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Electron-correlation-induced nonclassicality of light from high-order harmonic generation
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We study the effect of electron-electron correlations on the quantum state of the light emitted from high-
harmonic generation (HHG). The quantum state of the emitted light is obtained by using a fully quantum-
mechanical description of both the optical modes as well as the electronic system. This is different from the
usual semiclassical description of HHG, which only treats the electronic target system quantum mechanically.
Using the generic Fermi-Hubbard model, the strength of the electron-electron correlation can be treated as a
parameter enabling us to investigate the two limiting cases of a completely uncorrelated phase and a correlated
Mott-insulating phase. In the completely uncorrelated phase, the model reduces to a single-band tight-binding
model in which only intraband currents contribute to the spectrum. In this limit, we analytically find that the
emitted light is in a classical coherent state. In the Mott-insulating phase, a consideration of the photon statistics
and squeezing of the emitted photonic state shows that the inter-Hubbard-subband current generates nonclassical
light. In this sense, we show that electron-electron correlation can induce the generation of nonclassical states of
light.
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I. INTRODUCTION

High-harmonic generation (HHG) is a well-studied process
in which a system (atom, molecule, solid) is driven by an
intense laser field resulting in the emission of higher har-
monics at integer values times the frequency of the laser.
HHG has been observed in numerous experiments and has
led to the field of attosecond physics [1] that was awarded
the Nobel Prize in physics in 2023 [2–4]. The experimental
progress has opened the door to study electron dynamics at
their natural times scales as well as using the HHG spectrum
to study the generating process within the HHG sample [1].
HHG in atomic and molecular gases is typically rational-
ized in terms of the three-step model [5–7], with ionization,
propagation and recombination, and associated emission of
light as essential elements. HHG in solids [8–10] can often
be understood as originating from two different but coupled
kinds of currents, namely, the inter- and intraband currents.
Similarly to HHG in atoms, the interband current can be
explained semiclassically by the three-step-model for HHG
in band-gap materials [11–14]. In this model, (i) an electron
is promoted to the conduction band due to the interaction
with the driving field, leaving a hole in the valance band;
(ii) both the electron and the hole are accelerated in their
respective bands by the strong laser field; and (iii) the elec-
tron and hole can recombine, resulting in the emission of
light. This process typically occurs in semiconductors with
a valence band and at least one conduction band, which is
why such a process cannot be included in one-band models.
Intraband currents, on the other hand, can exist also in one-
band models and emerge from the acceleration of an electron
in the nonparabolic band of the solid. The two mechanisms
are intrinsically coupled as the intraband mechanism is the
second step in the three-step model for interband current
generation.

Though the above-mentioned physical pictures have al-
lowed for accurate descriptions of the emitted photonic
spectrum and have found a wide range of applications, they
are not entirely complete as they cannot account for a possible
quantum-mechanical nature of the emitted light. In recent
years, much attention has been given to the inclusion of a
quantized electromagnetic field in the context of HHG both
theoretically [15–29] and experimentally [28,30–32], merg-
ing the fields of strong-field physics and quantum optics.
In this fully quantum-mechanical setting it was found that
nonclassical states of light can be generated when including
transitions between the initial and different final electronic
states in atomic gasses, e.g., in a gas of helium atoms [17].
It was also found that a nonclassical catlike state, a coherent-
state superposition (CSS), can be generated if one performs
a conditional measurement subsequent to the HHG process
as shown for both atomic gasses [19,26,28,32] and solids
[20,21,29]. Furthermore, there have been investigations in the
direction of a nonclassical driving field [22,23,27], which is
also not possible within a conventional semiclassical frame-
work. Investigating the quantum features of the emitted HHG
light is not only of interest to fundamental research and under-
standing of the HHG process itself but is also important with
regards to quantum information science, as a fully quantized
theory could enable HHG to be a feasible way to reliably
create nonclassical states of light (e.g., squeezed states, Fock
states, CSS [33–35]). These could serve as a great resource in
quantum technology [36,37] and quantum metrology [38,39]
linking the fields of attosecond science and quantum informa-
tion [19].

In parallel with these developments, there has recently
been an increasing interest in HHG in correlated materials,
that is, materials with a beyond mean-field electron-electron
repulsion. These materials, including cuprates and high-
temperature superconductors, are of great interest and they
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can lead to a signal enhancement for certain harmonics
[40–45]. HHG is hence relevant as a spectroscopic tool to
resolve the dynamics of electrons in correlated materials.
Mott insulators in particular have recently been investigated
both theoretically [40–54] and experimentally [55–57], al-
though not with quantum optical considerations. Generally,
a correlated quantum system exhibits nonclassical behavior,
motivating the use of correlations to generate nonclassical
light in HHG. This is also indicated by recent theoretical
studies where it has been shown that by preparing a gas of
atoms in a highly correlated (superradiant) state nonclassical
light was emitted from HHG [18]. It was also shown that
including correlations between atoms can generate entangled
and squeezed light [24] or entangled photon pairs [58]. In this
paper, we focus on correlated materials and ask the question
of how electron-electron correlations affect the generated pho-
tonic state. Specifically, we ask how the HHG spectrum in a
fully quantum-mechanical calculation differs from semiclassi-
cal calculations when including electron correlations and how
the presence of these correlations affects the photon statistics
and squeezing of the emitted light, the latter two of which
would not be possible to address in a usual semiclassical HHG
setting.

To capture generic effects of electron correlation we use the
prototypical Fermi-Hubbard model [59]. This model has been
shown to capture important physical properties of real materi-
als, such as cuprates, which include high-Tc superconductors
[60,61]. In this model the on-site electron-electron correlation
is included via the so-called Hubbard U term and the corre-
lation strength can thus be treated as a changeable parameter
allowing us to study how the quantum-mechanical nature of
the generated light changes when increasing the correlation
strength, U . This allows us to study both the uncorrelated
phase and the highly correlated Mott-insulating phase where
the electrons are highly real-space localized with only one
electron per site as doubly occupied sites are energetically
unfavorable.

The paper is organized as follows. In Sec. II the gen-
eral fully quantum-mechanical theory and the Fermi-Hubbard
model are presented as well as the measures of interest. Then
in Sec. III we present the results for the two limiting cases of
an uncorrelated phase and a Mott-insulating phase followed
by a discussion in Sec. IV before summarizing and concluding
in Sec. V. In the Appendices further details on the derivation
and application of the formalism are given. Throughout this
paper atomic units (h̄ = me = 4πε0 = e = 1) are used unless
explicitly stated otherwise.

II. THEORY

A. Quantum optical description of HHG

In this section, we describe a fully quantum-mechanical
framework that includes the quantum optical state of the
light emitted from an electronic system driven by an intense
time-dependent electromagnetic field. The steps involved in
this theory can be found, e.g., in Refs. [17,19]. We have
chosen to include some details of the derivations to make
the presentation self-contained. The theory goes beyond usual
semiclassical HHG theory by considering the quantum state

of both the emitted light and the coherent state of the driving
laser. This quantum optical calculation consists of three parts.
In the first step, the state of the laser is transformed into
vacuum [62,63]. This in consequence separates the vector
potential into a classical and a quantum part and is accompa-
nied by a transformation of the time-dependent Schrödinger
equation (TDSE). In the second step, the TDSE is solved
for electrons driven only by the classical field. This is only
possible due to the transformation performed in the first step
and enables one to use conventional TDSE solvers as only the
classical field is considered. Here we specifically calculate all
transition currents and not only the time-dependent expecta-
tion value of the current. The third and final step is to integrate
an equation of motion for the photonic state, which is coupled
to the current generated by the response of the electrons to
the classical part of the vector potential. From the photonic
degrees of freedom one can calculate all expectation values of
interest. This protocol will now be explained in greater detail.

We investigate a system driven by a multimode coherent-
state laser, |ψlaser (t )〉 = ⊗k,σ |αkσ e−iωkt 〉 where ωk = c|k| is
the angular frequency with the wave number k, c being
the speed of light in vacuum, and σ the polarization. The
distribution of the complex coherent-state parameters {αkσ }
determines the properties of the field. We note that the
coherent-state amplitude vanishes for modes far away from
the laser mode, i.e., αkσ = 0 for k, σ � kL, σL where kL, σL

is the wave number and polarization of the laser mode,
respectively.

We consider a case where, under field-free conditions, N
electrons move subject to an electrostatic potential Û gen-
erated by other electrons and static nuclei. The state of the
combined electronic and photonic system, denoted by |�(t )〉,
satisfies the TDSE

i
∂

∂t
|�(t )〉 = Ĥ |�(t )〉 , (1)

where the full Hamiltonian is given by Ĥ = 1
2

∑N
j=1( p̂ j +

A)2 + Û + ĤF , where p̂ j is the momentum operator for
electron j, Û is the potential accounting for the Coulomb
interaction between the particles,

Â =
∑
k,σ

g0√
ωk

(êσ âk,σ eik·r + ê∗
σ â†

k,σ
e−ik·r) (2)

is the quantized vector potential, and

ĤF =
∑
k,σ

ωkâ†
k,σ

âk,σ (3)

is the Hamiltonian for the free photonic field. In Eqs. (2) and
(3) the effective coupling strength is denoted g0 = √

2π/V
with quantization volume V , r is the position, 
k,σ is the sum
over all photon momenta and polarizations with photon unit
vector êσ , and âk,σ and â†

k,σ
are the photonic annihilation and

creations operators, respectively. In order to solve Eq. (1) we
follow the same procedure as in Refs. [17,19] for a quantized
electromagnetic field. The first step follows a transformation
originally introduced by Ref. [62] and later used in the context
of HHG [17,19,20,28,32], which is to transform away the laser
field by considering the time-dependent unitary displacement
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operator

D̂(t ) = ⊗k,σ D̂[αkσ (t )] (4)

with

D̂[αk,σ (t )] = exp[αkσ (t )â†
k,σ

− α∗
kσ (t )âk,σ ], (5)

with αk,σ (t ) = αk,σ e−iωkt such that D̂†(t ) |ψlaser (t )〉 = |0〉.
Due to this transformation the vector potential Â now splits
up into a classical part Acl(t ) = 〈ψlaser (t )| Â |ψlaser (t )〉 as well
as a quantum part:

ÂQ =
∑
k,σ

g0√
ωk

(êσ âk,σ eik·r + ê∗
σ â†

k,σ
e−ik·r). (6)

Consequently, the Hamiltonian is now separated into three
parts:

ˆ̃H (t ) = ĤTDSE(t ) + V̂ (t ) + ĤF , (7)

where ĤTDSE(t ) = ∑N
j=1

1

2
[ p̂ j + Acl(t )]2 + Û is the Hamil-

tonian governing the electronic system subject to a classical
driving, V̂ (t ) = ∑N

j=1 ÂQ · [ p̂ j + Acl(t )] is the electronic in-
teraction with the quantum field, and ĤF is the free-field
Hamiltonian given in Eq. (3). In Eq. (7) a tilde has been used
on the left-hand site to denote the fact that the Hamiltonian
is transformed due to the application of the displacement
operator in Eq. (4). A full derivation of the result in Eq. (7)
can be found in the Supplementary Information of Ref. [17]
and is included in Appendix A for completeness.

The full Hamiltonian in Eq. (7) is now further trans-
formed by going to a rotating frame with respect to ĤTDSE(t )
and ĤF , i.e., by applying the unitary time evolution opera-
tor Û†

0 (t, t0) = Û†
TDSE(t, t0) · Û†

F (t, t0) with t0 being the initial
time such that

|�̃(t )〉I = Û†
0 (t, t0) |�̃(t )〉S , (8)

where the subscripts refer to the frame of reference with S
denoting the Schrödinger picture and I the interaction picture.
The transformation in Eq. (8) separates the dynamics of the
classical and quantum parts of the electromagnetic potential
and transforms the TDSE into

i
∂

∂t
|�̃(t )〉I = V̂I (t ) |�̃(t )〉I , (9)

with

V̂I (t ) = Û†
F (t, t0) ÂQ ÛF (t, t0)

· Û†
TDSE(t, t0) ĵ(t ) ÛTDSE(t, t0) (10)

where we have defined the current operator ĵ(t ) = 
N
j=1[ p̂ j +

Acl(t )] and where the tilde denotes that the state is displaced
with respect to the laser modes. The quantized vector potential
in the rotating frame within the dipole approximation is given
by

ÂQ,I (t ) = Û†
0 (t, t0) ÂQ Û0(t, t0) = Û†

F (t, t0) ÂQ ÛF (t, t0)

=
∑
k,σ

g0√
ωk

[
êσ âk,σ e−iωk (t−t0 ) + ê∗

σ â†
k,σ

eiωk (t−t0 )
]
.

(11)

We rewrite the right-hand side of Eq. (10) by utilizing that an
electronic state |φm〉 is time evolved via

|φm(t )〉 = ÛTDSE(t, t0) |φm(t0)〉 . (12)

By inserting identity operators 1 = 
m |φm〉 〈φm| into Eq. (10)
and using the definition in Eq. (12) we then express the inter-
action as

V̂I (t ) =
∑
m,n

ÂQ,I (t ) · jm,n(t ) |φm〉 〈φn| , (13)

where we have defined the matrix element

jm,n(t ) = 〈φm(t )| ĵ(t ) |φn(t )〉 , (14)

which is referred to as the transition current between two
electronic states. Thus, the second step in the quantum optical
protocol is to obtain a set of electronic states {|φm(t )〉} for all
times using standard TDSE solving techniques to solve

i
∂

∂t
|φm(t )〉 = ĤTDSE(t ) |φm(t )〉 , (15)

where |φm(t )〉 is a wave packet starting out in the mth state
for the electronic part of the problem. The choice of basis,
{|φm(t )〉}, is in principle completely arbitrary. We have chosen
the basis to be the eigenstates of the field-free Hamiltonian of
the electronic system, as it enables the use of conventional
numerical tools to solve the TDSE.

In the present paper, we investigate how correlations in a
generic correlated material described by the Fermi-Hubbard
model affect the emitted photonic state produced by HHG. To
that end, we now specify the electronic Hamiltonian to be the
field-driven Fermi-Hubbard Hamiltonian, i.e., ĤTDSE(t ) →
ĤFH(t ). Specifically, we consider the one-dimensional, one-
band Fermi-Hubbard model at half filling with periodic
boundary conditions and with an equal number of spin-up and
spin-down electrons to keep the whole system spin neutral.
This model is chosen as it allows us to treat the correlation
strength U as a parameter to study the effects of correlations.
The system is driven by a classical laser pulse such that the
system within the dipole approximation is described by the
time-dependent Hamiltonian [59]

ĤFH(t ) = Ĥhop(t ) + ĤU , (16)

with

Ĥhop(t ) = − t0
∑
j,μ

(
eiaAcl (t )ĉ†

j,μĉ j+1,μ + H.c.
)
, (17)

ĤU = U
∑

j

(ĉ†
j,↑ĉ j,↑)(ĉ†

j,↓ĉ j,↓), (18)

where t0 is the hopping matrix element for an electron to
move to the nearest-neighboring sites, i.e., from site j to site
j ± 1; Acl(t ) is the classical vector potential of the driving
field along the lattice dimension; a is the lattice spacing;
and U is the beyond mean-field onsite electron-electron re-
pulsion. The fermionic creation (annihilation) operator for
an electron on site j with spin μ ∈ {↑,↓} is denoted ĉ†

j,μ
(ĉ j,μ). We work with nearest-neighbor hopping, which is the
common limit of this model [43–45]. Inclusion of multiple
bands and beyond-nearest-neighbor hopping terms becomes
numerically very demanding. Note that each term in the sum
in Eq. (18) counts the number of electrons on site j. In the
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Fermi-Hubbard model, the current operator is explicitly given
as

ĵ(t ) = −iat0
∑
j,μ

(
eiaAcl (t )ĉ†

j,μĉ j+1,μ − H.c.
)
x̂, (19)

which is in the direction of the Fermi-Hubbard chain taken to
be the x direction; see Appendix B.

We are now ready to solve Eq. (9). To that end, it is conve-
nient to expand the full state of the electronic and photonic
degrees of freedom in terms of field-free electronic eigen-
states:

|�̃(t )〉I =
∑

m

|χ̃ (m)(t )〉 |φm〉 , (20)

where m is the index corresponding to the mth electronic
state and |χ̃ (m)(t )〉 is the photonic state associated with the
electronic state |φm〉. Note that normalization of the state in
Eq. (20) requires 
m〈χ̃ (m)(t ) |χ̃ (m)(t )〉 = 1. The choice of ba-
sis in Eq. (20) can be completely arbitrary but it is convenient
to expand in the same basis as the one used in Eq. (13) as
we will exploit the orthogonality between basis states in the
following. We now insert Eq. (20) into the transformed TDSE
in Eq. (9), project onto 〈φm|, write out ÂQ,I (t ) explicitly,
and obtain the following equation of motion for the emitted
photonic field:

i
∂

∂t
|χ̃ (m)(t )〉 =

∑
k,σ

g0√
ωk

[
êσ âk,σ e−iωkt + ê∗

σ â†
k,σ

eiωkt
]

·
∑

n

jm,n(t ) |χ̃ (n)(t )〉 , (21)

where we have taken t0 = 0 for convenience. Equation (21)
has the same structure as the equations derived for the atomic
case in Refs. [17,19,20,24,32] and it is in general difficult
to solve as it couples all frequency modes and all electronic
states. To proceed we now assume that each frequency com-
ponent can be treated independently (that is, assuming no
coupling between the different harmonics [17]), yielding the
equation

i
∂

∂t

∣∣χ̃ (m)
kσ

(t )
〉 = g0√

ωk

[
êσ âk,σ e−iωkt + ê∗

σ â†
k,σ

eiωkt
]

·
∑

n

jm,n(t )
∣∣χ̃ (n)

kσ
(t )

〉
, (22)

where |χ̃ (m)
kσ

(t )〉 is the frequency component with wave num-
ber k and polarization σ of the photonic state associated
to the field-free electronic eigenstate |φm〉. The integration
of Eq. (21) or (22) is the third step in the quantum optical
description of HHG, and by using the full state of the system
in Eq. (20) expectation values of interest can be calculated.
Details on the calculation of expectation values are given in
Appendix C.

We emphasize that Eq. (21) [or equivalently Eq. (22)] is the
central equation in this fully quantum-mechanical framework,
highlighting that it is not only the classical current, ji,i(t ) with
i being the initial state [see Eq. (14)], that contributes to the
photonic quantum state. In fact, for the system considered
in this paper, we find that other elements of this transition
current, jn,m(t ), are significantly greater than the classical
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FIG. 1. The norm squared of the time derivative of the Fourier-
transformed current, j̃n,m(ω), for various transition currents. Note
that some elements are comparable to or even larger than the classical
current element, j̃1,1(ω) (solid blue line). The results shown are for
a Fermi-Hubbard model with U = 10t0 and the parameters specified
in the main text.

contribution as seen in Fig. 1 where Fourier-transformed
transition currents, j̃n,m(ω), are shown. At first glance, this
may indicate that many transition currents contribute more
than 〈 j(t )〉 = j1,1(t ). However, as seen from Eqs. (21) and
(22) the transition currents (together with g0) determine how
much population is transferred to a given state. As we take
the initial condition to be the vacuum state associated with
the electronic ground state, i.e., |χ̃ (m)

kσ
(t0)〉 = δm,i |0〉, and

the coupling is in general weak (determined by g0) most
of the population remains in the photonic state associated with
the initial electronic state. Note also that this formalism can
be used to calculate the quantum features of any system once
jn,m(t ) is known for all n and m. As will be shown in Sec. III,
it is the inclusion of these off-diagonal transition currents that
can potentially generate nonclassical light.

In other works further approximations have been made on
the transition currents. For instance, the strong-field approx-
imation (SFA) has been made to neglect transitions between
excited states (or continuum-continuum transitions for atoms)
[19,32], and a Markov-type approximation has been per-
formed on the photonic state [24], allowing for an analytical
solution of Eq. (21). However, we do not pursue this further
here.

In the results presented in this paper, we use a one-
dimensional lattice of L = 8 sites with periodic boundary
conditions, a lattice spacing of a = 7.5589 a.u., and t0 =
0.0191 a.u. picked to fit those of the cuprate Sr2CuO3 [64]
as done previously in Refs. [40,43,44]. We use a linearly
polarized pulse with polarization along the lattice dimension
with Nc = 10 cycles and a sin2 envelope function in the dipole
approximation

Acl(t ) = A0 sin(ωLt + π/2) sin2

(
ωLt

2Nc

)
. (23)

Here, the vector potential amplitude is A0 = F0/ωL = 0.194
a.u. with the angular frequency ωL = 0.005 a.u. = 33 THz.
With these choices the field strength, F0, corresponds to a
peak intensity of 3.3 × 1010 W/cm2. To study the effects of
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correlations, we treat the strength of the on-site electron-
electron correlation, U , as a parameter. We solve the TDSE in
Eq. (15) for all states {|φm(t )〉} using the Arnoldi-Lancoz algo-
rithm [65–68] with a Krylov subspace dimension of 4. As this
fully quantum-mechanical theory requires all time evolved
states of the electronic system, {|φm(t )〉}, it is computation-
ally more demanding than the usual semiclassical calculation,
limiting us to consider at most L = 8 electrons in the model.
We found consistent results for smaller systems with L = 4, 6
electrons. Furthermore, to limit the dimensionality of the sys-
tem, we utilize that the Hamiltonian in Eq. (16) possesses
spin-flip symmetry and is invariant under translations of the
entire system corresponding to conservation of the total crys-
tal momentum [59]. The initial state is the spin-symmetric
ground state with vanishing total crystal momentum, and due
to the symmetries of the Hamiltonian only couplings to states
within that subspace are needed.

B. Measures

Using a fully quantum-mechanical approach to calculate
the quantum state of the emitted HHG allows one to calculate
other measures than just the spectrum, which is the primary
observable in usual HHG approaches. Particularly, since the
photon distribution in each mode is obtained within this the-
ory, the photon statistics of the emitted state can be calculated,
enabling the study of nonclassicality in HHG. In this paper,
we follow Ref. [17] to calculate the photonic spectrum, the
Mandel Q parameter, and the squeezing of the photonic state,
which we will explain in the following.

The spectrum can be calculated in the following way. The
total energy of the emitted field after the HHG process is given
by ε = 
k,σωk〈n̂k,σ 〉, where n̂k,σ = â†

k,σ
âk,σ is the photonic

counting operator, and where we for simplicity have denoted
〈n̂k,σ 〉 = I 〈�̃(∞)| Û†

0 n̂k,σ Û0 |�̃(∞)〉I and include Û0 as the
state is in a rotating frame as seen from Eq. (8). By taking
the continuum limit,

∑
k → V/(8c3π3)

∫
d�dωω2, where V

is the quantization volume, one can calculate the energy per
frequency per solid angle:

S(ω) ≡ dε

dωd�
= ω3

g2
0(2π )2c3

〈n̂k,σ 〉, (24)

which we will refer to as the spectrum. To illustrate the
effect of the quantum description of the photonic degrees
of freedom, we also consider the conventional semiclassical
prediction of the spectrum [69]:

Scl(ω) = ω2| j̃i,i(ω)|2 (25)

where j̃i,i(ω) is the Fourier transform of the classical current
which in the present case is obtained from the time evolved
ground state |φ1(t )〉 used in Eq. (14).

We note that the spectrum in Eq. (24) only contains the first
moment of the photon counting operator, which does not re-
veal all the statistical properties of the underlying distribution
from which it was calculated. Information about the photon
statistics of the generated light is hence not found in the
spectrum. The statistical properties of the generated light can
instead be quantified via the so-called Mandel Q parameter.

For a single mode it is given by [70]

Qk,σ =
〈
n̂2

k,σ

〉 − 〈n̂k,σ 〉2

〈n̂k,σ 〉 − 1. (26)

If Qk,σ > 0 the photon statistics is called super-Poissonian
while for Qk,σ < 0 it is called sub-Poissonian, referring to a
broader and narrower distribution than a Poissonian distribu-
tion, respectively. Note that a classical coherent state will have
Qk,σ = 0 as it has Poissonian statistics. While only a nonclas-
sical state can produce sub-Poissonian statistics, both classical
mixtures of coherent states, thermal states as well as non-
classical states can have super-Poissonian photon statistics. In
other words, a super-Poissonian statistics is not necessarily
a quantum feature [70]. The last measure of interest in this
paper is the degree of squeezing, which is a clear nonclassical
feature of light. The degree of squeezing in the unit of dB is
given as [71,72]

ηk,σ = −10 log
{
4 min

θ∈[0,π )
[�Xk,σ (θ )]2

}
, (27)

where the minimum is found over angles 0 � θ < π that
minimizes the variance in the generalized quadrature oper-
ator X̂k,σ (θ ) = (âk,σ e−iθ + â†

k,σ
eiθ )/2. We note that classical

coherent light is not squeezed, i.e., ηk,σ = 0 for all modes and
polarizations for coherent light.

Experimentally, one can measure the degree of squeezing
with a homodyne detection scheme [70,73,74] and the Mandel
Q parameter can be obtained by photon counting [75,76].

III. RESULTS

We now use this fully quantum-mechanical framework
to study the harmonics generated by the field-driven Fermi-
Hubbard model in two limiting cases, namely, the completely
uncorrelated phase (U = 0) and a Mott-insulating phase (U =
10t0). These cases are chosen as the dynamics is governed
by two different mechanisms and the limiting cases allow
us to present qualitatively physical pictures to explain the
results. Additionally, the Mott-insulating phase will highlight
the role of electron-electron correlations in the generation of
nonclassical light when compared to the uncorrelated phase.

A. Uncorrelated phase

1. Qualitative physical picture

As a limiting case we consider a system without correla-
tions, i.e., U = 0, as it allows for an exact analytic solution.
In this case, the Fermi-Hubbard Hamiltonian reduces to a sim-
ple one-band tight-binding model described by the hopping
Hamiltonian, Ĥhop(t ) in Eq. (17). Equation (17) can be diago-
nalized by transforming the creation operators as follows:

ĉ†
j,μ = 1√

L

∑
q

e−iqR j ĉ†
q,μ, (28)

with a similar expression for the annihilation operators. Here
Rj denotes the jth lattice position and q is the crystal mo-
mentum of the particle. The transformation reflects a shift
from real space to momentum space corresponding to a shift
from an underlying localized Wannier basis to a spatially
delocalized Bloch basis. The result for Ĥhop(t ) in terms of the
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new operators reads

Ĥhop(t ) =
∑
q,μ

E[q + Acl(t )]ĉ†
q,μĉq,μ, (29)

with the dispersion relation describing the Bloch band given
as

E (q) = −2t0 cos(aq). (30)

That is, the individual crystal momenta of the electrons are
conserved and have a time-dependent dispersion determined
by Acl(t ). Note that the energy bandwidth is

�band = 4t0 (31)

as seen in Eq. (30).

2. Results

One can show that [Ĥhop(t ), ĵ(t )] = 0, which allows for
a shared set of eigenstates. As the Hamiltonian also com-
mutes with itself at different times, the time evolution operator
is simply given as Ûhop(t, t0) = exp[−i

∫ t
t0

Ĥhop(t ′)dt ′] and it

then follows that [Ûhop(t, t0), ĵ(t )] = 0. Because of these rela-
tions, all off-diagonal elements of the current vanish, i.e.,

jm,n(t ) = 〈φm(t0)| Û†
hop(t, t0) ĵ(t )Ûhop(t, t0) |φn(t0)〉

= jn,n(t )δm,n, (32)

where it was used that |φn(t )〉 is an eigenstate for the current
operator. Equation (32) consequently decouples all the elec-
tronic states in Eq. (21). As the initial state prior to interaction
with the laser is the field-free ground state, |φi(t0)〉, and there
is no coupling to states |φm(t )〉 with m �= i, only |φi(t )〉 is
populated throughout the dynamics. That is, the equation of
motion for the photonic state is now simply given as

i
∂

∂t
|χ̃ (i)(t )〉 =

∑
k,σ

g0√
ωk

[êσ âk,σ e−iωkt + ê∗
σ â†

k,σ
eiωkt ]

· ji,i(t ) |χ̃ (i)(t )〉 . (33)

As Eq. (33) is linear in the photonic creation and annihilation
operators, it can be solved analytically [71]:

|χ̃ (i)(t )〉 = ⊗k,σ D̂
[
β

(i)
k,σ

(t )
] |0〉 , (34)

where D̂ is the unitary displacement operator for the pho-
tonic field given in Eq. (5) and β

(i)
k,σ

(t ) is the time-dependent
coherent-state amplitude given by

β
(i)
k,σ

(t ) = −i
g0√
ωk

∫ t

t0

eiωkt ′
ji,i(t

′) · ê∗
σ dt ′. (35)

This result is to be expected as the emitted light is generated
by a classical current, 〈 ĵ〉 = ji,i, and consequently the emitted
HHG is a multimode coherent state. The mean photon number
for a coherent state is readily evaluated 〈n̂k,σ 〉 = |β (i)

k,σ
(t )|2,

and using Eq. (24) it is found that the HHG spectrum for
U = 0 is given by (taking t → ∞)

S(ω) = ω2

(2π )2c3
| j̃i,i(ω)|2, (36)

where j̃i,i(ω) is the Fourier-transformed current. This result is
identical to the classical spectrum in Eq. (25), proving that no
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FIG. 2. HHG spectrum for the uncorrelated U = 0 case calcu-
lated via Eq. (36). Parameters for the system are given in the main
text. The dashed lines are placed at odd harmonics to guide the eye.
See text in Sec. II A for laser and system parameters.

quantum optical considerations are necessary when studying
the uncorrelated phase. The spectrum can be seen in Fig. 2
where peaks are found at only odd harmonics as expected.
We note that since the emitted HHG is in a coherent state it
shows no nonclassical nature, and hence Qk,σ = ηk,σ = 0 for
all wave numbers and polarizations. We can thus conclude that
in the uncorrelated phase, no quantum optical considerations
are needed as usual semiclassical calculations are exact. We
note that in the uncorrelated limit the inclusion of beyond-
nearest-neighbor hopping would not change the classicality
of the emitted light as these terms would simply modify the
dispersion in Eq. (30). The hopping Hamiltonian in Eq. (29)
would still remain diagonal in crystal momentum space and
hence commute with the current operator.

A few additional notes for the uncorrelated phase are worth
making. First, we find that a perturbative calculation to first
order in ÂQ, limiting the total state to contain at most one
photon as done in Ref. [17], interestingly yields the exact an-
alytical result for the spectrum though the photon distribution
is a superposition of vacuum and one-photon modes and is
hence not Poissonian. See Appendix D for details. Moreover,
we find that even though the spectrum is peaked only at odd
harmonics, we observe that during the interaction with the
laser 〈n̂k,σ 〉(t ) �= 0 also for even harmonics. Of course, due
to the symmetry of the electronic system and laser, no peaks
at even harmonics are observed in the final spectrum. See
Appendix E for details. As a final note, one can perform a
subsequent condition measurement of the emitted HHG sig-
nal. Due to the quantum back-action of this measurement,
the state is no longer a single multimode coherent state but
is a superposition of coherent states (similar to a cat state) as
found in Refs. [19,21,28,32]. We will not discuss conditional
measurement schemes further in the present paper.

B. Mott-insulating phase

1. Qualitative physical picture

We now investigate the so-called Mott-insulating phase
where U � t0 and where we use U = 10t0 in the calculations.
In Fig. 3 all the eigenenergies for the field-free Hamiltonian
with U = 10t0 are shown. Here we see how the spectrum is
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FIG. 3. The spectrum of the field-free Fermi-Hubbard model in
the Mott-insulating phase with U = 10t0 and parameters in the main
text. We note how the spectrum is separated into so-called Hubbard
subbands. The characteristic energies are given by the Mott gap
�Mott = 26.7ωL [Eq. (37)] (green arrow) and the bandwidth �band =
4t0 = 15.3ωL [Eq. (31)] (orange arrows).

grouped into the so-called Hubbard subbands [59]. We refer to
the left most subband in Fig. 3 as the first subband, the second
most left subband as the second subband, and so on. The
energy difference between the ground state and the second
subband is given by the Mott gap (green arrow) [59,77,78]:

�Mott = EL+1
GS + EL−1

GS − 2EL
GS. (37)

Here En
GS denotes the ground-state energy containing n elec-

trons on a lattice with L sites. Further discussion can be found
in Ref. [44]. The ground state of the system is dominated
largely by configurations with only single site occupations as
it requires a relatively large energy to have a doubly occupied
site [41,42,44,45]. The Mott-insulating phase is therefore best
analyzed in a quasiparticle picture with doublons (doubly
occupied sites) and holons (empty sites). The states in the
lowest-lying subband (most left band in Fig. 3) contain vir-
tually no doublon-holon pairs while the states in the second
subband are dominated by configurations that contain a single
doublon-holon pair. Hence, the Mott gap in Eq. (37) approx-
imates how much energy is needed to create a doublon-holon
pair from the ground state. Furthermore, we note that the
width of the second subband is approximately 2�band (orange
arrows in Fig. 3), which is due to the fact that both the
doublon and the holon can propagate within the band, each
with an identical bandwidth similar to �band. Details on the
spectrum of the Mott-insulating phase are discussed further in
Refs. [45,59,79].

Neglecting scattering between doublons and holons, we
can qualitatively describe the HHG process in the Mott-
insulating phase in a similar three-step model as the one for
multiband models presented in Sec. I, where doublons now
are analogous to electrons and holons are analogous to elec-
tron holes [45]. This three-step model for Mott insulators is
described by the following.

(i) The creation of a doublon-holon pair as the external
laser now transfers population from the ground state in the
first subband to a state in the second subband. The two bands
are energetically separated by �Mott as seen in Fig. 3.

(ii) The doublon-holon pair then propagates within the
second subband by coupling to different states in that subband
whose eigenenergies are closely spaced when compared to
�Mott as seen in Fig. 3.

(iii) Finally, the doublon-holon pair recombines (annihi-
lates), emitting a high-harmonic photon populating one of the
states in the first subband.

The intraband current in step (ii) originates from both the
doublon and holon propagating in their respective bands with
a width similar to �band and hence intraband harmonics can
at most have an energy of �band. The width of 2�band in the
second subband in Fig. 3 comes from the fact that it contains
both the holon and doublon band. Transitions from states
in the top to the bottom of the second Hubbard subband in
Fig. 3 are multielectron transitions which are not the dominant
contributions to the intraband current. Interband harmonics
originating from step (iii) are restricted to have an energy
between �Mott and �Mott + 2�band as this is the smallest and
largest possible energy when coupling from a state within the
second subband to the ground state, respectively.

2. Results

With this physical picture in mind, we are now ready
to look at the spectrum, the Mandel Q parameter, and the
squeezing parameter for the Mott-insulating phase. We obtain
the following results by integrating Eq. (22) for each har-
monic mode with a frequency spacing of ω/ωL = 0.1 with a
fourth-order Runge-Kutta routine. In Fig. 4(a) the spectrum
[Eq. (24)] is shown (blue line). The vertical dashed lines
indicate selected frequencies of interest and the vertical dotted
lines are placed at odd harmonic orders. The vertical solid
black lines are placed at �band, �Mott, and �Mott + 2�band,
respectively.

In Fig. 4(a), we find well-defined peaks at odd harmon-
ics up until ω/ωL ≈ 21. These harmonics originate from the
doublon-holon intraband current. For harmonics above this
value we note an increasing signal which we attribute mainly
to the interband current. We also note that the higher-lying
peaks are not as clear as the lower ones, which is due to the
length of the laser pulse. The less clear peaks are thus not
a consequence of the quantum optical considerations as has
previously been seen in usual semiclassical HHG calculations
[44,45,80], and are indeed also present in the semiclassical
result [Eq. (25)] shown by the dashed curve in Fig. 4(a).
These peaks at noninteger harmonics are due to the laser pulse
populating multiple Floquet states which generate noninteger
harmonics at certain frequencies; a comprehensive analysis of
this aspect of the HHG spectrum will be given elsewhere. The
good agreement between the spectrum obtained by including
quantum optical theory and the semiclassical spectrum shows
that the quantum nature of the generated light cannot be seen
clearly from HHG spectra.

Fortunately, using a quantum optical description allows
one to investigate nonclassical properties through the calcu-
lation of, e.g., the Mandel Q parameter and squeezing defined
in Eqs. (26) and (27), respectively. In Figs. 4(b) and 4(c) the
results for Q(ω) and η(ω), respectively, are shown. These
have been calculated at frequencies of interest, ω′/ωL, and
are averaged over a small region of ω′/ωL ± 0.2, where ω′

033110-7



LANGE, HANSEN, AND MADSEN PHYSICAL REVIEW A 109, 033110 (2024)

10−11

10−7

S
(ω

)
(a

rb
.

un
it
s) S(ω)

Scl(ω)

(a)

0.000

0.025

Q
(ω

) (b)

0 5 10 15 20 25 30 35 40 45 50 55 60
ω/ωL

0.0

2.5

η
(ω

)
[d

B
] ×10−10

(c)

FIG. 4. Measures obtained for a system of L = 8 sites (periodic boundary conditions) with a correlation strength of U = 10 t0. The vertical
dotted lines indicate odd harmonics while the dashed lines show some selected frequencies of interest. The vertical black lines are placed
at �band, �Mott, and �Mott + 2�band, respectively (see text). (a) The HHG spectrum calculated using the fully quantum-mechanical theory
[Eq. (24)] (blue). We see a transition between intraband harmonics and interband harmonics at ω/ωL ≈ 21. For comparison the spectrum
based on a semiclassical calculation [Eq. (25)] is shown (orange) which does not differ notably from the quantum optical spectrum. The
classical spectrum is normalized to lie on top of the spectrum obtained by the fully quantum-mechanical theory. (b) The Mandel Q parameter
[Eq. (26)]. We see a clear increase in Q for interband harmonics showing clear non-Poissonian photon statistics for the emitted Harmonics.
(c) The squeezing parameter [Eq. (27)]. Note that the scaling is in units of 10−10 dB. We note an increased squeezing for higher harmonics
showing that the light is slightly squeezed, i.e., nonclassical.

is the central frequency. We see in both Figs. 4(b) and 4(c)
that the values drastically increase around and above the Mott
gap (middle vertical solid black line). That is, the nonvanish-
ing values of Q and η show that the harmonics created by
the Hubbard-interband current have non-Poissonian photon
statistics as well as nonzero squeezing. In this sense, the re-
sults show that correlation between electrons affects the HHG
generation process and the photon statistics of the emitted
light. This is a key result of the present paper. In this sense,
the present findings open the door to the study of correlation-
induced nonclassicality of light in the context of strong-field
processes.

IV. DISCUSSION

In the results presented we use a coupling strength of g0 =
4 × 10−8 a.u. which corresponds to a quantization volume
with a side length of few wavelengths and is similar to the
value of g0 = 10−8 a.u. used in Ref. [28] (in length gauge) for
a single electron.

The value of g0 does not affect spectra in the U = 0 case.
This is because the g0 dependency in Eq. (35) cancels the g0

dependency in Eq. (24) leading to the expression in Eq. (25).
The value of g0 in relation to the classical field is discussed in
Appendix A. In contrast to the uncorrelated case, the value

g0 explicitly enters in the expression for the spectrum in
Eq. (24) for U �= 0 and quantitatively affects the results shown
in Fig. 4. Specifically, we find much smaller values of both Q
and η than the ones presented for similar work in atoms in
Ref. [17]. However, we emphasize that the present results are
based on a single Fermi-Hubbard chain with L = 8 electrons.
In Ref. [28] the number of atoms participating in the HHG
process is estimated to be on the order of Np ≈ 1013, while in
Ref. [17] results are presented with up to Np = 5 × 104 phase-
matched atoms which in both cases drastically increases the
effective coupling. In our work we find that both Q and η

increase significantly when increasing g0. However, we do
not pursue phase matching of multiple Fermi-Hubbard models
since a clear assessment would require a consideration of
propagation effects of the light, which is beyond the scope of
this paper. Still, we can conclude that the emitted light from
HHG in a correlated material is nonclassical at certain wave-
lengths and only show weak squeezing for a small system size.

We also note that in Ref. [17] sub-Poissonian statistics
was found at lower harmonics and particular at transition
resonances within a single atom. However, for many atoms
only super-Poissonian statistics was found. In the present
paper only super-Poissonian statistics was found across all
frequencies. We note that only the harmonics related to the
interband current are nonclassical. At a qualitative level, one
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can assume this is because the intraband current is simply a
classical oscillating charge distribution whereas the intersub-
band transitions are decidedly more quantum mechanical in
nature.

Another point worth discussing is how well Eq. (22) ap-
proximates Eq. (21), i.e., how good of an approximation it
is to decouple the different harmonics. This is at present un-
clear. It is in general not feasible to solve Eq. (21) and hence
approximations are needed. Instead of neglecting couplings
between different harmonics as done here and in Ref. [17],
one could also consider making approximations on jn,m(t ). In
Ref. [24], e.g., this approach is followed by neglecting dipole
transitions from continuum states to continuum states. In the
Fermi-Hubbard model this would amount to only including
contributions from jm,i(t ) �= 0 with i referring to the ground
state. This approximation can be justified on grounds of small
matrix elements or, as in our case, that population transfer
from jn,m(t ) with both n, m �= i is second order in g0 and
hence negligible. Following this approach, Ref. [24] finds that
in the case of atoms, all harmonics are indeed squeezed by
including the dipole-dipole coupling. However, in doing so a
Markov-type approximation has to be made on the photonic
quantum state, the implications of which also call for further
investigation.

V. SUMMARY AND CONCLUSION

In this paper, we studied how electron-electron correlations
affect the quantum state of the emitted HHG light using the
prototypical Fermi-Hubbard model. We simulated this within
a fully quantum-mechanical setting where both the driving
and emitted electromagnetic fields are quantized, different
from usual semiclassical HHG calculations where only the
electronic system is described quantum mechanically. We
studied the two limiting cases of an uncorrelated phase (U =
0) and a Mott-insulating phase (U = 10t0), the latter of which
may be rationalized in a quasiparticle picture of doublons and
holons.

We set out to investigate how the HHG spectrum differs
when using a quantized field description, how correlations
affect the photons statistics of the emitted light as well
as its squeezing, investigating if the emitted light is non-
classical. With respect to the spectrum, we find that in
general it does not differ notably when performing a fully
quantum-mechanical calculation compared to a conventional
semiclassical approach. This clearly shows that the spec-
trum is largely dominated by the classical current, set up by
the oscillating electrons starting out in the field-free ground
state. Furthermore, we find that in the uncorrelated phase,
the analytical formula for the spectrum matches that of a
semiclassical calculation, proving that no quantum optical
considerations are needed in this case, and that the generated
light is coherent, i.e., no quantum features were found in the
uncorrelated phase. In contrast to this situation, we find, using
the fully quantum-mechanical approach, that in the Mott-
insulating phase nonclassical states of light are generated.
Specifically, we find that the Hubbard interband current yields
nonclassical light while the doublon-holon intraband current
does not show clear nonclassical features, highlighting the

importance of accounting for electron-electron interactions
for predicting the quantum properties of HHG radiation.

Our paper reports the generation of nonclassical light in a
generic condensed-matter model without any subsequent con-
dition measurements, that is, a correlated material is shown to
generate nonclassical light. This opens the door to study other
types of interactions in other kinds of systems as a source
for obtaining different nonclassical states of light. To this
end one can benefit from the generality of this quantum op-
tical approach. It requires one to calculate the time-dependent
transition currents (or dipoles) between all quantum states of
the system. In order to obtain the transition currents, one can
benefit from conventional TDSE solvers. Once the transition
currents are obtained, one can directly study the quantum
nature of the emitted light. The formalism also allows for
the possibility of a nonclassical driving field and it would be
worth investigating the interplay between nonclassical driving
and correlations with regard to generation of nonclassical light
with this approach. Such studies would further bridge the gap
between strong-field physics and quantum information sci-
ence by considering strong-field processes as a reliable source
for nonclassical light, which is central in quantum information
and quantum technology [36,72,81].
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APPENDIX A: INTERACTION WITH A
QUANTIZED FIELD

Here we derive the Hamiltonian [Eq. (7)] of the main
text for the full system of electronic and photonic degrees of
freedom when considering a fully quantized field. The presen-
tation builds on the supplementary material in Ref. [17], and
is included here for completeness and reference. In vacuum
the free electromagnetic field is given as

Â =
∑
k,σ

g0√
ωk

(êσ âk,σ eik·r + ê∗
σ â†

k,σ
e−ik·r), (A1)

where k is the wave vector with related frequency ωk , σ

denotes the polarization, êσ is a unit vector, âk,σ (â†
k,σ

) is the
annihilation (creation) operator, and g0 = √

2π/V is the cou-
pling constant with quantization volume V . In this paper we
use g0 = 4 × 10−8 a.u. which corresponds to a quantization
volume with a side length of a few wavelengths, and which is
similar to the value used in Ref. [28].

A general many-body Hamiltonian of N identical electrons
for the system of interest reads

Ĥ = 1

2

N∑
j=1

( p̂ j + Â)2 + Û + ĤF , (A2)

where p̂ j is the momentum operator for particle j, Û is
an interaction (Coulomb) within the system, and ĤF is the
Hamiltonian of the electromagnetic field.
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Before any interaction between system and laser (t < t0),
the state of the combined electronic and photonic system is
simply

|�i(t )〉 = |φi(t )〉 |ψlaser (t )〉 for t < t0, (A3)

where |φi(t )〉 = e−iEit |φi〉 is the initial electronic state with
trivial time evolution and

|ψlaser (t )〉 = ⊗k,σ |αk,σ e−iωkt 〉 (A4)

is the state of the laser which has a frequency broadening
around the laser frequency, ωL. Note that αk,σ determines the
coherent-state amplitude for the given frequency component.
For frequencies far away from ωL there is no amplitude, i.e.,
αk,σ = 0 for ωk � ωL.

We now define the displacement operator

D̂(t ) = ⊗k,σ D̂[αkσ (t )] (A5)

with

D̂[αk,σ (t )] = exp[αkσ (t )â†
k,σ

− α∗
kσ (t )âk,σ ], (A6)

where we take the coherent-state parameters to be those of
the laser, i.e., αk,σ (t ) = αk,σ e−iωkt . The displacement operator
satisfies the following relations:

D̂(t ) |0〉 = ⊗k,σ |αk,σ e−iωkt 〉 , (A7a)

D̂(t )D̂†(t ) = 1, (A7b)

D̂†(t )âk,σ D̂(t ) = âk,σ + αk,σ e−iωkt , (A7c)

D̂(t )âk,σ D̂†(t ) = âk,σ − αk,σ e−iωkt , (A7d)

where it has been used that [âk,σ , â†
k′,σ ′] = δk,k′δσ,σ ′ and

[âk,σ , âk′,σ ′] = [â†
k,σ

, â†
k′,σ ′] = 0.

We now displace the photonic state by

D̂†(t ) |ψlaser (t )〉 = |0〉 for t < t0, (A8)

such that the photonic state prior to any interaction is simply
vacuum.

Using the displacement operator on the combined elec-
tronic and photonic state in Eq. (A3) we hence obtain

|�̃i(t )〉 = D̂†(t ) |�i(t )〉 = |φi(t )〉 |0〉 for t < t0, (A9)

which is the initial state for the transformed system. When
interactions are turned on for t � t0, |�i(t )〉 satisfies the time-
dependent Schrödinger equation, i ∂

∂t |�i(t )〉 = Ĥ (t ) |�i(t )〉. It
then follows that the transformed state, |�̃i(t )〉, with interac-
tions, satisfies

i
∂ |�̃i(t )〉

∂t
= ˆ̃H (t ) |�̃i(t )〉 (A10)

with

ˆ̃H (t ) = D̂†(t )Ĥ (t )D̂(t ) − iD̂†(t )
∂D̂(t )

∂t
. (A11)

It is the coupling between the electronic and photonic degrees
of freedom in ˆ̃H (t ) [explicitly given in Eq. (A20) below] that
generates population in photonic modes other than the laser
mode.

Using the properties of D̂(t ) from Eq. (A7) one can find
that

iD̂†(t )
∂D̂(t )

∂t
=

∑
k,σ

ωk (αk,σ e−iωkt â†
k,σ

+ α∗
k,σ eiωkt âk,σ + |αk,σ |2), (A12)

D̂†(t )ĤD̂(t ) − iD̂†(t )
∂D̂(t )

∂t
=

N∑
j=1

p̂2
j

2
+ Û +

N∑
j=1

1

2
[D̂†(t )ÂD̂(t )]2

+
N∑

j=1

1

2
[ p̂ j · D̂†(t )ÂD̂(t ) + D̂†(t )ÂD̂(t ) · p̂ j] +

(
D̂†(t )ĤF D̂(t ) − iD̂†(t )

∂D̂(t )

∂t

)
, (A13)

D̂†(t )ĤF D̂(t ) − iD̂†(t )
∂D̂(t )

∂t
= ĤF =

∑
k,σ

ωkâ†
k,σ

âk,σ . (A14)

The action of the displacement operator on the quantized
electromagnetic field is the following:

D̂†(t )ÂD̂(t ) = Acl(t ) + ÂQ, (A15)

where

Acl(t ) = 〈ψlaser (t )| Â |ψlaser (t )〉
=

∑
k,σ

g0√
ωk

(êσαk,σ eik·r−iωkt + H.c.),

ÂQ =
∑
k,σ

g0√
ωk

(êσ âk,σ eik·r + H.c.) (A16)

is a classical and a quantized field, respectively. Note that
the interval of k and σ in the first equation is only over the
populated coherent states in the laser. It then follows that the
Hamiltonian of Eq. (A11) transforms as

ˆ̃H (t ) =
N∑

j=1

1

2
[ p̂ j + Acl(t )]2 + Û

+
N∑

j=1

ÂQ · [ p̂ j + Acl(t )] + ĤF (A17)
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where we work in the Coulomb gauge and also discard the
term Â

2
Q/2 as it is assumed to be of much smaller magnitude.

We can order the terms in the Hamiltonian as
ˆ̃H (t ) = ĤTDSE(t ) + ĤF + V̂ (t ), (A18)

with

ĤTDSE(t ) =
N∑

j=1

1

2
[ p̂ j + Acl(t )]2 + Û , (A19)

V̂ (t ) =
N∑

j=1

ÂQ · [ p̂ j + Acl(t )]. (A20)

The net result of this transformation is that the laser driving
on the electronic system only needs to be accounted for on
a classical level as seen in ĤTDSE(t ). However, the electronic
system then interacts with a quantized field via V̂ (t ) which
then affects the photon emission. Equation (A18) corresponds
to Eq. (7) of the main text.

We note that the classical electromagnetic field is described
both in Eq. (23) and in a quantum optical version in Eq. (A16).
Most notably is the fact that g0 only enters explicitly in the
latter expression. We drive the system with a given vector
potential amplitude of A0. By comparing Eqs. (23) and (A16)
we see that A0 is proportional to g0 · αk,σ . Thus for a fixed A0,
changing g0 should be followed by a change in the numerical
value of αk,σ to keep the product constant. The value of αk,σ

does not affect the results presented as it does not enter the
equations of motion.

APPENDIX B: ADAPTATION TO
THE FERMI-HUBBARD MODEL

In this Appendix we show how we go from the general
TDSE Hamiltonian in Eq. (A19) to the Hamiltonian of the
Fermi-Hubbard model. For notational convenience, we define
the operator P̂(t ):

P̂(t ) =
N∑

l=1

[ p̂l + Acl(t )], (B1)

which is the quantity that interacts with the quantum field in
Eq. (A20).

We calculate the commutator [ĤTDSE(t ),
∑N

n=1 rn] and ob-
tain [

ĤTDSE(t ),
N∑

n=1

rn

]
= −iP̂(t ). (B2)

We now specify that ĤTDSE(t ) → ĤFH(t ) with the HFH(t )
given in Eq. (16). Likewise, the dipole operator will be
adapted to the discrete Fermi-Hubbard model:

N∑
n=1

rn → R̂ =
L∑

l=1

Rl (ĉ
†
l,↑ĉl,↑ + ĉ†

l,↓ĉl,↓) (B3)

where N is the number of electrons and L is the number of
sites in the system. Inserting ĤFH and Eq. (B3) into Eq. (B2)
gives

P̂(t ) = i[ĤFH, R̂]. (B4)

Since the right-hand side of Eq. (B4) is the current operator
[82]

i[ĤFH, R̂] = ∂

∂t
R̂ ≡ ĵ(t ), (B5)

we obtain
P̂(t ) = ĵ(t ). (B6)

The explicit expression of the current operator, ĵ(t ), is
found by calculating the commutator on the left-hand side of
Eq. (B5) and we obtain

ĵ(t ) = −iat0
∑
j,μ

(eiaAcl (t )ĉ†
j,μĉ j+1,μ − H.c.)x̂, (B7)

which is the same as Eq. (19) of the main text. Here we have
used that the jth position in the Fermi-Hubbard chain is Rj =
ja and taken the direction of the chain to be along the x axis
(polarization direction) without loss of generality.

APPENDIX C: EXPLICIT CALCULATION OF
EXPECTATION VALUES

This Appendix is dedicated to the calculation of expecta-
tion values from the state in Eq. (20) which we restate here:

|�̃(t )〉I =
M∑

m=1

|χ̃ (m)(t )〉 |φm〉 . (C1)

By assuming that all modes can be treated independently, i.e.,
neglecting correlations between different modes [going from
Eq. (21) to Eq. (22)] we can expand the photonic state as a
product state where each product state is further expanded in
terms of Fock states:

|χ̃ (m)〉 = ⊗k,σ

∣∣χ̃ (m)
k,σ

〉
with

∣∣χ̃ (m)
k,σ

〉 =
∑
nk,σ

c(m)
nk,σ

|nk,σ 〉 .

(C2)

In our calculations, the Hilbert space was truncated to contain
at most 100 photons, though we did not find any population
for Fock states with more than nk,σ � 15. This cutoff depends
on the choice of g0 as a larger value would give a larger
population when applying the photon operators in Eq. (21),
meaning that higher photon numbers can be reached.

We are particularly interested in calculating moments of
the number operator 〈(n̂k,σ )l〉 used for photon statistics and
will use this as an example for a general expectation value.
As the full state in Eq. (C1) is in the interaction picture we
have to transform accordingly. To this end it is useful to use
the following relations [with Û0(t ) = ÛTDSE(t ) · ÛF (t )]:

Û†
0 (t )âk,σ Û0(t ) = âk,σ e−iωkt ,

Û†
0 (t )â†

k,σ
Û0(t ) = â†

k,σ
eiωkt . (C3)

We now calculate the expectation value of the number
operator to the power of l . We find that

〈(n̂k′,σ ′ )l〉 = I 〈�̃(t )| Û†
0 (t ) (n̂k′,σ ′ )l Û0(t ) |�̃(t )〉I

=
∑
m,m′

〈φm′ | φm〉 〈χ̃ (m′ )| (n̂′
k′,σ )l |χ̃ (m)〉

=
∑

m

〈χ̃ (m)| (n̂k′,σ ′ ) |χ̃ (m)〉 , (C4)
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where the orthogonality of the electronic states has been ex-
ploited. Now expanding into product states via Eq. (C2) we
find

〈(n̂k′,σ ′ )l〉 =
∑

m

〈
χ

(m)
k′,σ ′

∣∣ (n̂k′,σ ′ )l
∣∣χ (m)

k′,σ ′
〉 ∏

k,σ
�=k′,σ ′

〈
χ̃

(m)
k,σ

∣∣ χ̃ (m)
k,σ

〉
.

(C5)

Expanding further in terms of Fock states via Eq. (C2), the
two factors can readily be calculated:〈

χ
(m)
k′,σ ′

∣∣ (n̂k′,σ ′ )l
∣∣χ (m)

k′,σ ′
〉

=
∑
n′

k′,σ ′

∑
n′′

k′ ,σ ′

(
c(m)

n′
k′ ,σ ′

)∗
c(m)

n′′
k′ ,σ ′

〈n′
k′,σ ′ | (n̂k′,σ ′ )l |n̂′′

k′,σ ′ 〉

=
∑
nk′,σ ′

∣∣c(m)
nk′ ,σ ′

∣∣2
(nk′,σ ′ )l , (C6)

and 〈
χ̃

(m)
k,σ

∣∣ χ̃ (m)
k,σ

〉 =
∑
nk,σ

∣∣c(m)
nk,σ

∣∣2
, (C7)

and hence the expectation value is given by

〈(n̂k′,σ ′ )l〉 =
∑

m

{[ ∑
nk′ ,σ ′

∣∣c(m)
nk′ ,σ ′

∣∣2
(nk′,σ ′ )l

]

×
∏
k,σ

�=k′,σ ′

(∑
nk,σ

∣∣c(m)
nk,σ

∣∣2

)}
, (C8)

which allows all moments of the number operator to be calcu-
lated. A similar calculation is done for expectation values of
other operators, e.g., âk,σ and â†

k,σ
.

APPENDIX D: PERTURBATIVE CALCULATION

Here we derive the state of the system in the perturbative
limit of small coupling to the quantum field and show that this
yields the exact spectrum in the uncorrelated (U = 0) phase
despite the fact that the perturbative calculation gives a wrong
description of the generated light statistics (see below). A
perturbative calculation is also found in Supplementary Note
2 in Ref. [17].

Starting from Eq. (9) in the main text, we have

i
∂

∂t
|�̃(t )〉I = V̂I (t ) |�̃(t )〉I , (D1)

with

V̂I (t ) = ÂQ,I (t ) · Û†
FH(t, t0) ĵ(t )ÛFH(t, t0), (D2)

with ÂQ,I (t ) given in Eq. (11) of the main text. The general
solution to Eq. (D1) is given by

|�̃(t )〉I = T̂ exp

[
−i

∫ t

t0

V̂I (t ′) dt ′
]

|�̃(t0)〉I , (D3)

where T̂ is the time ordering operator and t0 is the initial time
prior to any interaction between the laser and the electronic
system. We now investigate the case of a weak interaction with
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FIG. 5. The occupation of the lowest even harmonics during the
dynamics of the pulse. We see a clear nonzero occupation at most
times except at the end where all even harmonics have a vanishing
occupation and hence a vanishing contribution to the signal. For
comparison the fifth harmonic (green line) does not vanish after the
interaction with the pulse as seen in the inset.

the quantized field and expand Eq. (D3) to first order in V̂I (t ):

|�̃(t )〉I =
[

1 − i
∫ t

t0

V̂I (t ′) dt ′
]

|�̃(t0)〉I . (D4)

We now take the electronic state to initially be its ground
state prior to interaction with the laser. Due to the coherent
displacement done in Eq. (A8), the photonic state is initially
in the vacuum state for all modes. That is, we take |�̃(t0)〉I =
|0〉 |φi〉. Now writing out V̂I (t ) and letting the photonic opera-
tors act on |�̃(t0)〉I yields

|�̃(t )〉I = |0〉 |φi〉 − i
∑
k,σ

g0√
ωk

×
[∫ t

t0

eiωkt ′ Û†
FH(t ′) ĵ(t ′) · e∗

σ ÛFH(t ′)dt ′
]

|k, σ 〉 |φi〉

= |0〉 |φi〉 − i
∑

m

|φm〉
∑
k,σ

g0√
ωk

×
[∫ t

t0

eiωkt ′
jm,i(t

′) · e∗
σ dt

]
|k, σ 〉 , (D5)

where we in the second line have inserted 1 = 
m |φm〉 〈φm|
and defined jm,i(t ) = 〈φm(t0)| Û†

FH(t, t0) ĵ(t )ÛFH(t, t0) |φi(t0)〉.
In the weak-coupling limit Eq. (D5) is valid for all choices of
U within the electronic system.

We now investigate the uncorrelated phase of U = 0. In
this case the transition current is diagonal, i.e., jm,i(t ) =
ji,i(t )δm,i. Inserting this into Eq. (D5) we obtain

|�̃(t )〉I =
⎡
⎣|0〉 +

∑
k,σ

β
(i)
k,σ

(t ) |k, σ 〉
⎤
⎦ |φi〉 , (D6)

where we have used the definition of β
(i)
k,σ

in Eq. (35) in the
main text. Calculating the expectation value of the number
operator yields 〈n̂k,σ 〉 = |βk,σ |2, which yields the exact spec-
trum in Eq. (36) when inserted into Eq. (24) for t → ∞.
However, higher moments such as 〈(n̂k,σ )2〉 are not exact in
this perturbative approach as the state in Eq. (D6) is truncated
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to contain at most one photon and is hence not a coherent
state. We have found that this perturbative approach in general
does not match the nonperturbative results for a finite value of
U �= 0, which is why the perturbative approach is not pursued
further.

APPENDIX E: NONZERO SIGNAL FOR
EVEN HARMONICS

Here we briefly show that even harmonics have a nonzero
signal during the dynamics though they vanish in the spectrum
after the end of the pulse. We will use the case of U = 0 as
an example, as we have an exact analytical solution, namely,
〈n̂k,σ 〉 = |β (i)

k,σ
(t )|2 with the coherent-state amplitude given in

Eq. (35). In Fig. 5 we show the quantity

ω2

∣∣∣∣∣
∫ t

0
jii(t )eiωt

∣∣∣∣∣
2

= ω3

g2
0

∣∣β (i)
k,σ

(t )
∣∣2

, (E1)

which is directly related to the classical spectrum as seen
from Eqs. (25) and (36). We see from Fig. 5 that there is
a nonzero occupation for all harmonics during most of the
interaction with the laser pulse but only the odd harmonics
(here the fifth harmonic as an example) are visible in the final
spectrum as seen in the inset. If one could very rapidly stop the
dynamics during the pulse, even harmonics would be observed
since such a rapid change of the system breaks the inversion
symmetry that usually permits only odd harmonics.
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