ϕ, the entire PED is rotated by an angle of 2ϕ. Hence,
setting ϕ = π/2 inverts the picture, as shown in the central
frame of Fig. 2(a). Now the fast AT component is observed
selectively along φ = 0, while the slow component is emitted
selectively along φ = π .

Next we compare the analytical 2D PEDs to numerical re-
sults from the 2D TDSE model applied to the nonperturbative
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FIG. 2. Implementation of the IATS scheme in a 2D potassium-
like atom by COCP (2ω:3ω) pulses. (a) Shown on the left is the
excitation scheme for RCP pulses driving �m = −1 transitions. The
superposition of a |d,−1〉- and a | f , −3〉-type photoelectron partial
wave packet gives rise to a c1-symmetric 2D PED P (ωk, φ). The
PEDs from the analytical model are shown in the central column
and are compared to the numerical PEDs from the 2D TDSE model
in the right column. The top row shows results for an optical phase
of ϕ = 0. The middle row shows the PEDs obtained for ϕ = π/2,
demonstrating optical phase control. The bottom row displays the
difference between the two normalized PEDs from each model.
(b) To analyze the influence of additional intermediate states in
the ab initio calculation, we employed different multistate model
simulations. While the two-state model in frame (ii) reproduces the
analytical results in (i) accurately, reproduction of the full TDSE
calculation in (iv) requires inclusion of the intermediate states 3d and
4d in (iii). The bottom row displays energy-resolved photoelectron
spectra, similar to Fig. 1(e), taken in different directions φ indicated
by dotted lines in the 2D PEDs.

interaction of a 2D potassiumlike atom with Gaussian-shaped
COCP (2ω:3ω) pulses. A detailed characterization of the
atomic system was provided in [13]. The field amplitudes of
the two colors were set to E0 = 2.7 × 107 V/cm and E1 =
7.5 × 107 V/cm, respectively, corresponding to peak inten-
sities of I0 = 9.4 × 1011 W/cm2 and I1 = 7.5 × 1012 W/cm2.

The full calculation results are displayed in the right
column of Fig. 2(a). The numerical PEDs agree qualitatively
with the analytical results. We observe the slow and fast AT
components as two concentric rings with pronounced angular
asymmetries. While the slow AT component is in fact crescent
shaped, as in the analytical model, the fast component appears
enhanced by an isotropic offset which reduces its asymmetry
contrast. In addition, both components are rotated by an an-
gle of about 3π/4 relative to the analytical results. A closer
inspection reveals that the fast AT component exhibits a slight
additional angular shift of about −0.36 rad. These rotations
indicate the acquisition of different ionization phases, which
we will address in more detail below. Energy-resolved spectra
along the directions where the slow and fast AT components
are observed with maximum amplitude are shown as violet
and turquoise lines, respectively, in Fig. 2(b iv). The saturated
contribution in the center of the PEDs results from frequency
mixing between the two field components, i.e., the absorption
of one photon h̄ω0 and one photon h̄ω1. The corresponding
signal is centered around −0.30 eV below the IP but extends
over the threshold due to the large spectral bandwidth of
the colors (the FWHM of the frequency mixing contribution
is 0.26 eV). Most importantly, however, the maxima of the
two AT components are aligned approximately in opposite
directions, which is the signature of the IATS scheme. Also,
the inversion of the PED achieved by varying the optical
phase to ϕ = π/2 is reproduced, as seen in the central frame
of the right column in Fig. 2(a). To eliminate the isotropic
offset observed in the fast AT component of the TDSE cal-
culation, we calculated the difference between the two PEDs.
The resulting differential PED is shown in the bottom row of
Fig. 2(a) and compared to the result from the analytical model.
The differential representation highlights the signatures of the
IATS scheme even more clearly and reveals the significant
degree of control, quantified by an asymmetry contrast of
40%, in the full calculation. In addition, the differential PED
from the 2D TDSE model exhibits vortex structures, most
pronounced in the fast AT component, which are indicative of
linear spectral ionization phases induced by the intermediate
d resonances [18]. The deviations of the numerical results
from the analytical model are attributed to the influence of
additional intermediate states in the 2D TDSE model. Specif-
ically, the high-lying states 3d , 3s, and 4d , indicated in the
excitation scheme, were identified in [13] to play prominent
roles in the nonperturbative interaction of the atom with in-
tense LP laser pulses. In the COCP case, however, the 3s state
is not accessible, due to the selection rule �� = +1 men-
tioned above, and is therefore disregarded here. By analysis
of the bound-state population dynamics, described in detail in
[13], we find that the blue-detuned intermediate state 4d is
responsible for the enhancement of the fast AT component.
Due to the resonant dynamic Stark effect in the strongly
driven 1s-2p subsystem, the 4d state shifts into resonance with
the ω0-field component. The detailed mechanism behind this
enhancement was discussed in a dressed-state picture in [13].
The rotation of the numerical PED relative to the analytical
result is induced by ionization phases of two different types.
The first type is static phases associated with different neutral-
to-ionic couplings included in the γ (2)

n,m [see Eq. (6)] for the 2PI
and the (1+2) REMPI pathway. In the 2D TDSE calculation,
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TABLE I. (a) Dipole matrix elements μnm = |〈ψn|μ|ψm〉| for the
most relevant bound-bound transitions of the 2D TDSE model (cf.
[13]). (b) Relative ionization amplitudes for the perturbative bound-
ionic transitions considered in the four-state model.

(a)

COCP scenario CRCP scenario

Transition μnm (ea0 ) μnm (ea0)

1s → 2p 2.86 2.86
2p → 3d 3.31 3.31
2p → 4d 0.58 0.58

(b)
Transition Amplitude Phase (π ) Amplitude Phase (π )

1s →→ εd 0.30 0.81 0.30 0.60
2p →→ ε f 1.00 0.59 0.58 1.22
3d → ε f 0.03 0.03 0.05 1.41
4d → ε f 0.21 1.48 0.17 0.43

such phases are inherently built in. They can be compensated
by a constant optical phase (provided the continuum is suf-
ficiently flat in the relevant energy region). The second type
is dynamic phases acquired in the REMPI pathway due to
the transient resonance of the 4d state [18]. Such phases are
responsible for the observed differential rotation of the fast AT
component relative to the slow component.

To verify the analysis of the TDSE results and clarify
the role of the intermediate states, we performed numerical
multistate model simulations, similar to the strategy pursued
in [13]. Starting from the two-state model, including only
the ground state 1s and the resonant excited state 2p, we
successively included the additional states in the model and
examined their influence on the bound-state dynamics and the
PED. The dipole matrix elements for the bound-bound tran-
sitions from Ref. [13] are provided in Table I, along with the
relative ionization amplitudes for the perturbative bound-ionic
transitions used in the present four-state simulations. The re-
sults are shown in Fig. 2(b). The two-state model in Fig. 2(b ii)
reproduces the PED from the analytical model in Fig. 2(b i)
almost exactly. The only deviation is the frequency mixing
contribution in the center of the numerical result, which is not
captured in the analytical model. The overlap of the frequency
mixing contribution with the slow AT component is sufficient
to alter (reduce) the peak amplitude of the latter slightly.
This is best discernible in the energy-resolved spectra dis-
played in the bottom frame of Fig. 2(b ii). Because both PEDs
are normalized to their maximum, the fast AT component
therefore appears slightly brighter in the numerical PED com-
pared to the analytical PED. By incorporating the intermediate
states 3d and 4d into the multistate model and adapting their
complex-valued one-photon ionization (1PI) amplitudes (see
Table I), the simulation result in Fig. 2(b iii) is brought into
very good agreement with the full calculation, shown again in
Fig. 2(b iv). In particular, the PED from the refined four-state
model displays an enhanced fast AT component, which we
trace back to 1PI from the excited 4d state by the ω0 field.
The rotation of the PED is due to the relative phase between
two-photon ionization amplitudes γ

(2)
1s,−2 and γ

(2)
2p,−3. We even

observe a small additional rotation of the fast AT component
relative to the slow component, which is also induced by 1PI
from the 4d state. In contrast, the influence of the red-detuned
intermediate state 3d on the PED is only subtle.

The differences between the analytical and the numerical
PEDs are also related to the population dynamics in the res-
onant bound system. In the analytical model, the 1s and 2p
populations are assumed to undergo unperturbed Rabi cycling
induced by the resonant field. The TDSE calculation reveals,
however, that the nonresonant ω1 field alters the 1s- and 2p-
population dynamics. Overall, the full calculation validates
the signatures of the IATS scheme as described by the ana-
lytical model. In addition, the more realistic 2D TDSE model
reveals the influence of high-lying intermediate states inher-
ent to more complex quantum systems and highlights their
importance in nonperturbative multiphoton control schemes
in general.

B. Counterrotating circularly polarized pulses

In this section we demonstrate optical polarization control
of the AT doublet, as described in Sec. II B. For this purpose,
we switch the polarization state of the ω1-field component
from RCP to LCP and consider the interaction of the atom
with a CRCP (2ω:3ω) pulse. All other optical parameters,
such as the pulse duration �tFWHM, the field amplitudes E j ,
and the relative phase ϕ = 0, are the same as in the COCP
scenario (Sec. III A). The corresponding excitation scheme is
depicted in Fig. 3(a). The analytical model describes the 2D
PED in this case as

P (ωk, φ) = 2|A2(δωk )|2[1 + cos(5φ)]

+ 2|A2(−δωk )|2[1 + cos(5φ + π )], (14)

where the optical phase was set to ϕ = 0. The physical mean-
ing of the two terms is the same as in Eq. (13). However, the
angular distribution of the PED, reflecting the angular mo-
mentum state of the photoelectron wave packet, is different.
As visualized in the top frame of Fig. 3(b), both AT compo-
nents exhibit a c5-rotational symmetry. The fast component
is rotated against the slow component by an angle of π/5.
Along the φ direction, the photoelectrons therefore alternate
back and forth between the two components. In total, they
switch five times in angular intervals of 2π/5, starting with
the selective emission of the slow component along φ = 0, as
in the COCP scenario, and the selective emission of the fast
component along φ = π/5.

The bottom frame of Fig. 3(b) shows the numerical result
from the 2D TDSE model for comparison. The full calculation
agrees qualitatively with the analytical model. In particular,
the numerical PED also displays a c5-rotational symmetry.
The relative rotation of the two AT components against each
other deviates from π/5 by 0.22 rad. This deviation, as well
as the enhanced amplitude and the reduced contrast of the
fast AT component, is again attributed to the nonresonant
intermediate states 3d and 4d , analogous to the discussion
of the COCP scenario in Sec. III A. The differential PEDs,
obtained by subtracting the calculation results for ϕ = 0 and
ϕ = π/2, are shown in Fig. 3(c). The differential PED from
the 2D TDSE model indicates an asymmetry contrast of 54%
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FIG. 3. Implementation of the IATS scheme by CRCP (2ω:3ω)
pulses. (a) Superposition of a |d, +2〉- and a | f , −3〉-type photoelec-
tron partial wave packet yields a c5-symmetric 2D PED. (b) Shown
on top is the analytical PED and on bottom the comparison to the 2D
TDSE result. The inset displays the polarization profile of the bi-
chromatic laser electric field E(t ). (c) Differential PEDs, i.e., the
difference between the PEDs obtained for ϕ = 0 and ϕ = π/2 for
each model. (d) Comparison of (i) the analytical and (iv) the numer-
ical PEDs to the results from (ii) the two-state and (iii) the four-state
simulations, respectively.

achieved in the CRCP scenario. To confirm the influence of
the intermediate states on the PED, Fig. 3(d) shows the results
from the two-state [Fig. 3(d ii)] and the refined four-state
[Fig. 3(d iii)] model simulation, which accurately reproduce
the analytical model and the 2D TDSE model calculation,
respectively. Hence, the full calculation validates the analyt-
ical approach also in the CRCP scenario, accounting for more
realistic conditions.

The polarization control demonstrated here highlights the
power of polarization-shaped ultrashort pulses to control
besides the energy spectra also the directionality of photoe-
mission processes by careful design of the angular momentum
states of the emitted photoelectron wave packets.

C. Linearly polarized pulses

The discussion of circularly polarized (CP) scenarios in
the previous sections has shown that for a complete de-
scription of the 2D PED one is required to consider not
only the angle-dependent phases of the angular momentum

FIG. 4. Implementation of the IATS scheme by LP (2ω:3ω)
pulses. In contrast to the CP scenarios, additional ionization path-
ways based on �� = −1 transitions arise in the LP scenario.
(a) These pathways are indicated by dotted arrows. (b) If we take
only pathways to the d- and f -type continua into account (solid
arrows), as in the CP scenarios, the analytical model (top frame)
describes efficient directional control of the AT doublet along the
laser polarization direction. However, the full TDSE calculation
(bottom frame), where all ionization pathways are inherently built
in, shows that the selectivity among the AT components in opposite
directions is washed out due to the interference with the additional
photoelectron partial wave packets from the s- and p-type continua.

states but also the energy-dependent ionization phases. To
demonstrate the effect of multiple interfering partial wave
packets, in this section we discuss the IATS scheme using
linearly polarized (LP) bichromatic pulses. Analogously, LP
bichromatic microwave pulses with commensurable frequen-
cies were used to study the photoionization of hydrogen and
helium Rydberg atoms [19,20]. Linearly polarized pulses are
described by a superposition of two CRCP field components,
which entails two important implications. First, the angu-
lar part of the created photoelectron partial wave packets is
described by Ym(φ) = cos(mφ) in the 2D case. Second, the
�� = −1 transitions are no longer inhibited as in the CP
scenarios, which opens up further MPI pathways to additional
photoelectron continua. A Grotrian-type excitation scheme
including all dipole-allowed MPI pathways for the LP sce-
nario is shown in Fig. 4(a). The solid arrows indicate the
relevant pathways for the CP scenarios based on �� = +1
transitions. In the LP scenario, these pathways are still favored
by the propensity rules [21]. For simplicity, we therefore
consider only these pathways in our analytical model. Assum-
ing a y-polarized (2ω:3ω) pulse with ϕ = 0, we obtain the
expression

P (ωk, φ) = 2|A2(δωk )|2[cos(2φ) + cos(3φ)]2

+ 2|A2(−δωk )|2[cos(2φ) + cos(3φ + π )]2.

(15)

The corresponding 2D PED is visualized in the top frame
of Fig. 4(b). Apart from the angular distribution, it behaves
very similarly to that in the COCP scenario in Fig. 2(a).
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The slow AT component is observed selectively and with
maximum amplitude along φ = 0. In the opposite direction,
the photoelectrons switch selectively and with maximum effi-
ciency to the fast component. In contrast, the PED from the
2D TDSE model, shown in the bottom frame of Fig. 4(b),
displays a pronounced asymmetry along the laser polariza-
tion direction but no pronounced selectivity among the AT
components. Both components are observed with maximum
amplitude along φ = π . This deviation from the key signature
of the IATS scheme is rationalized by the interference of the
d- and f -type photoelectron partial wave packets with addi-
tional partial waves from the s- and p-type continua. The latter
are created via the MPI pathways indicated by dotted arrows
in Fig. 4(a). These pathways consist of both �� = +1 and
�� = −1 transitions. The ionization phases acquired along
each pathway are determined by the intermediate resonances,
such as the 3s state which is accessible in the LP scenario, and
the corresponding bound-to-ionic couplings. Hence the differ-
ent partial wave packets are generally not in phase, canceling
the interference mechanism of the IATS scheme. This result
highlights that for the complete description of the PED from
strong-field MPI, the interplay of the angle-dependent phases
introduced by the photoelectron angular momentum states
and the energy-dependent phases introduced by intermediate
states along the MPI pathways need to be taken into account.
In view of experimental implementations of the IATS scheme,
our simulation results show that the use of CP pulses is ad-
vantageous to reduce the number of competing MPI pathways
and enable the background-free mapping of the ground- and
excited-state dynamics.

IV. CONCLUSION

In this paper we proposed a scheme for the nonperturbative
control of the AT doublet in the photoelectron spectrum from
atomic REMPI. The scheme is based on the interference of
two AT doublets created by the simultaneous mapping of the
ground- and excited-state Rabi dynamics in a strongly driven
two-state system using tailored bichromatic femtosecond laser
pulses. So far, the AT doublet has been considered an indicator
of the bound-state dynamics. In our scheme, the phase of the
interfering AT doublets plays the pivotal role and is utilized
to control the shape of the resulting AT spectrum. We have
shown that, owing to the distinct phase relation between the
ground- and excited-state dynamics of the Rabi solution, the
interference of the two AT doublets in the energy-dependent
photoelectron amplitude is always constructive in the slow
component and destructive in the fast component. Unlike the
single-color (1+1) REMPI vs 2PI scheme reported recently
in [9,10], the interference condition in the bichromatic IATS
scheme is fully controllable by the relative phase between the
two colors and the laser polarization state. Depending on the
angular momentum state of the photoelectron partial wave
packets (determined by the number of photons required for
ionization), additional azimuthal phases are generally intro-
duced through the angular part of the wave functions, which
renders the interference condition angle dependent. As a re-
sult, the slow AT component is observed selectively in certain
directions, while in other directions the photoelectrons switch
selectively to the fast component. We provided analytical

expressions of the AT doublet for cosine-squared pulses to
investigate how the pulse parameters determine the shape
of the AT spectrum. However, the scheme is general, i.e.,
applicable for any kind of pulse with a real-valued envelope
irrespective of its shape.

Motivated by previous experiments, we demonstrated the
IATS scheme on the (1+2) REMPI vs 2PI of potassium atoms
using (2ω:3ω) COCP and CRCP pulses. The analytical results
were validated against ab initio calculations for the interaction
of a 2D potassiumlike atom with Gaussian-shaped pulses.
The full 2D TDSE calculation confirms the signatures of the
IATS scheme and sheds light on the influence of higher-lying
intermediate states in the multiphoton strong-field control sce-
narios investigated here.

We conclude by considering the implications of the the-
oretical analysis for the experimental implementation of the
proposed scheme. In a general (1 + N ) REMPI vs M-photon
ionization scenario, with 1 + N 
= M, the interference condi-
tion is angle dependent. As a consequence, the interference
pattern is averaged out in the angle-integrated photoelec-
tron energy spectrum. (i) Applying differential photoelectron
detection techniques, such as velocity map imaging [22]
or cold target recoil ion momentum spectroscopy [23], is
therefore crucial for the experimental observation of the AT
control by the IATS scheme. (ii) As shown previously, in this
case, the interference mechanism is sensitive to the carrier-
envelope phase (CEP) [24]. The CEP stabilization [25] or
tagging [26] is hence mandatory; otherwise the interference
pattern is averaged out even in the angle-resolved spectrum.
(iii) Our ab initio results suggest that the use of CP in-
stead of LP pulses is advantageous to circumvent competing
MPI pathways and ensure the background-free mapping of
the ground- and excited-state dynamics. (iv) Most impor-
tantly, our analytical treatment shows that the interference
condition is independent of the field amplitudes. Thus, we
expect the proposed AT control scheme to be robust against
laser intensity fluctuations as well as focal intensity aver-
aging, which will facilitate the observation of the scheme
in experiment.
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APPENDIX A: ANALYTICAL MODEL

In this Appendix we derive an analytical expression for
the AT doublet in the photoelectron spectrum from atomic
(1 + N ) REMPI vs nonresonant M-photon ionization. Using a
bichromatic field with suitably chosen central frequencies ω0

and ω1, the two ionization processes map the Rabi dynamics
of two strongly coupled bound states, labeled 1s and 2p, into
the same energy window of the photoelectron continuum.
The ω0-field component is considered to be resonant with the
atomic transition 1s → 2p by setting the eigenenergies of the
bound states to h̄ω1s = 0 and h̄ω2p = h̄ω0. For both colors,
we assume a cosine-squared envelope f (t ) of the electric field
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E+
n (t ) = En f (t )eiωnt (n = 0, 1) similar to [27]

f (t ) =
{

cos2
(

πt
�t

)
for − �t

2 � t � �t
2

0 otherwise.
(A1)

Here �t is the footprint pulse duration. The Rabi solution for
the population amplitudes of the 1s ground state and the 2p
excited state of the resonantly driven two-state system reads
[8,17]

c1s(t ) = cos

(
θ (t )

2

)
, c2p(t ) = i sin

(
θ (t )

2

)
, (A2)

with the time-dependent pulse area θ (t ) for the cosine-squared
pulse

θ (t ) = μ0E0

h̄

∫ t

−�t/2
f (t ′)dt ′

= θ∞
2π

[
sin

(
2πt

�t

)
+ 2πt

�t
+ π

]
. (A3)

The last expression is valid for −�t
2 � t � �t

2 , and θ∞ =
θ ( �t

2 ) = μ0E0

2h̄ �t denotes the final pulse area.

1. Photoionization from the 2p excited state

Since the bound-to-ionic couplings are generally much
weaker than the couplings in the bound-state system,
the photoionization is described by time-dependent per-
turbation theory [2,16,28]. We consider nonresonant N-
photon ionization from the 2p state to a continuum
state with energy h̄(ωk + ωIP), where h̄ωk is the pho-
toelectron kinetic energy and h̄ωIP is the IP. Then
the energy-dependent photoelectron amplitude is given
by [16,28]

a2p(δωk ) ∝
∫ �t/2

−�/t2
c2p(t ) f N (t )eiδωkt dt, (A4)

with δωk = ωk + ωIP − (N + 1)ω2p the N-photon detuning of
the ω0-field component (ω0 = ω2p) relative to the transition
from the 2p state to the continuum state. Using Euler’s for-
mula along with the binomial theorem, the N th-order pulse
envelope in Eq. (A4) is written as

f N (t ) = cos2N

(
πt

�t

)
= 1

22N

2N∑
j=0

(
2N

j

)
e±i(πt/�t )[2(N− j)].

(A5)

Because the term (N − j) runs symmetrically from −N to
+N , either the plus or the minus sign of the exponent can
be selected, which we will make use of in the next step.
Expanding the excited-state amplitude c2p(t ) in Eq. (A2) into
exponential functions and rearranging the terms, the integrand
of Eq. (A4) becomes

c2p(t ) f N (t )eiδωkt = i sin

(
θ (t )

2

)
cos2N

(
πt

�t

)
eiδωkt

= 1

22N+1

2N∑
j=0

(
2N

j

)

× (eiθ∞/4ei(δωk+� j )t ei(θ∞/4π ) sin(2πt/�t )

− e−iθ∞/4ei(δωk−� j )t e−i(θ∞/4π ) sin(2πt/�t ) ),

(A6)

where we introduced the shorthand notation � j = 2π
�t (N −

j + θ∞
4π

). Substituting ξ = 2πt
�t , the photoelectron amplitude in

Eq. (A4) is rewritten as

a2p(δωk ) ∝ �t

4N+1

2N∑
j=0

(
2N

j

)

×
∫ π

−π

(eiθ∞/4e−iν+
j (δωk )ξ ei(θ∞/4π ) sin(ξ )

− e−iθ∞/4e−iν−
j (δωk )ξ e−i(θ∞/4π ) sin(ξ ) )dξ, (A7)

where

ν±
j (δωk ) = −δωk ± � j

2π
�t (A8)

= −
[
±

(
N − j + θ∞

4π

)
+ δωk�t

2π

]
. (A9)

By using the real-valued Anger function Jν of the order ν

defined as [29]

Jν (β ) = 1

2π

∫ π

−π

e±iνξ e∓iβ sin(ξ )dξ, (A10)

with Re(β ) > 0, and exploiting the relation

ν+
j (−δωk ) = −ν−

j (δωk ) (A11)

following from Eq. (A8), we find

a2p(δωk ) ∝ �t

4N+1

2N∑
j=0

(
2N

j

)

×
[

eiθ∞/4Jν+
j (δωk )

(
θ∞
4π

)

− e−iθ∞/4Jν+
j (−δωk )

(
θ∞
4π

)]
. (A12)

Introducing the photoelectron partial amplitude as

AN (δωk ) = �t

4N+1
eiθ∞/4

2N∑
j=0

(
2N

j

)
Jν+

j (δωk )

(
θ∞
4π

)
, (A13)

the total photoelectron amplitude can be written in a compact
manner as

a2p(δωk ) ∝ AN (δωk ) − A∗
N (−δωk ). (A14)

Exemplarily, the partial amplitudes A2(δωk ) and A∗
2(−δωk ),

constituting the photoelectron amplitude from (1 + 2) REMPI
via the 2p state by a 6π pulse, are visualized in Fig. 5 (bold
black lines) together with their decomposition into the Anger
functions Jν+

j (δωk ) (colored lines with shaded backgrounds).
We see that the first term in Eq. (A14) describes the slow
component of the AT doublet, while the second term describes
the fast component. Note that Eq. (A14) is valid for any
real-valued pulse shape f (t ). By defining

c(t ) = f N (t )eiθ (t )/2 (A15)
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FIG. 5. Illustration of the photoelectron amplitude a2p(δωk )
according to Eq. (A14), from (1+2) REMPI (N = 2) by a cosine-
squared pulse with pulse area θ∞ = 6π . Shown on top is the slow
AT component (bold black line) described by the partial amplitude
A2(δωk ), which is purely imaginary in this case. The colored lines
(shaded backgrounds) display the corresponding decomposition into
Anger functions Jν+

j (δωk ) ( j = 0, . . . , 4). Shown on the bottom is the

fast AT component determined by A∗
2(−δωk ).

and considering its Fourier transform F as a function of the
variable δωk ,

AN (δωk ) = F[c(t )](δωk ), (A16)

implying

A∗
N (−δωk ) = F[c∗(t )](δωk ), (A17)

we see that the photoelectron amplitude resulting from
N-photon ionization of the excited state in a Rabi oscil-
lating system always has the form given in Eq. (A14).
Equation (A14) describes the photoelectron amplitude as a
superposition of the two partial amplitudes with a respective
phase of ±θ∞/4. At the center of the AT doublet, at δωk = 0,
both partial amplitudes have the same modulus. Therefore, we
find

a2p(δωk = 0) ∝ i sin

(
θ∞
4

)
, (A18)

i.e., the amplitude varies periodically with the pulse area θ∞
determined by the field amplitude E0. In addition, Eq. (A18)
shows that the amplitude at the center of the AT doublet is
always imaginary (or zero).

Eventually, we consider the full photoelectron wave func-
tion created by (1 + N ) REMPI via the 2p state using a CP
pulse. In the 2D case studied here, the angular part of the wave
function is given by the single-valued eigenfunction of the
angular momentum, i.e., the circular harmonic Ym(φ) ∝ eimφ

[15]. For (1 + N )-photon ionization by an RCP pulse, the
angular momentum quantum number reads m = −(1 + N );

hence we obtain

ψ2p(ωk, φ) = a2p(δωk )Ym(φ)

∝ [AN (δωk ) − A∗
N (−δωk )]e−i(1+N )φ. (A19)

2. Photoionization from the 1s ground state

The derivation of the photoelectron amplitude created by
nonresonant M-photon ionization from the 1s ground state by
the ω1-field component is fully analogous to the procedure de-
scribed above. By inserting the ground-state amplitude c1s(t )
from Eq. (A2) into the photoelectron integral in Eq. (A4) and
allowing for an additional optical phase ϕ, we find

a1s(δωk ) = [AM (δωk ) + A∗
M (−δωk )]e−iMϕ. (A20)

The essential difference between Eqs. (A20) and (A14) is the
sign of the fast AT component, which results from the cosi-
nusoidal and sinusoidal behavior of the 1s and 2p amplitudes,
respectively [see Eq. (A2)]. This difference is the key feature
of the IATS scheme. The 2D photoelectron wave function
from M-photon ionization of the 1s state by a CP pulse thus
takes the form

ψ1s(ωk, φ) ∝ [AM (δωk ) + A∗
M (−δωk )]e−iM(ϕ∓φ), (A21)

where the minus (plus) sign corresponds to LCP (RCP) ion-
ization. Note that, in this case, the photoelectron amplitude at
the center of the AT doublet is always real valued: a1s(δωk =
0) ∝ cos(θ∞/4).

3. Interference of Autler-Townes doublets

By designing the central frequencies of the bichromatic
field such that (1 + N )ω0 = Mω1, the AT doublets from
ground- and excited-state ionization are mapped into the same
energy window of the continuum and interfere. Motivated by
the discussion in the main text (see Sec. II A), we describe the
interference for the case N = M, where the same number of
photons is required for the ionization from both states. How-
ever, it is straightforward to extend the formalism to a general
(1 + N ) REMPI vs M-photon ionization scenario. Assuming
equal amplitudes of the two partial wave packets, by a suitable
choice of the field amplitudes En, the coherent superposition
wave function ψtot(ωk, φ) reads

ψtot(ωk, φ) = ψe,1s(ωk, φ) + ψe,2p(ωk, φ)

∝ AN (δωk )(1 + ei(σφ−Nϕ) )

− A∗
N (−δωk )(1 + ei(σφ−Nϕ+π ) ). (A22)

The parameter σ = 1 + N ± N accounts for the polariza-
tion state of the bichromatic field. The plus (minus) sign
corresponds to a CRCP (COCP) pulse. The correspond-
ing 2D photoelectron momentum distribution P (ωk, φ) =
|ψtot(ωk, φ)|2 reads

P (ωk, φ) ∝ 2|AN (δωk )|2[1 + cos(σφ − Nϕ)]

+ 2|AN (−δωk )|2[1 + cos(σφ + π − Nϕ)]

+ 4|AN (δωk )AN (−δωk )|
× sin(θ∞/2) sin(σφ − Nϕ). (A23)
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The last term in Eq. (A23), i.e., the mixing contribution, can
be neglected for a sufficiently small overlap of the two AT
components. In addition, the mixing term vanishes exactly
if the pulse area θ∞ equals even multiples of 2π . The first
and second terms of P (ωk, φ) describe two σ -fold rotationally
symmetric contributions which are rotated against each other
about an angle of π/σ . The overall rotation of the PED is
controllable by the relative optical phase ϕ between the two
components of the bichromatic pulse. Finally, we note that
while Eq. (A23) was derived assuming a cosine-squared pulse,
the scheme is more generally applicable for any pulse with a
real-valued envelope irrespective of its shape.

APPENDIX B: 2D TDSE MODEL

The numerical methods used in our 2D TDSE model
have been described in detail elsewhere [11,13]. Briefly, we
solve the 2D TDSE in the dipole approximation and length
gauge

ih̄
∂

∂t
ψ (r, t ) =

(
− h̄2

2me
� + V (r) + er · E(t )

)
ψ (r, t ) (B1)

for a single active electron with mass me and charge −e in the
soft-core Coulombic potential [30–32]

V (r) = − ze2

4πε0

erf (r/a)

r
. (B2)

The electron interacts with a polarization-shaped laser electric
field E(t ), which is described by the real part of its positive-
frequency analytic signal E(t ) = Re[E+(t )] and represented
in the spherical basis as

E+(t ) = f (t )(E0eiω0t eq1 + E1ei(ω1t+ϕ)eq2 ), (B3)

with qn = ±1 for LCP and RCP light, respectively, and e±1 =
(ex ∓ iey)/

√
2. For LP light polarized in the y direction, the

spherical unit vectors eqn are both replaced by the Cartesian
unit vector ey = i(e+1 − e−1)/

√
2.

The atom is initially prepared in the ground state. The
ground-state wave function is refined by imaginary-time
propagation [33]. Subsequently, the wave function ψ (r, t )
is propagated on a discrete spatial grid using a Fourier-
based split-operator technique [34]. Nonphysical reflections
at the spatial boundaries are minimized using absorbing
boundary conditions [35,36]. After the laser-atom interac-
tion, the wave function is propagated until the free part
ψ f (r, t ), i.e., the photoelectron wave packet, has detached
from the bound part but not yet reached the absorbing bound-
aries. At this time t = t f , the photoelectron wave function
is separated from the bound part by application of a cir-
cular splitting filter [37]. Fourier transformation of the free
part yields the 2D photoelectron momentum distribution
P (k) = |F[ψ f (r, t f )](k)|2. Calibration of P (k) according to
the relation k → ωk = h̄

2me
k2 finally yields the 2D PED

P (ωk, φ).
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