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Atomic photoexcitation as a tool for probing purity of twisted light modes
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The twisted light modes used in modern atomic physics experiments can be contaminated by small admixtures
of plane-wave radiation. Although these admixtures hardly reveal themselves in the beam-intensity profile, they
may seriously affect the outcome of high-precision spectroscopy measurements. In the present study we propose
a method for diagnosing such a plane-wave contamination which is based on the analysis of the magnetic sublevel
population of atoms or ions interacting with the “twisted + plane-wave” radiation. In order to theoretically
investigate the sublevel populations, we solve the Liouville–von Neumann equation for the time evolution of
the atomic density matrix. The proposed method is illustrated for the electric dipole 5s 2S1/2 -5p 2P3/2 transition
in Rb induced by (linearly, radially, or azimuthally polarized) vortex light with just a small contamination. We
find that even tiny admixtures of plane-wave radiation can lead to remarkable variations in the populations of
the ground-state magnetic sublevels. This opens up new opportunities for diagnostics of twisted light in atomic
spectroscopy experiments.

DOI: 10.1103/PhysRevA.109.033103

I. INTRODUCTION

For more than 30 years, twisted light has attracted consid-
erable interest in many areas of modern physics. In contrast to
conventional plane waves, such beams exhibit a highly inho-
mogeneous intensity profile, a complex polarization texture,
and a phase singularity [1–3]. Twisted beams have found ap-
plication in optical traps [4,5] and tweezers [6,7], classical and
quantum communication [8,9], superresolution optical sens-
ing [10,11] and imaging [12,13], and atomic magnetometers
[14,15]. Moreover, they were recently used for high-precision
spectroscopy of trapped ions. In particular, Laguerre-Gaussian
(LG) beams were employed to coherently excite clock transi-
tions in single Ca+ [16] and Yb+ ions [17]. The interpretation
of such experiments, however, can be complicated by incom-
plete knowledge of the radiation composition. For the analysis
of the Ca+ experiment, for instance, Afanasev et al. [18] in-
ferred that the light initially assumed to be circularly polarized
was slightly elliptically polarized. Furthermore, a radially po-
larized beam produced by a vortex retarder was suspected to
be contaminated by a small amount of plane-wave admixture
in the Yb+ experiment of Lange et al. [17]. Such impurity of
incident light is one of the major challenges to tackle in high-
precision spectroscopy experiments with twisted radiation.

A conventional method to obtain information about the
mode composition of radiation is to analyze its intensity
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profile. This approach has a natural limitation in the domain
of relatively small admixtures to the leading mode since they
do not cause noticeable changes in intensity distribution. Al-
though tiny impurities are “invisible” for the conventional
method, they may significantly affect the population dynamics
of a target atom, which is usually observed in the form of
Rabi oscillations. In this contribution, we discuss the effect
of admixture of plane-wave radiation to the leading twisted
mode and propose an approach to investigate this admixture,
which shows its full potential in the case of tiny impurities.
Our approach is based on an analysis of the populations of
the ground-state magnetic sublevels of an atom interacting
with laser radiation. These populations can be measured, for
example, by state-dependent fluorescence [16,19].

The present work is organized as follows. In Sec. II A
we briefly recall the basic formulas needed to describe the
incident radiation and define the geometry for the light-atom
coupling. This coupling is described by transition-matrix ele-
ments whose evaluation is discussed in Sec. II B. In order to
analyze the time evolution of atomic populations, in Sec. II C
we lay down the density-matrix formalism based on the
Liouville–von Neumann equation. Substituting the transition-
matrix elements into the Liouville–von Neumann equation,
we compute elements of the density matrix at each instant of
time. For analysis and guidance of experimental studies, how-
ever, it is more convenient to describe the system in terms of
the so-called statistical tensors. These tensors are related to the
population of atomic sublevels and characterize the orienta-
tion of the system, as shown in Sec. II D. The general theory is
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applied to the specific case of the 5s 2S1/2 -5p 2P3/2 transition
in Rb induced by a Bessel beam with a small admixture of a
plane wave. The calculations presented in Sec. III indicate that
even tiny admixtures can significantly affect the population of
the Mg = ±1/2 ground-state sublevels. Moreover, we show
how the impurity effects can be controlled by applying an
external magnetic field. Finally, a summary of our results and
an outlook are given in Sec. IV.

II. THEORY

A. Twisted light modes

Modern experiments on the interaction of trapped atoms
or ions with twisted radiation usually employ LG modes.
Theoretical analysis of the coupling between these modes and
atoms is a rather complicated task which can be simplified
by approximating LG radiation with a Bessel beam. Such an
approximation is well justified when an atom is located in the
vicinity of the beam center [17,20]. Similarly, the radiation in
the center of a Gaussian LG00 mode can be approximated by a
plane wave when the spatial mode extent is large compared to
the atomic sample. The vector potentials for both Bessel and
plane waves will be introduced below.

1. Photon vector potential

Since the interaction of atoms with twisted and plane-wave
radiation has already been widely discussed in the literature
[21–27], we present here only a few basic formulas needed
for our theoretical analysis. We start with the vector potential
for a plane wave, which may be written in the Coulomb gauge
as

A(pl)
λ (r) = A0 ekλeik·r, (1)

where k and ekλ are the photon wave and polarization vectors,
ω = kc is its frequency, λ = ±1 denotes the helicity, and A0

is the amplitude, which will be specified later. A Bessel beam
is, in turn, characterized by the vector potential

A(tw)
mγ ,λ(r) = A0

∫
aκmγ

(k⊥) ekλeik·r d2k⊥
(2π )2

, (2)

with the weight function

aκmγ
(k⊥) = 2π

κ

(−i)mγ eimγ φk δ(k⊥ − κ). (3)

The latter vector potential describes a beam with amplitude
A0, helicity λ, longitudinal (kz) and transverse (κ) components
of the linear momentum, and projection mγ of the total angu-
lar momentum onto the light propagation direction [28,29]. It
follows from Eqs. (1)–(3) that the Bessel beam can be seen as
a coherent superposition of plane waves whose wave vectors
k are uniformly distributed upon the surface of a cone with a
polar opening angle θk = arctan(κ/kz ).

In Eqs. (1)–(3), we introduced helicity states which are
related to circularly polarized light. The other polarizations
can readily be constructed from these helicity states. For
example, plane waves that are linearly polarized parallel or

FIG. 1. Geometry of the excitation of a single atom by a superpo-
sition (9) of Bessel and plane waves. The quantization axis is chosen
along the applied magnetic field, which is perpendicular to the light
propagation direction. The atom is either perfectly localized in the
beam center or delocalized with distribution width σ .

perpendicular to a reaction plane [30], defined by the direction
of light propagation and an external magnetic field B, are

A(pl)
x = 1√

2

[
A(pl)

λ=−1 + A(pl)
λ=+1

]
, (4a)

A(pl)
y = i√

2

[
A(pl)

λ=−1 − A(pl)
λ=+1

]
; (4b)

see Fig. 1 for further details. In a similar way, one can also
construct linearly polarized twisted modes,

A(tw)
x = i√

2

[
A(tw)

mγ1 ,λ=+1 − A(tw)
mγ2 ,λ=−1

]
, (5a)

A(tw)
y = 1√

2

[
A(tw)

mγ1 ,λ=+1 + A(tw)
mγ2 ,λ=−1

]
, (5b)

where mγ1 − mγ2 = 2, as discussed in Ref. [29]. Furthermore,
in contrast to plane waves, twisted radiation provides a richer
choice of polarization patterns. For instance, the radially and
azimuthally polarized beams read

A(tw)
rad = − i√

2

[
A(tw)

mγ =0,λ=+1 + A(tw)
mγ =0,λ=−1

]
, (6a)

A(tw)
az = − 1√

2

[
A(tw)

mγ =0,λ=+1 − A(tw)
mγ =0,λ=−1

]
. (6b)

It can easily be seen that the vector potentials (5) and (6)
correspond to linear, radial, and azimuthal polarizations in the
paraxial regime where the opening angle θk is small. In this
regime the spin and orbital angular momenta are decoupled
from each other, and Eq. (2) is simplified to

A(tw)
mγ ,λ(r) ≈ A(par)

ml ,λ
(r) = eλ(−i)λJml (κr⊥)eiml φeikzz, (7)

where ml = mγ − λ is the projection of the orbital angular
momentum, eλ = ek‖z,λ is the polarization vector, Jml (κr⊥)
stands for the Bessel function, and r⊥, φ, and z are cylindrical
coordinates [28]. By using Eqs. (5)–(7), we obtain

A(par)
x = exJml (κr⊥)eiml φeikzz, (8a)

A(par)
y = eyJml (κr⊥)eiml φeikzz, (8b)

A(par)
rad = erJ1(κr⊥)eikzz, (8c)

A(par)
az = eφJ1(κr⊥)eikzz, (8d)
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where ex, ey, er , and eφ are the basis unit vectors in Cartesian
and cylindrical coordinates, respectively. Strictly speaking,
solutions (8c) and (8d) do not possess a well-defined orbital
angular momentum projection and therefore cannot be re-
ferred to as twisted light. Usually, such fields are called vector
beams [15,31].

2. Superposition of two modes

As already mentioned above, incident radiation may not
always be produced in a pure twisted state. Instead, a target
atom can be exposed to a superposition of different modes
which contains the LG00 one as well. In order to model the
impact of such an admixture, we will add a plane-wave com-
ponent to the twisted light,

A(mix) = ctwA(tw) + cpl eiφpl A(pl), (9)

where the real mixture coefficients ctw and cpl satisfy the
normalization condition c2

tw + c2
pl = 1 and φpl is the relative

phase of the two light modes. In general, this relative phase
can affect not only the beam-intensity profile but also its
polarization texture.

Below we will discuss a method for determining the weight
cpl and phase φpl of the plane-wave component based on the
analysis of the population dynamics of magnetic sublevels in a
target atom exposed to the radiation (9). This requires a choice
of the quantization axis of the overall system. In our study we
will utilize geometry similar to what is used in Hanle-effect

experiments [32–36]; i.e., the atomic quantization axis is cho-
sen to be along the magnetic field applied perpendicular to the
light propagation direction (see Fig. 1).

B. Evaluation of the transition-matrix element

Having discussed the vector potentials of Bessel and plane
waves, we are ready now to examine their interaction with an
atom. In particular, we will question the laser-induced tran-
sition between ground |αgJgMg〉 and excited |αeJeMe〉 atomic
states whose properties can be traced back to the first-order
matrix element

Veg = ec〈αeJeMe|
∑

q

αq · A(rq)|αgJgMg〉, (10)

where J denotes the total angular momentum, M is its pro-
jection on the atomic quantization axis, and α refers to all
additional quantum numbers. Moreover, q runs over all elec-
trons in a target atom, and αq denotes the vector of Dirac
matrices for the qth particle [37]. This matrix element depends
on a particular choice of the vector potential A. For the super-
position of twisted and plane-wave radiation (9), we have

V (mix)
eg = ctwV (tw)

eg + cpl eiφplV (pl)
eg . (11)

The evaluation of the twisted (V (tw)
eg ) and plane-wave (V (pl)

eg )
matrix elements has already been discussed in detail in the
literature [29,38]. For the geometry shown in Fig. 1, where
light propagates along the z axis perpendicular to the atomic
quantization axis, they read

V (pl)
eg (λ) = A0ec

√
2π iL(iλ)p [L]1/2

[Je]1/2
dL

Me−Mg,λ
(π/2)〈Jg Mg L Me − Mg|Je Me〉〈αeJe||Hγ (pL)||αgJg〉, (12)

V (tw)
eg (λ) = A0ec

√
2π

∑
M

iL+M (iλ)p(−1)mγ
[L]1/2

[Je]1/2
ei(mγ −M )φbJmγ −M (κb) dL

M,λ(θk ) dL
Me−Mg,M (π/2)

× 〈Jg Mg L Me − Mg|Je Me〉〈αeJe||Hγ (pL)||αgJg〉, (13)

where we have assumed, moreover, that both light-field
components are circularly polarized. Here, the reduced ma-
trix element 〈αeJe||Hγ (pL)||αgJg〉 for a magnetic (p = 0)
or electric (p = 1) transition of multipolarity L depends
on the electronic structure of an atom, and its evalua-
tion will be discussed later. Furthermore, in Eqs. (12)
and (13) dL

M,λ(θk ) is the small Wigner D function, and
[J] = 2J + 1.

We note that the matrix element (13) also depends on
the impact parameter b = (b cos φb, b sin φb, 0), which spec-
ifies the position of a target atom with respect to the beam
center. The introduction of this parameter is necessary since
the Bessel beam exhibits an inhomogeneous intensity profile
with a central dark spot at b = 0 [31]. In contrast to Bessel
beams, the intensity and phase of plane waves do not depend
on spatial position, and hence, there is no need to add b to
Eq. (12).

Similar to the discussion in Sec. II A 1, the matrix elements
(12) and (13) can be used as building blocks to investigate
cases of polarization different from circular. For example,

in order to analyze the interaction of an atom with linearly
polarized plane or twisted waves, one should use

V (pl)
eg (x) = 1√

2

[
V (pl)

eg (λ = −1) + V (pl)
eg (λ = +1)

]
, (14a)

V (pl)
eg (y) = i√

2

[
V (pl)

eg (λ = −1) − V (pl)
eg (λ = +1)

]
, (14b)

V (tw)
eg (x) = i√

2

[
V (tw)

eg (λ = +1) − V (tw)
eg (λ = −1)

]
, (14c)

V (tw)
eg (y) = 1√

2

[
V (tw)

eg (λ = +1) + V (tw)
eg (λ = −1)

]
. (14d)

In a similar way one can construct matrix elements for
the interaction with radially or azimuthally polarized vector
beams.

C. Density-matrix formalism

Due to the interaction of atoms with light, the populations
of atomic ground and excited states can vary with time. To
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investigate the time dependence of atomic-level populations,
it is practical to use the time-dependent density-matrix the-
ory [39], where a state of the system is represented by the
density operator ρ̂(t ) satisfying the Liouville–von Neumann
equation:

d

dt
ρ̂(t ) = − i

h̄
[Ĥ (t ), ρ̂(t )] + R̂(t ). (15)

Here, Ĥ (t ) is the total Hamiltonian of an atom in the pres-
ence of both the magnetic field and the incident radiation.
Moreover, the operator R̂(t ) has been introduced to take
into account phenomenologically the relaxation processes; see
Refs. [40,41] for more details.

In order to express the operator ρ̂(t ) in matrix form, a
convenient set of basis states must be chosen. In our work
we use the ground (|αgJgMg〉) and excited (|αeJeMe〉) atomic

states as a basis. In this basis, the matrix elements of ρ̂(t ), also
known as the density matrix, take the form

ρgg′ (t ) = 〈αgJgMg|ρ̂(t )|αgJgM ′
g〉, (16a)

ρee′ (t ) = 〈αeJeMe|ρ̂(t )|αeJeM ′
e〉, (16b)

ρge(t ) = 〈αgJgMg|ρ̂(t )|αeJeMe〉, (16c)

ρeg(t ) = 〈αeJeMe|ρ̂(t )|αgJgMg〉. (16d)

Here, the notations ρgg(t ) and ρee(t ) are used as shorthand
for the probability of finding an atom in substates |αgJgMg〉
and |αeJeMe〉, respectively, while ρgg′ (t ) and ρee′ (t ) describe
the coherences between different substates [42]. In the present
work we focus especially on the ground-state density matrix
and investigate its dependence on the magnetic-field strength
for different compositions of incident radiation.

From Eqs. (15) and (16), we obtain the following set of
differential equations for the density-matrix elements:

d

dt
ρ̃gg′ (t ) = −i�(L)

g (Mg − M ′
g )̃ρgg′ (t ) − i

2h̄

⎡
⎣∑

M̃e

V ∗
ẽg ρ̃ẽg′ (t ) −

∑
M̃e

Vẽg′ ρ̃gẽ(t )

⎤
⎦ + Rgg′ (t ), (17a)

d

dt
ρ̃ee′ (t ) = −i�(L)

e (Me − M ′
e )̃ρee′ (t ) − i

2h̄

⎡
⎣∑

M̃g

Veg̃ ρ̃g̃e′ (t ) −
∑
M̃g

V ∗
e′g̃ ρ̃eg̃(t )

⎤
⎦ + Ree′ (t ), (17b)

d

dt
ρ̃ge(t ) = −iρ̃ge(t ) + i

(
�(L)

e Me − �(L)
g Mg

)̃
ρge(t ) − i

2h̄

⎡
⎣∑

M̃e

V ∗
ẽg ρ̃ẽe(t ) −

∑
M̃g

V ∗
eg̃ ρ̃gg̃(t )

⎤
⎦ + Rge(t ), (17c)

d

dt
ρ̃eg(t ) = iρ̃eg(t ) − i

(
�(L)

e Me − �(L)
g Mg

)̃
ρeg(t ) − i

2h̄

⎡
⎣∑

M̃g

Veg̃ ρ̃g̃g(t ) −
∑
M̃e

Vẽg ρ̃eẽ(t )

⎤
⎦ + Reg(t ). (17d)

Here, we have made the substitutions

ρ̃gg′ (t ) = ρgg′ (t ), (18a)

ρ̃ee′ (t ) = ρee′ (t ), (18b)

ρ̃ge(t ) = ρge(t )e−iωt , (18c)

ρ̃eg(t ) = ρeg(t )eiωt (18d)

and employed the rotating-wave approximation, which con-
sists of neglecting the fast-oscillating terms proportional to
e±2iωt [43,44]. Furthermore, �(L) = gJμBB/h̄ is the Larmor
frequency, and  = ω − ω0 is the frequency detuning of the
radiation from the atomic resonance at ω0.

In Eqs. (17), the terms R(t ) account phenomenologically
for the relaxation of an atom due to spontaneous emission.
To derive these terms, we follow the procedure discussed in
Refs. [39,45] and find

Rgg′ (t ) = �
∑

Me,M ′
e,M

〈Jg Mg L M|Je Me〉̃ρee′ (t )

×〈Jg M ′
g L M|Je M ′

e〉, (19a)

Ree′ (t ) = −�ρ̃ee′ (t ), (19b)

Rge(t ) = −�

2
ρ̃ge(t ), (19c)

Reg(t ) = −�

2
ρ̃eg(t ), (19d)

with � being the decay rate of the excited state. In obtaining
Eqs. (19), we have assumed that only one dominant channel
with multipolarity L contributes to the decay.

D. Statistical tensors of atomic states

Solving Eqs. (17) numerically, we find the atomic density
matrix at each particular moment in time. In order to visualize
the results and simplify the discussion, it is more convenient
to describe the population of atomic sublevels in terms of
the statistical tensors [46] that are linear combinations of the
density-matrix elements,

ρkq(αJ; t ) =
∑
M M ′

(−1)J−M ′ 〈J M J − M ′|k q〉

× 〈αJM|ρ̂(t )|αJM ′〉. (20)

These tensors have well-defined symmetry properties since
they transform like spherical harmonics of rank k under a
rotation of the coordinates. In atomic physics, ρkq are usually
normalized as

Akq(αJ; t ) = ρkq(αJ; t )

ρ00(αJ; t )
(21)
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FIG. 2. The transition scheme for the 5s 2S1/2 -5p 2P3/2 excita-
tion of rubidium, along with the Zeeman splitting of the magnetic
sublevels. The arrows represent the transition as induced by y-
polarized incident light (9) with ml = +1, and the wavy lines
represent spontaneous decay.

to produce the so-called alignment and orientation parame-
ters. These parameters characterize the relative population of
magnetic sublevels |αJM〉 and coherence between them. If all
magnetic sublevels are equally populated, the atom is unpolar-
ized, and the only nonzero parameter is A00 = 1. In contrast,
unequal substate populations lead to at least one nonvanishing
parameter Akq with k > 0. If the system is characterized by
parameters Akq of even rank k, it is said to be aligned, while
the system is called oriented if at least one odd-rank parameter
Akq is nonzero [46].

In what follows we investigate the population of the
5s 2S1/2 state, which can be described by only three nontriv-
ial parameters A1q, with q = 0,±1. Here, A10 describes the
difference in the population of magnetic sublevels,

A10(t ) = ρ+1/2(t ) − ρ−1/2(t )

ρ+1/2(t ) + ρ−1/2(t )
, (22)

with

ρMg (t ) = 〈
5s 2S1/2 Mg| ρ̂(t ) |5s 2S1/2 Mg

〉
, (23)

and hence characterizes the orientation of the 5s 2S1/2 state,
while parameters A1±1 reflect coherences between different
substates.

In the next section, we analyze the dependence of the orien-
tation parameters A1q on the external magnetic-field strength
for different mixtures of incident radiation to determine the
weight and phase of the plane-wave admixture.

III. RESULTS AND DISCUSSION

In the previous section we derived the Liouville–von
Neumann equation (17), which allows us to investigate the
time-dependent interaction of an atom with a beam propagat-
ing along the z axis in the presence of a magnetic field (B ⊥
ez). Below we will use this theory to explore the interaction of
Rb atom, initially prepared in the unpolarized 5s 2S1/2 state,
with the superposition (9) of twisted and plane waves. Both
modes are supposed to drive the 5s 2S1/2 -5p 2P3/2 electric
dipole (E1) transition of frequency ω0 = 2π × 384 THz (see
Fig. 2).
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FIG. 3. Left: Populations of the Mg = −1/2 (dashed line) and
Mg = +1/2 (dash-dotted line) magnetic sublevels of the 5s 2S1/2

ground state of rubidium well localized on the vortex line, b = 0,
as a function of time for zero magnetic field, B = 0. The incident
light (9) is assumed to be a superposition of y-polarized plane and
Bessel waves, where the latter carries the orbital angular momentum
projection ml = +1 and has the opening angle θk = 2.49◦. Results
are presented for (a) the pure Bessel beam, cpl = 0, and superposi-
tions with (b) cpl = 0.1 and φpl = 0◦ and (c) cpl = 0.1 and φpl = 90◦.
Right: Transverse intensity profiles of these beams in units of A2

0.

The numerical solution of Eqs. (17) requires further infor-
mation about the incident radiation and the target atom. In
particular, we need to know the spontaneous decay rate �

and the reduced matrix element 〈5p 2P3/2 ||Hγ (E1)||5s 2S1/2〉
which enter into Eqs. (11)–(13) and (19). Their values were
obtained using the package JAC, which was developed to cal-
culate energies and transition probabilities in many-electron
atoms [47]. Moreover, the light amplitude A0 = 2.54 × 10−12

and the opening angle θk = 2.49◦ are chosen so that the plane
(1) and twisted (2) waves reproduce the LG00 and LG01 modes
with a total power of 4 μW and a waist of 7 μm in the vicinity
of the beam center. Finally, we assume that the detuning of the
light from the atomic resonance in the absence of a magnetic
field is zero,  = 0.

A. Localized atom in the absence of magnetic field

As seen from Eq. (13), we have to agree on the value of
the impact parameter b to find a solution of the Liouville–
von Neumann equation (17). In this section, we consider an
idealized scenario in which the atom is well localized on the
vortex line at b = 0. For this scenario, the left column of Fig. 3
displays the time evolution of the populations ρ−1/2(t ) and
ρ+1/2(t ) of the ground-state magnetic sublevels Mg = ±1/2.
The calculations were made in the limit of vanishing magnetic
field, B = 0, for different superpositions (9) of twisted and
plane waves. Moreover, we assumed that both components
of light, A(tw) with ml = +1 and A(pl), are linearly polarized
along the y axis (see Fig. 1). As illustrated in Fig. 3, the
population dynamics is very sensitive to the composition of
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incident light. For example, if the atom interacts with pure
Bessel radiation, cpl = 0, both Mg = ±1/2 sublevels are al-
ways equally populated, ρ−1/2(t ) = ρ+1/2(t ). This resembles
the outcome of photoexcitation by linearly polarized plane
waves which is known to produce no orientation of the
target along an axis normal to both light propagation and
polarization directions. A similar result is obtained for the
superposition of twisted and plane waves with relative phase
φpl = 0◦ [see the left panel of Fig. 3(b)]. In contrast, qualita-
tively different behavior can be observed when the Bessel- and
plane-wave components are phase shifted with respect to each
other. This effect is most pronounced for the case φpl = 90◦,
which is displayed in Fig. 3(c). As seen from Fig. 3(c), the
populations of the Mg = ±1/2 sublevels gradually diverge
from each other as time progresses and reach the values
ρ−1/2 = 0.40 and ρ+1/2 = 0.12 for the steady state. This result
clearly indicates that the admixture of a plane wave to a Bessel
wave can lead to significant orientation of the 5s 2S1/2 ground
state, even though both components of the beam are linearly
polarized.

To explain the qualitatively different behavior of the sub-
level populations ρ±1/2(t ), in the right column of Fig. 3 we
compare three different transverse intensity profiles of the
incident beams. As seen from Fig. 3(a), the intensity profile
of a pure Bessel beam has the well-known annular structure
which is axially symmetric with respect to the vortex line
crossing the transverse plane at x = y = 0. This symmetry is
broken by an admixture of plane-wave radiation. The sym-
metry breaking can easily be understood if we consider the
absolute value squared of the vector potential describing the
y-polarized superposition:

|A(mix)(r, φ, z = 0)|2

� ∣∣A(tw)(r)eiml φ + A(pl)(r)eiφpl
∣∣2

= |A(tw)(r)|2 + |A(pl)(r)|2

+ 2A(tw)(r)A(pl)(r) cos(mlφ − φpl ). (24)

As seen from this equation, the interference term containing
cos(mlφ − φpl ) depends on the azimuthal angle φ and hence
violates the axial symmetry of the beam. In addition, the
resulting asymmetric intensity profile of the “Bessel-wave +
plane-wave” mixture depends on the relative phase φpl. For
φpl = 0◦, the incident beam is symmetric with respect to the
x-z plane containing the quantization axis and the light prop-
agation direction, while this is not the case when φpl = 90◦.
This difference in intensity profiles is reflected in the qualita-
tively different behavior of the sublevel populations. Indeed,
it follows from symmetry considerations that the statistical
tensor A10 vanishes for an “atom + light” system with the
quantization axis in the plane of symmetry [46]. This is the
case for the pure Bessel beam (5) and the superposition (9)
with φpl = 0◦ [see Figs. 3(a) and 3(b)]. In contrast, a sys-
tem with broken symmetry with respect to the x-z plane is
characterized by A10 �= 0, implying ρ−1/2(t ) �= ρ+1/2(t ) [see
Eq. (22)]. This is the case for the superposition (9) with
φpl = 90◦, displayed in Fig. 3(c).

In addition to analysis of the beam-intensity pro-
files, another approach can be used to understand—at
least qualitatively—the behavior of the magnetic sublevel

10−4 10−3 10−2 10−1 100

Admixture coefficient cpl

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

O
ri

en
ta

ti
on

p
ar

am
et

er
A(l

in
)

10

FIG. 4. Orientation parameter (25) of the 5s 2S1/2 state of Rb as
a function of the weight cpl of the plane-wave component obtained
from the perturbative analysis of photoexcitation and decay for B =
0. Calculations were performed for φpl = 90◦ (solid line), φpl = 45◦

(dashed line), φpl = 22.5◦ (dash-dotted line), and φpl = 0◦ (dotted
line). All other parameters are the same as in Fig. 3.

populations ρ±1/2(t ). This approach is based on the pertur-
bative analysis of the excitation and decay of a target atom
interacting with incoming twisted light. It is very close to
that used for description of the resonant elastic scattering
discussed in detail in Refs. [48,49] and employs second-order
perturbation theory. For brevity, we will not repeat the calcu-
lation steps here and just present the perturbative prediction
for the orientation parameter of the 5s 2S1/2 state:

A(lin)
10 = −

10cpl

√
1 − c2

pl sin(θk ) sin(φpl )

12c2
pl + 3

(
1 − c2

pl

)
sin2(θk )

. (25)

This result is obtained for the vector potential (9) and hence
depends on the weight cpl and phase φpl of the plane-wave
component, as well as on the opening angle θk of the Bessel
beam. Figure 4 shows the predictions of Eq. (25) as a function
of the weight cpl for θk = 2.49◦ and different relative phases
φpl. As seen from Fig. 4, the orientation parameter A(lin)

10
vanishes in the limit of a pure plane wave, cpl = 1, and a pure
Bessel beam, cpl = 0. This thus confirms the results of the
time-dependent density-matrix calculations. Moreover, per-
turbation theory predicts a strong dependence of A(lin)

10 on the
relative phase φpl between the Bessel and plane-wave compo-
nents. For example, when φpl = 0◦, there is no orientation of
the ground state, regardless of the weight cpl. This agrees with
the conclusion based on the analysis of intensity profiles. In
addition, remarkable orientation of the ground state can be ob-
served for φpl �= 0 and weight coefficients 0.001 � cpl � 0.1.
For instance, for φpl = 90◦ and cpl = 0.1 naive perturbation
theory predicts A(lin)

10 = −0.34, in qualitative agreement with
the result obtained by solving the Liouville–von Neumann
equation, A(lin)

10 = −0.56. We also note from Eq. (25) that the
peak position c(peak)

pl of the orientation parameter A(lin)
10 depends

on the opening angle θk:

c(peak)
pl = sin(θk )√

4 + sin2(θk )
. (26)
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FIG. 5. Same as the right column of Fig. 3, but for φpl = 90◦ and
(a) cpl = 0.1, (b) cpl = 0.06, and (c) cpl = 0.03.

In particular, for θk = 2.49◦ the peak is located at c(peak)
pl =

0.022 (see Fig. 4).
Both Eq. (25), based on the perturbation theory approach,

and the more accurate density-matrix predictions of Eqs. (17)
show that the orientation parameter of the 5s 2S1/2 ground
state is very sensitive to the phase φpl and the weight cpl

of the plane-wave component. This sensitivity is most pro-
nounced for rather small weights in the range from 0.001 to
0.1. For such tiny parameters cpl, it is very difficult to infer
any composition of the incident beam (9) from the intensity
profile. For example, the superpositions with cpl = 0.1, cpl =
0.06, and cpl = 0.03 exhibit very similar intensity profiles, as
displayed in Fig. 5, while the corresponding orientation pa-
rameters A(lin)

10 = −0.34, A(lin)
10 = −0.53, and A(lin)

10 = −0.79
are clearly distinguishable and relatively easy to observe in
modern experiments.

B. Magnetic-field dependence

In the previous section we showed that the orientation of
the 5s 2S1/2 ground state of the target atom is very sensitive
to the weight and relative phase of the plane-wave admixture
to the dominant twisted mode. We argue, therefore, that mea-
surements of the atomic orientation can be used to study the
beam composition. In order to make the proposed diagnostic
method even more accessible, it is convenient to introduce one
more physical parameter whose variation would affect A10.
The applied magnetic-field strength B may be such a param-
eter. As we have already mentioned, the atomic quantization
axis is chosen to be along B, which is perpendicular to both
the light propagation and polarization directions.

The magnetic-field dependence of the steady-state sublevel
population of the 5s 2S1/2 state, produced in the course of the
interaction with the y-polarized Bessel-wave + plane-wave
mixture, is shown in Fig. 6. Here, calculations were performed
for fixed weight cpl = 0.1 but different phases φpl. Moreover,
the magnetic-field strength lies in the range 0 � B � 0.5 mT,
so that the Zeeman splitting of the 5p 2P3/2 level is compa-
rable with the natural width of the transition. As seen from
Fig. 6, the orientation parameter is very sensitive to B. In par-
ticular, the orientation of the ground state is most pronounced
for small values of magnetic field and then decreases with
B. For φpl = 90◦, the orientation parameter takes the value
A(lin)

10 ≈ −0.56 at B = 0 but is reduced to A(lin)
10 ≈ −0.11 at

B = 0.5 mT. This behavior agrees with the predictions of per-
turbation theory. Indeed, a formula similar to Eq. (25) can be

FIG. 6. Orientation parameter A(lin)
10 of the 5s 2S1/2 state of Rb as

a function of the magnetic-field strength for fixed weight cpl = 0.1
and different relative phases of the plane-wave component: φpl = 90◦

(solid line), φpl = 45◦ (dashed line), φpl = 22.5◦ (dash-dotted line),
and φpl = 0◦ (dotted line). All other parameters are the same as in
Fig. 3.

derived for a nonvanishing magnetic field, which shows that
A(lin)

10 (B) is monotonically decreasing. This formula is rather
complicated and for brevity will not be shown here.

While Fig. 6 shows A(lin)
10 (B) for different relative phases

φpl, Fig. 7 illustrates how the orientation of the 5s 2S1/2 state
varies with weight cpl. In Fig. 7 we find an ordering of
A(lin)

10 which might seem counterintuitive at first sight. Namely,
while the atomic orientation vanishes in the limit of a pure
Bessel beam, cpl = 0, we obtain A(lin)

10 ≈ 0.1 for cpl = 0.001.
Then the parameter A(lin)

10 reaches a maximum absolute value
when cpl = 0.01 and decreases again for cpl = 0.1. This be-
havior is not surprising since it reflects the cpl dependence
of A(lin)

10 shown in Fig. 4. We also see from Fig. 7 that the
sensitivity of the orientation parameter A(lin)

10 (B) depends on
the weight cpl. For example, while A(lin)

10 varies from −0.56
to −0.11 for cpl = 0.1, it remains almost constant for cpl =
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FIG. 7. Same as Fig. 6, but for fixed phase φpl = 90◦ and dif-
ferent weights of the plane-wave component: cpl = 0.1 (solid line),
cpl = 0.01 (dashed line), cpl = 0.001 (dash-dotted line), and cpl = 0
(dotted line).
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FIG. 8. Same as Fig. 6, but for fixed weight cpl = 0.1, phase
φpl = 90◦, and different sizes of the atomic target: σ = 0 (solid
line), σ = 20 nm (dashed line), σ = 50 nm (dash-dotted line), and
σ = 100 nm (dotted line).

0.001. Such B dependence can naturally be used in experi-
ments to analyze the weight of a plane-wave admixture.

C. Delocalized atom

All calculations above were carried out for an atom per-
fectly localized in the beam center at b = 0. Such a perfect
localization is, however, unrealistic experimentally since laser
jittering and thermal distribution of trapped atoms cause un-
certainty in the determination of the impact parameter b. To
take into account such delocalization, we assume that the
probability to find an atom at a distance b from the beam
center is given by

f (b) = 1

2πσ 2
e− b2

2σ2 , (27)

with σ being the width [28,29]. By using f (b), one can calcu-
late the average sublevel population

ρMg
(t ) =

∫
f (b) ρMg (t ) d2b (28)

and the average orientation parameter A10 = [ρ+1/2(t ) −
ρ−1/2(t )]/[ρ+1/2(t ) + ρ−1/2(t )]. In the past this semiclassical
approach was successfully employed to describe the excita-
tion of a trapped ion by twisted radiation [17].

The average effective orientation parameter A(lin)
10 is dis-

played in Fig. 8 as a function of B for the mixture coefficient
cpl = 0.1 and phase φpl = 90◦. In order to illustrate the atom
delocalization effect, calculations were performed for σ =
20 nm, σ = 50 nm, and σ = 100 nm and compared with the
idealized case of σ = 0. As seen from Fig. 8, the delocaliza-
tion of the target atom has a minor effect on the orientation
parameter A(lin)

10 . This indicates that the proposed method for
diagnostics of twisted light beams can be realized under ex-
perimental conditions.

D. Light polarization effects

So far we have considered the superposition (9) in which
both the Bessel- and plane-wave components are linearly

FIG. 9. Same as Fig. 6, but for the superposition (9) of the
radially polarized Bessel beam and y-polarized plane wave. Re-
sults are shown for fixed weight cpl = 0.1 and different phases of
the plane-wave component: φpl = 0◦ (solid line), φpl = 45◦ (dashed
line), φpl = 67.5◦ (dash-dotted line), and φpl = 90◦ (dotted line).

polarized in the same direction. The theory developed in the
present work, however, can be naturally extended to describe
other polarization scenarios. For example, in the recent work
of Lange et al. [17] the admixture of a linearly polarized plane
wave to a radially polarized beam was suspected. In order to
investigate this case, we performed detailed calculations of the
orientation parameter A(rad)

10 of the 5s 2S1/2 state for various
values of the weight cpl and phase φpl. Like before, we found
that A(rad)

10 vanishes for the cases of pure Bessel and plane
waves but reaches significant values for their mixture. Figure 9
shows the magnetic-field dependence of A(rad)

10 calculated for
cpl = 0.1 and several relative phases φpl. As seen Fig. 9, the
B dependence of A(rad)

10 qualitatively resembles what has been
observed for the linearly polarized Bessel beam (see Fig. 6).
The atomic orientation parameter A(rad)

10 shows the opposite
dependence on φpl compared to A(lin)

10 , as A(rad)
10 vanishes at

φpl = 90◦ and reaches its maximum absolute values at φpl =
0◦. For zero magnetic field, B = 0, this behavior is again
confirmed by the expression

A(rad)
10 = −

5cpl

√
1 − c2

pl sin(θk ) cos(φpl )

3c2
pl + 3

(
1 − c2

pl

)
sin2(θk )

, (29)

derived from second-order perturbation theory.
While Fig. 9 shows the φpl dependence of the orientation

parameter A(rad)
10 (B), Fig. 10 displays the dependence on the

weight cpl. Like in the case of linear polarization, we observe
that the variation of A(rad)

10 with magnetic-field strength is
again very sensitive to the plane-wave admixture.

In contrast to linearly and radially polarized Bessel beams,
the proposed method does not allow us to identify the ad-
mixture of a plane wave to an azimuthally polarized beam.
Our theoretical analysis has shown that A(az)

10 vanishes for any
combination of cpl and φpl if the atom is perfectly localized
at b = 0. This is consistent with the analysis of the beam-
intensity profiles and second-order perturbation calculations.
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FIG. 10. Same as Fig. 7, but for the superposition (9) of the radi-
ally polarized Bessel beam and y-polarized plane wave. Calculations
were performed for fixed phase φpl = 0◦ and different weights of
the plane-wave component: cpl = 0.1 (solid line), cpl = 0.01 (dashed
line), cpl = 0.001 (dash-dotted line), and cpl = 0 (dotted line).

However, this insensitivity is partially removed for the delo-
calized atom, as will be shown below.

Figure 11 shows the average orientation parameters A10

for linearly, radially, and azimuthally polarized Bessel beams
contaminated with a linearly polarized plane wave. Calcula-
tions were done for weight cpl = 0.1, phase φpl = 45◦, and
target size σ = 50 nm. As seen from Fig. 11, A10 is very sen-
sitive to both the polarization of light and the magnetic field.
For the cases of linearly and radially polarized Bessel beams,

the orientation parameter lies in the range −0.41 � A(lin)
10 �

−0.07 and −0.66 � A(rad)
10 � −0.15, respectively, while for

the azimuthally polarized beam A(az)
10 changes slightly from 0

to −0.02 as B increases.
In the present work, we have mainly focused on the

scenario where the plane-wave contamination is linearly
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FIG. 11. Same as Fig. 6, but for fixed target size σ = 50 nm
and different compositions of radiation with cpl = 0.1 and φpl = 45◦:
linearly y-polarized Bessel wave + linearly y-polarized plane wave
(solid line), radially polarized Bessel wave + linearly y-polarized
plane wave (dashed line), and azimuthally polarized Bessel wave +
linearly y-polarized plane wave (dash-dotted line).

polarized along the y axis. This choice was motivated by the
conditions of a recent experiment performed by Lange et al.
[17]. As mentioned above, however, our theoretical approach
is general and can be used for any admixture mode. For the
sake of brevity, we will not discuss the results in detail here
and just mention two important findings. Namely, in the case
of y-polarized Bessel and x-polarized plane waves, no atomic
orientation occurs for any weight and phase of the mixture.
In contrast, when the linearly polarized Bessel mode is con-
taminated by a circularly polarized plane wave, the atomic
orientation vanishes at φpl = 90◦ and reaches its maximum
absolute values at φpl = 0◦. Again, both results agree with
the intensity profile analysis and second-order perturbation
calculations.

IV. SUMMARY AND OUTLOOK

In summary, we performed a theoretical analysis of the
excitation of a single target atom by the superposition of
twisted and plane waves. Special attention was paid to the
magnetic sublevel population of the atomic ground state and
to the question of how this population is affected by the weight
and relative phase of the plane-wave admixture. In order to ex-
plore this sensitivity, we used a time-dependent density-matrix
method based on the Liouville–von Neumann equation, from
which we obtained the steady-state solution.

While the formalism developed here can be applied
to any atom, in the present study we considered the
5s 2S1/2 -5p 2P3/2 E1 transition in Rb induced by a superpo-
sition of twisted and plane waves. Based on the results of
a recent trapped-ion experiment [17], we assumed that the
plane-wave component is linearly polarized, while the twisted
component can be linearly, radially, or azimuthally polarized.
Detailed calculations demonstrated that the plane-wave ad-
mixture to twisted light can lead to significant orientation of
the 5s 2S1/2 ground state, which is controlled by the external
magnetic field. Furthermore, it was argued that the predicted
high sensitivity of the target orientation holds under experi-
mental conditions in which the atom is imprecisely localized
with respect to the beam center.

Following our theoretical results, we propose that anal-
ysis of the atomic ground-state orientation can serve as a
valuable tool for diagnostics of contaminated twisted light.
It was demonstrated that the proposed method can be ef-
fective for detecting small admixtures, thus complementing
traditional diagnostic approaches based on intensity profile
analysis. An experiment to test this method is currently under
development.
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