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High-order harmonic generation (HHG) through laser-molecule interaction provides a powerful means for
detecting molecular structure and dynamics with subangström spatial and attosecond temporal resolution. How-
ever, accurately extracting molecular information from experimental harmonic spectra requires deconvolution of
the angular average over the molecular rotational distribution, which is a challenging task due to the coherent
nature of harmonic radiation. In this study we propose a deep-learning approach to disentangle the internal
coupling between molecular alignment and single-molecule high-order harmonic radiation in experiments.
With our method, the complex single-molecule dipole moments of high-order harmonics in both parallel and
perpendicular directions, as well as the time-dependent molecular rotational distribution, can be simultaneously
retrieved from the polarization-resolved angular distributions of HHG. From the retrieved harmonic dipole
moments we can obtain comprehensive knowledge of the polarization states of the harmonics, including their
ellipticity and helicity, without complicated experimental measurements. We demonstrate our method with two
prototype molecules, N2 and CO2, in the experiment. Our approach provides an efficient way to disentangle
single-molecule information from HHG experiments and will facilitate the study of molecular structure and
dynamics imaging in complex polyatomic molecules.

DOI: 10.1103/PhysRevA.109.033105

I. INTRODUCTION

High-order harmonic generation (HHG) through laser-
molecule interaction carries abundant information on the
interacting system. This has stimulated the development of
high-harmonic spectroscopy (HHS) as a powerful tool for
accessing the structure and internal dynamics of molecules
with subangström spatial resolution and attosecond temporal
resolution [1–3] through a built-in pump-probe process under-
lying HHG described by the three-step model [4,5]. Recently,
HHS has found widespread application in the detection of
molecular structure and dynamics, including molecular orbital
tomography [6,7], probing molecular vibration [8,9] and pro-
ton dynamics in molecules [10,11], decoding the underlying
attosecond multielectron dynamics [12,13], and monitoring
the attosecond charge migration in molecules [14–18]. These
advancements have significantly enhanced our understanding
of complex chemical and biological reactions [19].

A primary obstacle confronted by HHS is the extraction
of individual molecular details from the harmonic emission,
as the molecular-frame dynamics are encoded in the emis-
sion on the single-molecule level. In experimental settings,
the HHG produced by a group of molecules is often an
amalgamation of coherent results from numerous molecules
that are oriented at different angles, resulting in the loss of
single-molecule information. Although laser-induced molec-
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ular alignment partially addresses this concern, the obtained
information remains blurred due to the inevitable imperfect
molecular alignment in the experiment. Consequently, it is
essential for HHS to disentangle the rotational coherence in
the HHG experiment.

In the past few years, significant attempts have been under-
taken to tackle the reconstruction of harmonic dipole moments
at the single-molecule level from HHG experiments [20–23].
However, a common limitation in existing methodologies
is the reliance on precise knowledge of the time-dependent
molecular axis distributions, which is typically derived from
some other independent measurements [24–29]. Errors in
measuring molecular alignment thus can affect the accuracy
of the reconstruction of the harmonic dipole moment. Besides,
the commonly used traditional inverse problem-solving algo-
rithms in previous works encounter great challenges, such as
ill-posedness and high computational complexity, in extract-
ing single-molecule information from harmonic signals due to
the coherent nature of the HHG. To address these limitations,
a more efficient reconstruction approach is necessary. This
approach should enable the simultaneous reconstruction of
both the molecular rotation and the harmonic dipole, without
the need for prior knowledge of the time-dependent molecular
axis distributions. We refer to this approach as a “double-blind
reconstruction.” On the other hand, in most previous works
only one direction of the dipole moment (usually the parallel
component) is considered. It is well known that elliptically
polarized harmonics can be generated from the molecules
[30,31], and a variety of techniques can be used to induce
large ellipticity [32–34]. A full reconstruction of the harmonic
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FIG. 1. Sketch of the experimental setup and the coordinate frame. BS: beam splitter, HWP: half-wave plate, MCP: microchannel plate.

dipole should include both the parallel and perpendicular
components. It has been reported that the ultrafast nuclear
motion [12] and electron dynamics [35] can be identified from
the polarization-resolved high-harmonic spectra. Reconstruc-
tion of both the parallel and perpendicular harmonic dipole
moments will assuredly strengthen the application ability of
HHS, which, however, is still unattainable.

Deep learning algorithms offer a promising solution to
these problems. By leveraging a data-driven approach and
circumventing direct inverse problem solving, deep-learning
algorithms can learn mapping relationships within the data,
enabling signal reconstruction and information extraction
with enhanced adaptability and superior performance. Deep
learning has already demonstrated its utility in various appli-
cations, such as predicting high-harmonic flux [36], imaging
molecular structures [37,38], pulse shape reconstruction from
frequency-resolved optical gating or dispersion scan traces
[39–41], simulating macroscopic high-order harmonic gener-
ation [42], retrieving the spectral phase of isolated attosecond
x-ray pulses from streaking traces [43], and reconstructing
band structures and pulse wave forms for high-harmonic spec-
troscopy in solids [44,45].

In this study we propose a deep-learning approach for
the double-blind reconstruction of complex single-molecule
harmonic dipole moments and the molecular rotational dis-
tribution from HHG signals. Our developed deep neural
networks enable the complete retrieval of single-molecule
harmonic dipole moments in both parallel and perpendicu-
lar directions, as well as the determination of the molecular
rotational distribution from polarization-resolved angular dis-
tributions of HHG. The effectiveness of our method has been
validated through tests conducted on theoretical and exper-
imental data of N2 and CO2 molecules. Furthermore, the
retrieved harmonic dipole moments provide comprehensive
polarization information, including the ellipticity and helicity
of the harmonics. In the future, polarization-resolved har-
monic dipole moments will serve as a valuable resource for
studying the structure and dynamics of polyatomic molecules.

II. EXPERIMENTAL SETUP
AND THEORETICAL METHODS

A. Experimental setup

Figure 1 illustrates our experimental setup. To conduct
our experiment, we employed a commercial Ti:sapphire laser

system (Legend Elite-Duo, Coherent, Inc.) that generated
35-fs laser pulses with a wavelength of 800 nm and a repeti-
tion rate of 1 kHz. The output laser is divided into two beams
(P1 and P2) by a beam splitter (BS1). Beam P2, polarized
along the z direction, induces nonadiabatic alignment of the
molecules in its direction, while beam P1 interacts with the
aligned molecules to generate high-order harmonics. To adjust
the molecular alignment angle α in the x-z plane, a half-wave
plate (HWP1) is placed in the arm of P2, while a motorized
delay line in the arm of P1 adjusts the time delay between P1
and P2. A second half-wave plate (HWP2) rotates the polar-
izations of P1 and P2 synchronously in their common path.
We collinearly focused the two pulses into a supersonic gas
jet, which was ejected from a 250-µm-diameter nozzle with a
backing pressure of 0.8 bars, using a spherical mirror with a
focal length of 250 mm. The gas jet is positioned 2 mm after
the laser focus. The polarization of the high-order harmonics
is analyzed by an extreme ultraviolet (EUV) polarizer, which
comprises two gold mirrors at an incident angle of 45◦. The
polarizing angle β between the transmission axis (along the z
axis) of the EUV polarizer and the polarization direction of P1
is adjusted by HWP2. Finally, high-order harmonics passing
through the EUV polarizer are detected using a custom-made
flat-field soft x-ray spectrometer consisting of an entrance
slit (0.1 mm wide, 15 mm high), a flat-field grating (1200
grooves mm−1), and a microchannel plate (MCP) backed with
a phosphor screen. Spectral images on the phosphor screen are
recorded by a CCD camera. In our experiment we measure
the angular distributions of HHG from N2 and CO2 molecules
around their half rotational revivals by scanning the molecular
alignment angle α at three polarizing angles, β = 0◦, 30◦, and
60◦, respectively.

B. Architecture of the neural network

In our study we have carefully designed two separate net-
works to address the retrieval of the single-molecule dipole
moment and the molecular rotational distribution from the
polarization-resolved angular distributions of HHG measured
in the experiment. The network used to predict the complex
dipole moment is illustrated in Fig. 2(a). It is based on a
DenseNet-like architecture [46], which consists of five dense
blocks and four transition blocks as the feature extractor,
and two fully connected (FC) layers as the regressor. To
address the complex-valued dipole moment, all the layers
in the network are complex [47]. A gradient reversal layer
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FIG. 2. (a) The architecture of the network used to predict the complex laser-induced dipole moment. The stacked purple squares represent
a convolution block. The details of the convolution block and the transition block are provided in the subfigure. All layers in this network
are complex-valued layers. (b) The architecture of the network used to predict the time-dependent molecular rotational distribution, with the
details of the convolution block and the transition block the same as the network used for the complex dipole moment prediction. The details
of the up-convolution layer are shown on the right.

(GRL) connects the feature extractor and the regressor. During
forward propagation the GRL directly transports the output
from the feature extractor to the regressor, while during back-
ward propagation it inverts the gradient, which is a useful
technique in adversarial training [48]. The network used to
predict the time-dependent molecular rotational distribution
is illustrated in Fig. 2(b). This network is based on the widely
used U-net [49] architecture. In this work we use the down-
sample branch as the feature extractor, which comprises five
convolution blocks and four transition blocks. The up-sample
branch is taken as the regressor, featuring four up-convolution

layers and four convolution blocks. The neural layers in this
network are standard real-valued layers, as the predicted time-
dependent molecular rotational distribution is real. Note that
one can also utilize a fusion architecture to address the above
two reconstruction tasks within a unified model, while in our
work, by employing separate networks we can effectively
isolate the impact of their respective loss functions. This sep-
aration significantly simplifies the tuning and training process
of our network, as well as the selection of appropriate hy-
perparameters, compared to using a multitasking architecture
directly.
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To train our networks, we have constructed the dataset in
theory. The harmonic signal emitted by a group of partially
aligned molecules is achieved through the coherent combina-
tion of individual molecular emissions, with each emission
being weighted according to the rotational distribution of
molecules. Mathematically, it can be expressed as the modu-
lus square of the convolution of the time-dependent molecular
rotational distribution ρ(θ, φ, τ ) with the dipole moment of
the single-molecule response dq(�) [29,50,51]:

D‖/⊥,q(α, τ ) =
∫ 2π

φ=0

∫ π

θ=0
d‖/⊥,q(�)ρ(θ, φ, τ ) sin θdθdφ.

(1)

Here, q represents the harmonic order, while θ and φ de-
note the polar and azimuthal angles of the molecular axis
in relation to the alignment laser’s polarization. τ is the
time delay between driving and alignment lasers. � corre-
sponds to the polar angle within the molecular coordinate
system, indicating the angle between the molecular axis
and the driving laser’s polarization. α is the polarization
angle between the driving laser and the alignment laser
(see Fig. 1). ρ(θ, φ, τ ) is the molecular rotational distribu-
tion, which can be computed by solving the time-dependent
Schrödinger equation under the rigid rotor approximation
[52–55]. The single-molecule dipole moment dq(�) is de-
scribed by quantitative rescattering theory (QRS) [56], which
has been successfully applied to model various strong-field
phenomena, including high-energy above-threshold ioniza-
tion (HATI), nonsequential double ionization (NSDI), and
HHG [51,57,58]. QRS enables quantitative calculations that
can be compared to experimental results [59], making it a
valuable tool for studying these phenomena. The subscripts
“‖ / ⊥” denote the parallel/perpendicular components of the
dipole moment.
The harmonic signals that pass through the EUV polarizer
along the polarization angle β can be expressed as

Iβ,q(α, τ ) = |D‖,q(α, τ ) cos(β ) + D⊥,q(α, τ ) sin(β )|2

+ e|D‖,q(α, τ ) sin(β ) + D⊥,q(α, τ ) cos(β )|2.
(2)

Here e is the extinction ratio of the EUV polarizer, which is
determined by measuring HHG from atoms with a linearly
polarized laser (see Appendix A).

In our experiment we use the simulated signals Iβ,q(α, τ )
with β = 0◦, 30◦, and 60◦ as the input of our training. To
conclude the order information, we employ a learnable em-
bedding layer [60] to embed the order into a matrix with
the same dimensions as Iβ,q(α, τ ). The resulting embedding
matrix is then added to the input signal to incorporate the order
information. To generate our synthesized dataset, we have
simulated Iβ,q(α, τ ) by randomly selecting the intensity of
the driving laser (ranging from 0.8 × 1014 to 2 × 1014 W/cm2

for N2 and from 0.6 × 1014 to 1.6 × 1014 W/cm2 for CO2),
the intensity of the alignment laser (ranging from 1 × 1013

to 8 × 1013 W/cm2), and the molecular rotational temperature
(ranging from 20 to 300 K). In our training procedure we con-
struct three datasets, the training set, validation set, and test
set, by randomly selecting those parameters independently.
The training set is used to train the model, while the validation

set is used to tune hyperparameters and avoid overfitting. The
test dataset remains separate from the other two datasets and
is not exposed to the network during the training process.
It is solely used to evaluate the performance of the trained
model on previously unseen data. The dataset contains a total
of 550,000 samples (including the training set, validation set,
and test set), and the ratio of these three sets is 8:1:1.

C. Domain adaptation

We employ a domain adaptation method to enhance the
generalization performance of our network on experimental
signals. This technique allows us to improve the performance
of a model on a target domain that has little or no labeled data
by using the knowledge learned by the model from a related
domain that has abundant labeled data. By transferring the
learning from the source domain to the target domain, domain
adaptation reduces the mismatch between the feature distri-
butions of the two domains. This technique has been widely
used in various fields such as image classification [48,61,62],
key point detection [63], speech recognition [64,65], object
detection [66,67], and photograph denoising [68].

One possible method for domain adaptation is adversarial
learning, involving the training of a feature extractor and two
regressors [63]. The feature extractor learns domain-invariant
features that are useful for regression, while the regressors
try to maximize the discrepancy of two outputs for the target
domain and minimize the regression loss for the source do-
mains based on the features. The three models are trained in
an adversarial way, such that the feature extractor tries to fool
the regressors by making the features indistinguishable across
domains. In this way the feature extractor can learn features
that are relevant for regression regardless of the domain.

In our network architecture, the regressors are connected
to the feature extractor by a GRL to avoid the need for an
alternate training procedure in adversarial learning [62]. A
switch is connected in parallel to the GRL, which can be
closed to shield the GRL during the propagation of data in the
source domain to ensure minimal regression loss across the
network. When the switch is open during the propagation of
data in the target domain, the feature extractor minimizes the
discrepancy while the regressor maximizes the discrepancy
between the two regressors. This entire optimization proce-
dure can be done simultaneously in a single framework. We
utilized the absolute values of the difference between the two
regressors’ outputs, denoted as y1k and y2k for sample k in the
target domain, as the discrepancy loss:

d (y1, y2) = 1

K

K∑
k=1

|y1k − y2k|. (3)

The regression loss used for the dipole network is defined as

L(y1, y2,Y ) = 1

N

N∑
n=1

{‖|y1n − Yn|‖2
2 + ‖|y2n − Yn|‖2

2

+ λ
[‖|earg(y1n )i − earg(Yn )i|‖2

2

+ ‖|earg(y2n )i − earg(Yn )i|‖2
2

]}
. (4)
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FIG. 3. (a) The predicted amplitudes (blue solid line) and phases (green solid line) of the laser-induced dipole moment in the parallel
direction for N2, respectively, while the red and black dashed lines are the ground truths. (b) Same as (a) but for the perpendicular direction.
(c) Predicted time-dependent molecular rotational distribution. (d) The ground truth for the same prediction in (c). (e) The absolute difference
between the prediction and ground truth of the molecular alignment distribution. (f)–(i) Same as (a)–(e) but for CO2.

Here, y1n and y2n denote the output of the two regressors for
sample n in the source domain, and Yn denotes the label for
sample n. λ is a real coefficient which is used to adjust the
strength of the phase term in the loss function. The regression
loss used for the alignment network is a transitional mean
square error (MSE) loss.

During our training procedure, we first train the network
with only the regression loss for a few epochs to warm up the
network. The discrepancy loss is then added by multiplying
a moderate weight to initiate the adversarial training. The
regressors and feature extractor are trained individually using
Adam optimization algorithms. In addition to the theoretically
calculated training set, we also used the experimental data as
the dataset for the target domain in order to train the network
using the domain adaptation technique. For each gas (N2 and
CO2), fifteen experimental images were sampled from five
harmonic orders and three β values for training in every batch.
The training process lasted 100 epochs. To handle the noisy
background in the experimental data, one may employ the
technique reported in [69] to enhance stability by generating
synthetic noise within the dataset. However, in our approach
we did not introduce synthetic background noise during train-
ing. This is because the domain adaptation technique we
employed is capable of adapting to noisy backgrounds.

III. RESULTS AND DISCUSSION

We first demonstrate the performance of our network by
using random samples from the test set. Figures 3(a) and
3(b) display the parallel and perpendicular components of
the single-molecule dipole moments of H15 (solid lines) of
N2 predicted from a randomly selected HHG signal Iq with
our network. As shown, the predicted dipole amplitude and
phase for both components are in good agreement with the

ground truths (dashed line), except for some phase shake in
the perpendicular component near 90◦. This is mainly because
the amplitude of the perpendicular dipole moment is much
smaller than that of the parallel component and is very close to
zero near 90◦. As our network predicts the real and imaginary
parts of the dipole moment, this easily leads to phase instabil-
ity. Figure 3(c) illustrates the corresponding time-dependent
molecular rotational distribution ρ predicted with the same
inputs as in Figs. 3(a) and 3(b). The absolute difference be-
tween the predicted molecular alignment distribution and the
ground truth [see Fig. 3(d)] is shown in Fig. 3(e). The maximal
absolute difference is about 0.025, indicating an excellent
agreement between the prediction and the ground truth. We
have also tested our network with a CO2 molecule. The pre-
dictions by our network also agree with the ground truths, as
shown in Figs. 3(f)–3(j). These results prove the accuracy and
validity of our network. Additionally, in order to illustrate the
overall performance of the network on the entire dataset, we
have presented the mean loss of the networks for each gas and
dataset in Table I. From Table I one can see that the loss values
of the samples shown in Fig. 3 are close to those of different

TABLE I. The values of the loss function for each network and
dataset.

N2 CO2

Dataset Dipole Alignment Dipole Alignment

Training set 0.0049 1.90×10−5 0.0008 9.00×10−6

Validation set 0.0041 1.90×10−5 0.0007 9.00×10−6

Test set 0.0041 1.95×10−5 0.0008 9.00×10−6

Samples in Fig. 3 0.0016 1.92×10−5 0.0006 6.25×10−6

033105-5



SUN, HE, XU, DENG, LAN, AND LU PHYSICAL REVIEW A 109, 033105 (2024)

3.5 4 4.5 5
0

45

90

135

180

A
ng

le
 (

de
gr

ee
)

(a)

3.5 4 4.5 5
0

45

90

135

180

A
ng

le
 (

de
gr

ee
)

(b)

3.5 4 4.5 5

Delay (ps)

0

45

90

135

180

A
ng

le
 (

de
gr

ee
)

A
ng

le
 (

de
gr

ee
)

A
ng

le
 (

de
gr

ee
)

A
ng

le
 (

de
gr

ee
)

A
ng

le
 (

de
gr

ee
)

A
ng

le
 (

de
gr

ee
)

A
ng

le
 (

de
gr

ee
)

A
ng

le
 (

de
gr

ee
)

A
ng

le
 (

de
gr

ee
)

A
ng

le
 (

de
gr

ee
)

(c)

3.5 4 4.5 5
0

45

90

135

180
(d)

0.8

1

1.2

1.4

1.6

3.5 4 4.5 5
0

45

90

135

180
(e)

0.6

0.8

1

1.2

1.4

3.5 4 4.5 5

Delay (ps)

0

45

90

135

180
(f)

0.2

0.3

0.4

0.5

0.8

1

1.2

1.4

1.6

0.6

0.8

1

1.2

1.4

0.2

0.3

0.4

0.5

20 21 22 23
0

45

90

135

180
(g)

20 21 22 23
0

45

90

135

180
(h)

20 21 22 23

Delay (ps)

0

45

90

135

180
(i)

20 21 22 23
0

45

90

135

180
(j)

0.6

0.8

1

1.2

1.4

20 21 22 23
0

45

90

135

180
(k)

0.4

0.6

0.8

1

20 21 22 23

Delay (ps)

0

45

90

135

180
(l)

0.2

0.3

0.4

0.6

0.8

1

1.2

1.4

0.4

0.6

0.8

1

0.2

0.3

0.4

In
te

ns
ity

 (
ar

b.
un

its
)

In
te

ns
ity

 (
ar

b.
un

its
)

In
te

ns
ity

 (
ar

b.
un

its
)

In
te

ns
ity

 (
ar

b.
un

its
)

In
te

ns
ity

 (
ar

b.
un

its
)

In
te

ns
ity

 (
ar

b.
un

its
)

In
te

ns
ity

 (
ar

b.
un

its
)

In
te

ns
ity

 (
ar

b.
un

its
)

In
te

ns
ity

 (
ar

b.
un

its
)

In
te

ns
ity

 (
ar

b.
un

its
)

In
te

ns
ity

 (
ar

b.
un

its
)

In
te

ns
ity

 (
ar

b.
un

its
)

FIG. 4. (a)–(c) The experimental signals for β = 0◦, 30◦, and 60◦ for H21 of N2. (d)–(f) The reconstructed signals that are calculated using
the retrievals from (a)–(c). (g)–(l) Same as (a)–(f) but for H23 of CO2.

datasets. This result indicates that it is reasonable to evaluate
the performance of the network with the samples in Fig. 3.

Next we demonstrate the application of our network to
experimental data. The angular distribution of H21 measured
near the half-rotational revival of N2 with the polarizing angle
β of 0◦, 30◦, and 60◦, are shown in Figs. 4(a)–4(c). Note
that the HHG signals measured in these three cases have
been normalized by the isotropic result at β = 0◦. Using the
measured HHG signals as input, we can obtain the single-
molecule dipole moment for each order. Figures 5(a) and
5(b) show the extracted dipole amplitude (solid line) and
phase (dashed line) of H17 along the parallel and perpendic-
ular directions, respectively. Thanks to the domain adaptation
technique employed, our model is able to compensate for
the noise in the experimental data, resulting in only a minor
fluctuation in the retrievals rather than complete destruction
of the signal. In particular, the dipole moment in the perpen-
dicular direction, which is much lower than that in the parallel
direction, would have been entirely destroyed if the domain
adaptation was not used (see Appendix C and Fig. 11). On the
other hand, with our network, the time-dependent molecular
rotational distribution ρ in our experiment can be simul-
taneously reconstructed [see Fig. 5(c)]. With the extracted
single-molecule dipole moment and the molecular rotational
distribution, we can recalculate the angular distribution of the
considered harmonic according to Eqs. (1) and (2). As shown
in Figs. 4(d)–4(f), the recalculated angular distributions of
H21 of N2 can well reproduce the experimental measurements
in Figs. 4(a)–4(c). Such an agreement also indicates the ac-
curacy of our network. We have also applied our network
to other harmonic orders, e.g., H19 and H21 in Figs. 5(d)–
5(f) and Figs. 5(g)–5(i), respectively. As shown, the retrieved
molecular axis distributions are nearly the same for different
harmonic orders. This result is consistent with the nature that

HHG is a much faster process than molecular rotation; thus
the rotational motion of the molecule during the femtosecond
driving pulse is negligible.

Likewise, we have also applied our network to the experi-
mental data of the CO2 molecule. Figures 4(g)–4(l) display the
measured signals of H23. Figure 6 shows the reconstructions
for the harmonics H21–H25. One can see that the consistency
of the reconstructed rotational distribution between differ-
ent harmonic orders is also maintained [see Figs. 6(c), 6(f)
and 6(i)] and the HHG signals recalculated, with the recon-
structed dipole moment and molecular rotational distribution
also agreeing well with the measurements [see Figs. 4(g)–
4(l)].

Our deep-learning reconstructions have some advantages.
First, from the measured polarization-resolved angular dis-
tributions of HHG, our network can accurately predict the
complex single-molecule harmonic dipole moments along
both the parallel and perpendicular directions. The compre-
hensive knowledge of the harmonic dipole moments thus
enables a full reconstruction of the polarization states of the
harmonics, which includes not only the absolute value of
ellipticity but also the helicity (the sign of ellipticity) of the
harmonic. In Figs. 7(a) and 7(b) we show the angle-dependent
harmonic ellipticities obtained from the single-molecule har-
monic dipole moments of N2 and CO2 retrieved above. As
shown in Fig. 7(a), for N2 the obtained ellipticity of each
harmonic order presents a rapid change around 40◦–60◦. Es-
pecially, a minimum appears at H21 around 55◦ with an
ellipticity reaching 0.35, which is consistent with previous
experimental [30] and theoretical [70] studies. These phe-
nomena arise from the phase jump in the single-molecule
dipole moments as shown in Figs. 5(a), 5(d) and 5(g). Similar
results are also observed in CO2 molecules around 40◦ [see
Fig. 7(b) and Figs. 6(a), 6(d) and 6(g)]. Note that for CO2,
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FIG. 5. (a) The retrieved amplitude (blue solid line) and phase (green dashed line) of laser-induced dipole moment in parallel direction
for H17 of N2. (b) Same as (a) but for the perpendicular direction. (c) The time-dependent molecular rotational distribution retrieved from the
signals of H17. (d)–(f), (g)–(i) Same as (a)–(c) but for H19 and H21.

the accuracy of the harmonic ellipticity near 0◦ and 90◦ may
be compromised, since the dipole amplitudes in both parallel
and perpendicular directions are very close to 0. Furthermore,
since the molecular rotational distribution is simultaneously
obtained with our network, we can then estimate the harmonic
ellipticity in our experiment by taking the rotational average
effect into account. Solid lines in Figs. 7(c) and 7(d) show
the harmonic ellipticities of H17-H25 obtained with our re-
trieved harmonic dipole moments and molecular rotational
distribution for the alignment angle of 30◦ for N2 and CO2,
respectively. For comparison, we have also directly measured
the harmonic ellipticities for this alignment angle by scanning
the polarizing angle β (see Appendix B). The results are
shown as the circles in Figs. 7(c) and 7(d). One can see that the
harmonic ellipticities estimated by our retrievals agree well
with the experimental results. Here, it’s worth mentioning
that with our EUV polarizer we cannot obtain the harmonic
helicity (the sign of the ellipticity). Figures 7(c) and 7(d)
just plot the absolute values of the ellipticity. As in previous
works, determining the harmonic helicity usually requires a
complicated experimental setup, for instance, by using two
pairs of EUV polarizers [71] or the magnetic circular dichro-
ism measurement [72,73]. In contrast, with our deep-learning
reconstruction method, the harmonic helicity in the experi-
ment can be directly obtained [see Figs. 7(a) and 7(b)], which
provides a more convenient way for such measurement.

Another potential application of our approach lies in its ca-
pacity to probe molecular structures and dynamics of complex
polyatomic molecules. In most previous works the HHG mea-
surement usually only contains one-dimensional information,
which is inadequate for accessing molecules with increased
degrees of freedom of nuclear and electron motions. Our
approach presented here allows a full reconstruction of both
the amplitude and phase of both the parallel and perpendicular
components of the single-molecule dipole moments, which
thus provides multidimensional data to gain a deep insight into
the dynamics of molecules underlying the HHG process.

IV. CONCLUSION

In conclusion, we present a double-blind method for disen-
tangling the internal coupling between molecular alignment
and single-molecule high-order harmonic radiation in ex-
periments by using neural networks. Our work utilizes a
domain adaptation technique that improves the performance
of the network on experimental signals by using end-to-
end adversarial training. By competing between the feature
extractor and regressors, the network is trained to make pre-
dictions using domain-invariant features, resulting in accurate
and effective predictions of laser-induced dipole moments in
both parallel and perpendicular directions and time-dependent
molecular rotational distribution for the test set. We also test
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our method using experimental data for N2 and CO2. The re-
constructed signals show good consistency with the measured
signals. Moreover, our method enables the reconstruction of
the polarization state of the harmonic, including the elliptic-
ity and the helicity, providing comprehensive single-molecule
harmonic information. This method can be easily extended to
other molecules by training the network with the correspond-
ing dataset. Specifically, for asymmetric molecules such as
CO, the dataset of the harmonic dipole moment can also be
built using the QRS theory. But for the molecular rotational
distribution, it requires molecular orientation in both experi-
ment and theory. In the future our method can provide a tool
for the study of molecular structures and dynamics of complex
polyatomic molecules, and to facilitate the development of
new applications in ultrafast science and technology.
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APPENDIX A: EXTINCTION RATIO
OF THE EUV POLARIZER

In order to determine the extinction ratio of the EUV po-
larizer used in our experiment, we measured the HHG signal
from Ar atoms with a linearly polarized laser. Specifically,
we measured the HHG intensities passing through the EUV
polarizer for various β. The corresponding results are pre-
sented as blue circles in Figs. 8(a)–8(e) for H17, H19, H21,
H23, and H25. Based on the Malus law, the output harmonic
intensity after passing through the EUV reflective polarizer is
formulated as [30,74,75]

I (β ) = a cos[2(β − φ)] + c, (A1)

where a and c are positive constants, and φ is the angle of
the major axes of the HHG ellipse, which is also a constant.
To extract the extinction ratio, we fit the measure signals
with Eq. (A1) [red lines in Figs. 8(a)–8(e)]. The intensity
ratio between the minimum and maximum output harmonic
intensity reads

R = Imin

Imax
= RsIminor + RpImajor

RpIminor + RsImajor
, (A2)

where Imajor and Iminor are the intensities on the major and
minor axes of the HHG ellipse, respectively; Rs and Rp are
the reflectivity of the s- and p-polarized harmonics, as the
HHG emission from Ar atoms is purely linearly polarized,
which means Iminor = 0. We can then obtain the extinc-
tion ratio e = Rp/Rs by dividing the minimum value by the

maximum value of the output harmonic intensity. The ob-
tained extinction ratios for different harmonic orders are
shown in Fig. 8(f).

APPENDIX B: EXPERIMENTAL MEASUREMENT OF
HARMONIC ELLIPTICITY WITH THE EUV POLARIZER

To evaluate the polarization-resolved harmonic dipoles re-
trieved by our networks, we have measured the ellipticity of
harmonics generated from N2 and CO2 with the alignment
angle of 30◦ by scanning the polarization angle β. Figure 9
displays the experimental signals for H17, H19, H21, H23,
and H25 for N2 and CO2. By fitting the measured HHG signals
with Eq. (S1) (see red solid lines in Fig. 9), we can obtain
the intensity ratio R. The harmonic ellipticity then can be
obtained by

ε =
√

R − e

1 − eR
. (B1)

The measured harmonic ellipticities for N2 and CO2 are
shown in Figs. 7(c) and 7(d), which are in good agreement
with the results calculated with our retrievals.

APPENDIX C: AN EXAMPLE FOR NOT
USING DOMAIN ADAPTATION

For a better understanding of the impact of the domain
adaptation, we conducted network training without employing
the domain adaptation. The obtained results predicted from
the HHG signals in Figs. 4(a)–4(c) are presented in Fig. 10.
It is evident that the perpendicular component of the dipole
moment [see Fig. 10(b)] differs significantly from that shown
in Fig. 5(h), which is approximately four times larger. Fur-
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thermore, the rotational distribution in Fig. 10(c) also exhibits
a significant difference compared to Fig. 5(i), with absolute
difference up to 0.56 [see Fig. 10(d)]. We also calculated
the HHG signals with the retrieved harmonic dipole moment
and alignment distribution in Fig. 10. The results are shown
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FIG. 10. (a) The amplitude (blue solid line) and phase (green
dashed line) of laser-induced dipole moment in parallel direction re-
trieved by the network trained without domain adaptation. (b) Same
as (a) but for the perpendicular direction. (c) The corresponding
time-dependent molecular rotational distribution. (d) The absolute
difference between the retrieved molecular rotational distribution
obtained by using the network without and with domain adaptation.
in Figs. 11(a)–11(c). As shown in Figs. 11(d)–11(f), which

present the absolute difference between the reconstructed
signals and the real experimental signals, a clear mismatch
between them is observed. This result indicates the critical
role of domain adaptation during network training.
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C. C. Chirilă, M. Lein, J. W. G. Tisch, and J. P. Marangos,
Probing proton dynamics in molecules on an attosecond time
scale, Science 312, 424 (2006).

[11] P. Lan, M. Ruhmann, L. He, C. Zhai, F. Wang, X. Zhu, Q.
Zhang, Y. Zhou, M. Li, M. Lein et al., Attosecond probing of
nuclear dynamics with trajectory-resolved high-harmonic spec-
troscopy, Phys. Rev. Lett. 119, 033201 (2017).

[12] O. Smirnova, Y. Mairesse, S. Patchkovskii, N. Dudovich, D.
Villeneuve, P. Corkum, and M. Y. Ivanov, High harmonic in-
terferometry of multi-electron dynamics in molecules, Nature
(London) 460, 972 (2009).

[13] A. Shiner, B. Schmidt, C. Trallero-Herrero, H. J. Wörner,
S. Patchkovskii, P. B. Corkum, J. Kieffer, F. Légaré, and
D. Villeneuve, Probing collective multi-electron dynamics in
xenon with high-harmonic spectroscopy, Nat. Phys. 7, 464
(2011).

[14] L. He, S. Sun, P. Lan, Y. He, B. Wang, P. Wang, X. Zhu, L.
Li, W. Cao, P. Lu, and C. D. Lin, Filming movies of attosec-
ond charge migration in single molecules with high harmonic
spectroscopy, Nat. Commun. 13, 4595 (2022).

[15] P. M. Kraus, B. Mignolet, D. Baykusheva, A. Rupenyan, L.
Horný, E. F. Penka, G. Grassi, O. I. Tolstikhin, J. Schneider,
F. Jensen, L. B. Madsen, A. D. Bandrauk, F. Remacle, and
H. J. Wörner, Measurement and laser control of attosecond
charge migration in ionized iodoacetylene, Science 350, 790
(2015).

[16] J. Liang, Y. Zhou, Y. Liao, W.-C. Jiang, M. Li, and P. Lu,
Direct visualization of deforming atomic wavefunction in ul-
traintense high-frequency laser pulses, Ultrafast Science 2022,
2022/9842716 (2022).

[17] Y. Huang, J. Zhao, Z. Shu, Y. Zhu, J. Liu, W. Dong, X. Wang,
Z. Lü, D. Zhang, J. Yuan, J. Chen, and Z. Zhao, Ultrafast hole
deformation revealed by molecular attosecond interferometry,
Ultrafast Science 2021, 9837107 (2021).

[18] L. He, Y. He, S. Sun, E. Goetz, A.-T. Le, X. Zhu, P. Lan, P.
Lu, and C.-D. Lin, Attosecond probing and control of charge
migration in carbon-chain molecule, Adv. Photonics 5, 056001
(2023).

[19] F. Remacle and R. D. Levine, An electronic time scale in chem-
istry, Proc. Natl. Acad. Sci. USA 103, 6793 (2006).

[20] X. Wang, A.-T. Le, Z. Zhou, H. Wei, and C. D. Lin, Theory
of retrieving orientation-resolved molecular information using
time-domain rotational coherence spectroscopy, Phys. Rev. A
96, 023424 (2017).

[21] B. Wang, Y. He, X. Zhao, L. He, P. Lan, P. Lu, and C. D.
Lin, Retrieval of full angular-and energy-dependent complex
transition dipoles in the molecular frame from laser-induced
high-order harmonic signals with aligned molecules, Phys. Rev.
A 101, 063417 (2020).

[22] S. Sun, Y. He, L. He, J. Hu, P. Lan, and P. Lu, Iterative projec-
tion algorithm for retrieval of angle-resolved single-molecule
dipoles from high-harmonic spectra, Phys. Rev. A 107, 033105
(2023).

[23] L. He, X. Zhu, W. Cao, P. Lan, and P. Lu, Attosecond spec-
troscopy for filming the ultrafast movies of atoms, molecules
and solids, Chin. Phys. B 31, 123301 (2022).

[24] K. Yoshii, G. Miyaji, and K. Miyazaki, Measurement of
molecular rotational temperature in a supersonic gas jet with
high-order harmonic generation, Opt. Lett. 34, 1651 (2009).

[25] Y. He, L. He, P. Lan, B. Wang, L. Li, X. Zhu, W. Cao, and P. Lu,
Direct imaging of molecular rotation with high-order-harmonic
generation, Phys. Rev. A 99, 053419 (2019).

[26] T. Hornung, H. Skenderović, K.-L. Kompa, and M. Motzkus,
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