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The multiple-plateau structure is a characteristic of high-order harmonic spectra in solids, resulting from
strong interband couplings involving three or more bands. Here we show that high-order harmonic generation
(HHG) in a two-band Su-Schrieffer-Heeger (SSH) system also exhibits a multiple-plateau structure under
disorder effect. For weak external driving fields, the harmonic spectrum of disordered SSH chains exhibits an
additional plateau and has a higher cutoff frequency compared with that of ordered SSH chains. The phase
analysis of the harmonic spectra from various disordered SSH chains reveals that the second HHG plateau
emerges from the interference between different regions. Through time-frequency analysis, we show that the
harmonic phase corresponding to the caustic point is more localized than its neighboring orders.
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I. INTRODUCTION

High-order harmonic generation (HHG) is an important
tool for creating ultrashort laser pulses [1–3] which can
be induced in various systems, including gases [4,5] and
crystalline solids [6,7], through nonlinear laser-matter in-
teractions. Similar to the HHG process in gases [8,9], the
HHG process in crystals can be described by a three-step
model [10–15]: creation, acceleration, and recombination of
electron-hole pairs. The acceleration of electron-hole pairs
carries the information about the band dispersion of the target
material, enabling the use of HHG for the all-optical recon-
struction of the electronic band structures [16–18] and berry
curvatures [19,20]. Recently, the observation of high-order
harmonics from fused silica has suggested that long-range
order is not a prerequisite for coherent extreme ultraviolet
source generation [21]. The HHG spectra of fused sil-
ica and crystalline quartz show similar cutoff energies for
the same driving field parameters. Subsequently, HHG in
liquids further reveals the roles of short- and long-range
correlations in the HHG process [22–26]. The prediction
of driving-wavelength-independent cutoff energy by the sta-
tistical finite-coherence-distance model [23] was confirmed
recently in Ref. [24].

In the process of solving the well-known semiconductor
Bloch equations, the weak disorder in the crystals induced by
temperature-dependent lattice vibrations is introduced into the
theoretical calculations as part of the dephasing time to obtain
a high harmonic spectrum with clean peaks [10,27]. However,
when the periodicity of the system is broken and long-range
order is absent, Bloch states can no longer be used as a
basis. In this case, there are two methods to achieve numerical
convergence in simulations for disordered systems. One is to
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consider a sufficiently large system, and the other is the coher-
ent superposition of an adequate number of smaller systems
(subsystems) [24,28]. The authors of Ref. [28] demonstrated
that HHG spectra obtained by both methods have the same
structure, and calculations using the second method converged
more rapidly. Disorder in the system causes different phases
of radiation harmonics emitted in different regions. Based on
the second method, the coherent interference between HHG
spectra emitted in different regions of a large system can
be understood as the coherent interference of HHG spec-
tra from different subsystems. Thus, apart from generating
harmonic spectra with clean odd-order peak structures, what
other phenomena can be caused by spectral interference of
high harmonics from subsystems?

In this work, the disorder-induced interference of the HHG
spectrum is studied in the Su-Schrieffer-Heeger (SSH) model,
which is a simple one-dimensional (1D) tight-binding model
with two sites per unit cell and is suitable for polyacetylene
polymer chains, carbon nanotubes, perovskites, and so on.
[29–32]. Considering that the connections between atoms in
a unit cell are more stable than those in adjacent unit cells,
we introduce disorder into the atomic spacings between ad-
jacent cells, while the atomic spacings within the unit cells
remain fixed [see Fig. 1(a)]. The size of the atomic spacing
determines the amplitude of the hopping term. We find that
the harmonic spectrum interference between the disordered
SSH chains leads to the emergence of a second plateau even
though disordered SSH chains are a two-band model. This
phenomenon is different from that of the second plateau ori-
gin in crystalline materials, which is associated with higher
conduction bands [33–36].

This paper is organized as follows. In Sec. II, we present
the theoretical model and basic equations. The results are
reported and discussed in Sec. III, and a brief conclusion
is presented in Sec. IV. Atomic units (a.u.) are always used
unless otherwise specified.
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FIG. 1. (a) Schematics of the periodic boundary SSH model with
disordered intercell hopping terms. Atoms A and B constitute a unit
cell and u (v j) is the intracell (intercell) hopping term. a0 and dj

denote, respectively, the intracell atomic spacing and the adjacent
intercell atomic spacing. The value of hopping terms are determined
by the atomic spacing [see Eqs. (2) and (3)]. Band structures for
(b) the disordered (σ = 0.2) system and (d) the ordered (σ = 0)
system are obtained by transforming the real-space eigenstates to
k-space using Fourier transformation. (c) HHG spectra from 100 and
1000 configurations, respectively. The dotted straight lines are guides
to the eye for identifying the spectral cutoff.

II. THEORETICAL METHOD

We consider the following one-dimensional (1D) periodic
boundary dimerized chain with disordered intercell hopping
as shown in Fig. 1(a)

Ĥ0 =
N∑

j=1

(u |2 j − 1〉 〈2 j| + v j |2 j〉 〈2 j + 1| + H.c.), (1)

where atoms 2 j − 1 and 2 j form a unit cell and the integer j
labels the atomic sites. u and v j are the intracell and intercell
hopping terms, respectively. We assume an exponential de-
pendence of tunneling probability between neighboring sites
on distance, and set the hopping terms as [37]

u = −exp[−(x2 j − x2 j−1)] = −exp(−a0), (2)

v j = −exp[−(x2 j+1 − x2 j )] = −exp(−d j ), (3)

where a0 denotes the atomic spacing within the unit cell and
is kept constant. The spacing d j between atoms 2 j and 2 j + 1
from adjacent unit cells follows a truncated normal distribu-
tion with an average spacing d0. In this model, we choose
a0 + d0 = 4 a.u. and a0 = 1.7 a.u. However, our findings are
not contingent upon specific parameters within the model.

Figure 1(b) shows an example of the band structure of the
disordered SSH chain for the number of unit cell N = 4096
and the statistical fluctuation σ = 0.2. The band structure of
the ordered (σ = 0) SSH chain is presented in Fig. 1(d) for

comparison. As we can see, both ordered and disordered SSH
chains exhibit two distinct energy band segments (valence
and conduction bands). The minimal and maximal band gaps
for the disordered SSH chain are εg = 0.13 a.u. and εm =
0.62 a.u., respectively.

The coupling between the chain and an external field is
described in the velocity gauge, and then the time-dependent
Hamiltonian can be written as

Ĥ (t ) =
N∑

j=1

[u(t ) |2 j − 1〉 〈2 j| + v j (t ) |2 j〉 〈2 j + 1| + H.c.],

(4)
where the time-dependent hopping terms are

u(t ) = u exp [−iA(t )a0], (5)

v j (t ) = v j exp[−iA(t )d j]. (6)

A(t ) = − ∫ t
−∞ F (τ )dτ is the vector potential and the electric

field F (t ) = F0 cos(ω0t ) f (t ). The envelope function f (t ) is
trapezoidal with five cycles at peak intensity (3-5-3). In the
simulation of HHG, we employ the first N eigenstates of
field-free Hamiltonian as initial states and the time-dependent
wave functions |ψn(t )〉 = ∑

j a j (t ) | j〉 can be obtained by
solving Eq. (4) using the fourth-order Runge-Kutta method.
The current operator can be represented as

ĵ(t ) = i
2N∑
j=1

r jh j (t ) | j〉 〈 j + 1| − H.c., (7)

where r j and h j (t ) represent the distance and time-dependent
hopping terms between atoms j and j + 1. Thus the current
for the chain reads

J (t ) =
∑

n

〈ψn(t )| ĵ(t ) |ψn(t )〉 , (8)

and the HHG spectrum can be obtained by squaring the abso-
lute value of the Fourier-transformed current.

Compared to the previous work using a uniformly dis-
tributed disorder in short chains with one type of atoms [38],
the disordered SSH long chain we consider involves each unit
cell having two types of atoms, with the intercell distances
following a truncated normal distribution. Additionally, com-
pared to the complex plateau structure shown in Ref. [38]
attributed to a model involving multiple bands, the harmonic
spectra of the two-band disordered SSH model exhibit a sim-
pler and cleaner plateau structure, facilitating our analysis
of its origin. To enable computational implementation, we
followed the approach outlined in Ref. [28], which has also
been employed for simulating the liquid HHG [24,39] and
liquid terahetz wave generation [40]. According to this ap-
proach, the HHG spectrum of the disordered SSH long chain
can be obtained by decomposing the long chain into M short
chains, each consisting of 2N = 512 atoms, and coherently
superimposing the Fourier-transformed currents from these
short chains. In this case, the total HHG spectrum can be
written as

I (ω) =
∣∣∣∣∣ 1

M

M∑
m

F[Jm(t )]

∣∣∣∣∣
2

, (9)
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FIG. 2. (a) HHG spectra for the ordered and disordered SSH
chains. From top to bottom, the statistical fluctuation σ is 0, 0.1, 0.2,
and 0.2 (M = 1). (b) HHG spectra corresponding to each initial state
in the ordered SSH chain. (c) Same as (b) but using σ = 0.2 (dis-
order). The peak of laser intensity is 0.4 TW/cm2. Dashed straight
lines are guides to the eye.

where the subscript m denotes the mth atomic chain. Each
short chain with the same statistical distribution can be con-
sidered as a distinct region of the disordered SSH long chain.
Here, we focus on the multiplateau structure of the HHG spec-
trum caused by spectra interference from different regions of
the disordered long chain. Figure 1(c) shows the HHG spectra
for σ = 0.2 when I0 = 1 TW/cm2 and laser wavelength λ =
3200 nm. We notice that the harmonic spectrum has converged
when M = 100 is employed. To further ensure the conver-
gence of harmonic spectra under the parameters utilized in this
work and to facilitate the analysis of interference in harmonic
spectra among different subsystems in subsequent sections,
M = 104 is adopted unless otherwise stated.

III. RESULT AND DISCUSSIONS

In this section, we first show the multiplateau structure of
the HHG spectrum induced by disorder in SSH chains and an-
alyze the interference of harmonic spectra between disordered
atomic chains. Then, we present the range of laser intensities
for the appearance of the multiplateau structure. In these cal-
culations, the laser wavelength is fixed at λ = 3200 nm.

A. Multiple plateau structure

In Fig. 2(a), we show the averaged HHG spectra for differ-
ent σ at a laser intensity of 0.4 TW/cm2. The black dashed
line indicates the spectral cutoff of the ordered SSH chain. It
can be seen that with the increase of σ , the yield in the plateau
region of the HHG spectrum decreases, and at the same time,
the peak structures become cleaner.

For comparison, we show the HHG spectrum of a single
disordered (σ = 0.2) SSH chain in Fig. 2(a) with a green
line. The harmonic spectra resulting from each initial state
of the ordered and a single disordered SSH chains are shown

FIG. 3. Histogram of the phase of (a) the 27th-order harmonic
and (b) 35th-order harmonic. (c) IPR of the harmonic phase versus
harmonic order for the system with σ = 0.2, I0 = 0.4 TW/cm2, and
λ = 3200 nm. The dashed line in (c) corresponds to the cutoff energy
of the first plateau in HHG spectrum.

in Figs. 2(b) and 2(c), respectively. For the ordered chain, the
harmonic spectrum near the top of the valence band dominates
the total harmonic spectrum. This is attributed to the fact
that, in periodic systems, electron-hole pairs are born mainly
at the minimum band gap, and the motion of electron-hole
pairs in reciprocal space satisfies the acceleration theorem
[10,41]. However, for the disordered SSH chain, the intro-
duction of disorder breaks the periodicity of the system,
causing the acceleration theorem to fail. In this case, elec-
trons at the bottom of the valence band can be resonantly
excited to the top [42], so we can see in Fig. 2(c) that the
harmonic spectra corresponding to all initial states of the
disordered SSH chain contribute to the total HHG spectrum.
This results in the spectral cutoff of the disordered SSH chain
being higher than that of the ordered chain under the same
driving field.

It is noteworthy that by using Eq. (9) to average the har-
monic spectra of M = 104 disordered chains, a double-plateau
structure appears in the resultant harmonic spectrum [see the
blue line in Fig. 2(a)]. The spectral cutoff of the first plateau
is the same as that of the ordered SSH chain, while the second
plateau is consistent with that of a single disordered SSH
chain (about 41ω0). We attribute the formation of the double-
plateau structure to the coherent superposition of harmonic
spectra from multiple disordered chains. To verify this, we
proceed to analyze the harmonic phase of each individual
disordered chain.

The statistical distributions of the harmonic phases ϕ for
orders 27 and 35 are presented in Figs. 3(a) and 3(b), re-
spectively. These two order harmonics are located at the first
and second spectral plateaus, respectively. As we can see, the
statistical distribution of the 27th-order harmonic phase D27

exhibits a clear unimodal structure with the harmonic phase
being mainly localized around ϕ = 0.8 rad. However, for the
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FIG. 4. (a) Time-frequency analysis, with a 0.3 cycles wide
Blackman window, for laser intensity I0 = 0.4 TW/cm2. (b) Nor-
malized HHG spectrum of (a). Points A, B, and C in (a) correspond
to the locations of multiorbital coalescence.

35th-order harmonic, the phase distribution is more uniform
with only a weak peak at ϕ = −2.2 rad. In general, for a more
localized distribution of Dn, the interference enhancement
between harmonics from different chains is stronger and vice
versa. The degree of localization of the phase distribution is
quantified by the inverse participation ratio (IPR)

IPR(n) =
[

L∑
l

D2
n(l )

]/[
L∑
l

Dn(l )

]2

, (10)

where Dn(l ) denotes the count of atomic chains whose phase
falls into interval (2(l − 1)π/L, 2lπ/L] for the nth order har-
monic. A higher IPR means stronger localization. In Fig. 3(c),
we show the IPR spectrum and divide it into two parts ac-
cording to the first harmonic plateau cutoff (see the black
dashed line). These two parts correspond to the two harmonic
plateaus. It can be found that the IPR in the first plateau region
is significantly larger than that in the second plateau region,
which is the reason for the formation of the second HHG
plateau.

One can notice in Fig. 3(c) that the first plateau has four
distinct peak structures at orders of 13, 21, 25, and 29, which
implies that the harmonic yield corresponding to these peaks
is higher than those of the neighboring orders. In the follow-
ing, we discuss the origin of the peak structure at orders of
13, 21, and 29, while the origin of the peak structure at the
25th order has not been found. For this purpose, we show
the HHG spectrum of the disordered system from Fig. 3(a)
again in Fig. 4(b) after normalizing it and using a linear scale.
It is obvious that the harmonic yield corresponding to the
peak of the IPR spectrum is higher than those of neighbor-
ing orders. For further analysis, the time-frequency structure
of HHG is shown in Fig. 4(a) using a 0.3 cycle Blackman
window scanned across two optical cycles near the peak of

FIG. 5. (a) HHG spectra for I0 = 0.2 TW/cm2 [black
line (lower)], I0 = 0.4 TW/cm2 [red line (middle)], and
I0 = 0.8 TW/cm2 [blue line (upper)]. (b) The dependence of
the first plateau cutoff in the HHG spectrum on laser intensity.
σ = 0.2 is adopted here. Dashed straight lines are guides to the eye.

the pulse. The relationship between the harmonic energy ω

and the radiation time tr shows an inverted-F structure in a
half cycle [see the black line in Fig. 4(a)]. Points B and C
are the crossing points of the inverted-F. Point A corresponds
to dω/dtr = 0. This means that two or more HHG radiation
orbits coalesce at these three points, leading to the caustics
enhancement in the HHG spectrum [43–46]. Therefore, the
phase distribution of the caustic point in the HHG spectrum is
more localized compared with its neighboring orders.

B. Laser intensity dependence

To illustrate the dependence of the disorder-induced
double-plateau structure on laser parameters, we present HHG
spectra at various laser intensities in Fig. 5(a). As the laser
intensity increases, the first HHG plateau cutoff rises while
the spectral cutoff of the second plateau is fixed at 41st
order [see the purple dotted line in Fig. 5(a)], approaching
the maximum band gap. In other words, when the spectral
cutoff of the first HHG plateau is below the maximum band
gap, the harmonic spectrum of the disordered SSH chains
exhibits a double-plateau structure. The dependence of the
first plateau cutoff on laser intensity is shown in Fig. 5(b).
The first plateau cutoff reaches its maximum value at a laser
intensity of 1.2 TW/cm2 and no longer changes with increas-
ing laser intensity. At this laser intensity, the vector potential
corresponds to about π/2(a0 + d0) [see the red dashed line in
Fig. 5(b)].

IV. CONCLUSION

We conducted a numerical investigation into the spectral
interference of HHG within the disordered SSH systems.
Compared with the ordered SSH chain, the HHG spectrum
of a single disordered SSH chain has higher spectral cutoff.
After coherently superimposing the harmonic spectra from a
sufficient number of disordered SSH chains with the same
statistical distribution, the averaged harmonic spectrum ex-
hibits a double-plateau structure. The first plateau in the
averaged HHG spectrum has the same cutoff as that of the
ordered SSH chain, and the second plateau cutoff is close to
the maximum band gap. Statistical analysis of the harmonic
phases from 104 disordered SSH chains indicates that the
double-plateau structure in the disordered SSH chain results
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from the spectral interference between different regions. Fur-
thermore, we find that the phase distribution at the caustic
point of the HHG spectrum is more localized compared with
the neighboring orders, where the spectral caustic point can
be confirmed by time-frequency analysis of the harmonic
spectrum.
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