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We investigate, by means of the scattering approach, the Casimir-Polder interaction between a neutral
anisotropic polarizable particle and a corrugated surface made of a realistic material. By focusing on the lateral
force (arising from the presence of corrugation on the surface), we investigate the conditions for the particle to
be attracted to the nearest corrugation peak or valley, or to an intermediate point between a peak and a valley,
with such behaviors called peak, valley, and intermediate regimes, respectively. Such regimes of the lateral force
were recently predicted in the literature, but in the context of the van der Waals interaction and considering the
surface made of some ideal material (a perfectly conducting or a nondispersive dielectric). Here, we investigate
how the occurrence of the mentioned regimes is affected by the consideration of realistic dielectric properties
for the surface and also of the retardation in the interaction. In this context, we show that the consideration
of a dispersive surface, when compared to the mentioned idealized materials, can amplify the occurrence of the
valley and intermediate regimes. Moreover, regarding the consideration of retardation, we show that it has a small
influence on the occurrence of the valley regime, but, for the intermediate ones, can either amplify or inhibit them.
Such investigation provides a more precise description of the interaction between an anisotropic particle and a
corrugated surface, giving a better understanding of the nontrivial aspects of the lateral Casimir-Polder force.
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I. INTRODUCTION

The Casimir-Polder (CP) interaction between a neutral
polarizable particle and a surface is a quantum phenomenon
that arises due to the quantum fluctuations of the electro-
magnetic field in vacuum [1,2]. In recent years, it has been
shown that such interaction could present nontrivial behaviors
when considering anisotropic polarizable particles [3–16]. In
Ref. [12], specifically, the behavior of the lateral van der
Waals (vdW) force acting on an anisotropic particle due to
the presence of corrugations on the surface was investigated,
and the existence of regimes of this force was discussed. Such
regimes are characterized by the possibility of the particle to
be attracted towards the nearest corrugation peak or valley,
or an intermediate point between a peak and a valley, with
such behaviors called peak, valley, and intermediate regimes,
respectively [12]. In Ref. [13], it was investigated how these
regimes are affected by the consideration of dielectric media,
but considering only nondispersive ones, since the focus was
on obtaining only a first estimate about the behavior of the
regimes in the presence of dielectrics.

The investigations done in Refs. [12,13] are very useful to
obtain preliminary insights about the mentioned regimes. On
the other hand, to obtain more precise results which can be
compared with experimental data, it is essential to consider
retardation effects and real material properties of the surface.
Thus, in the present paper, we investigate the CP interaction
between an anisotropic polarizable particle and a dielectric
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corrugated surface made of realistic materials. Following the
discussion made in Ref. [17], we use the scattering approach,
at zero temperature, to calculate the CP energy for this system.
In this way, we generalize a formula found in Ref. [17] in such
a way that we include the case of an anisotropic electrically
polarizable particle, and study the nontrivial regimes of the
lateral force discussed in Refs. [12,13] in a more general
context, showing how they are affected by the consideration
of a surface described by a frequency-dependent electric per-
mittivity, as well as retardation effects on the interaction.

The paper is organized as follows. In Sec. II, we develop
the scattering approach to describe the interaction between
an anisotropic particle and a corrugated surface, and explore
such interaction in the vdW and CP regimes. In Sec. III,
we apply the obtained formulas to the case of a sinusoidal
corrugated surface. In Sec. IV, we discuss some implications
of our results. In Sec. V, we present our final comments.

II. INTERACTION ENERGY FOR AN ANISOTROPIC
POLARIZABLE PARTICLE AND A CORRUGATED

SURFACE

Let us start considering a neutral anisotropic polarizable
particle (here we consider only electrically polarizable ones)
in vacuum situated at r0 = r0|| + z0ẑ (with r0|| = x0x̂ + y0ŷ),
and interacting with a corrugated surface, as shown in Fig. 1.
The corrugation profile of the surface is described by the
function h(x, y) [z0 > h(x, y)], which defines a suitable mod-
ification of a reference plane at z = 0.

By using the scattering approach, in Ref. [17] the authors
derived a zero-temperature scattering formula to compute the
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FIG. 1. Illustration of an anisotropic polarizable particle (repre-
sented by an ellipsoid), located at r0 = x0x̂ + y0ŷ + z0ẑ, interacting
with a general corrugated surface, whose corrugation profile is de-
scribed by z = h(x, y) [z0 > h(x, y)].

interaction between an isotropic particle and a corrugated sur-
face. Here, we take as basis such derivation, but considering
an anisotropic particle interacting with the corrugated surface.
This allows us to investigate the nontrivial regimes of the lat-
eral force discussed in Refs. [12,13] in a more general context,
considering realistic dispersive materials to describe the sur-
face, as well as arbitrary particle-surface distances (of course,
obeying the restrictions of the discussed case, as shown later).

As in Ref. [17], it is convenient to derive the scattering
formula to the problem discussed here using the plane-wave
basis |k, p〉, where k represents the lateral wave vector of
a fluctuating electromagnetic field with polarization p (TE
for transverse electric and TM for transverse magnetic). As-
suming that z0 is much larger than the dimensions of the
particle, the zero-temperature scattering formula to compute
the Casimir-Polder interaction is given by [17]

U (r0) = −h̄
∫ ∞

0

dξ

2π

∫
d2k

(2π )2

∫
d2k′

(2π )2 e−(κ+κ ′ )z0

×
∑
p,p′

〈k, p|RS|k′, p′〉〈k′, p′|RP|k, p〉, (1)

where κ =
√

ξ 2/c2 + |k|2 is the imaginary z component of the
wave vector associated with the imaginary frequency ξ . The
factor exp[−(κ + κ ′)z0] represents the round-trip propagation
of the field between the surface and the particle. Finally,
RP and RS are the reflection operators for the particle and
the surface, respectively (we remark that these operators are
frequency dependent, but to avoid an overload of the notation
we are omitting it).

A. The consideration of an anisotropic particle

The reflection operator for an anisotropic particle can be
calculated following the same steps discussed in Ref. [17] in
the context of an isotropic one. The consideration of a ground-
state anisotropic particle consists in describing it as an induced

electric dipole with a dipole moment given by

d(ω) = α(ω) · E(r0, ω), (2)

where α(ω) is the dynamic polarizability tensor of the parti-
cle written in terms of real frequencies ω (later we consider
imaginary frequencies by making ω → iξ ). We remark that
the polarizability of an anisotropic particle is described by a
symmetric tensor of rank 2, i.e., its components αi j satisfy
the symmetry relation αi j = α ji. For an isotropic particle, this
tensor is given by α = αI (with I being the identity matrix)
and thus its polarizability can be simply described by the
scalar quantity α. Following the steps discussed in Ref. [17],
but considering Eq. (2), one obtains

〈k′, p′|RP|k, p〉 = − ξ 2

2ε0κ ′c2
ei(k−k′ )·r0||e−(κ+κ ′ )z0

×
∑
m,n

αmn(iξ )[ê−
p′ (k′)]m[ê+

p (k)]n, (3)

where αmn(iξ ) (m, n = x, y, z) are the components of the
polarizability tensor α, and [ê−

p′ (k′)]m and [ê+
p (k)]n are the

components of the unit polarization vectors for the outgoing
and the incoming fields, respectively. The ± notation repre-
sents the propagation direction of the field along the z axis,
and thus the superscript + refers to the incoming field on
the particle, and − refers to the outgoing field. For a field
propagating with complete wave vector K± = k ± kzẑ, with
kz = sgn(ω)

√
ω2/c2 − |k|2 (when we make ω → iξ , we get

kz → iκ), the unit polarization vectors corresponding to the
TE and TM polarizations are defined as

ê+
TE(k) = ê−

TE(k) = ẑ × k̂, (4)

ê±
TM(k) = ê±

TE(k) × K̂±. (5)

In addition, the product [ê−
p′ (k′)]m[ê+

p (k)]n can be viewed as
components of a 3 × 3 matrix, so that we have one matrix for
each combination of field polarizations (p′ and p). Thus, using
Eqs. (4) and (5), one obtains that

[ê−
TE(k′)]m[ê+

TE(k)]n = 1

|k′||k|

⎛
⎜⎝

k′
yky −k′

ykx 0

−k′
xky k′

xkx 0

0 0 0

⎞
⎟⎠, (6)

[ê−
TE(k′)]m[ê+

TM(k)]n

= 1

|k′||k|
c

ξ

⎛
⎜⎝

−k′
yκkx −k′

yκky −ik′
y|k|2

k′
xκkx k′

xκky ik′
x|k|2

0 0 0

⎞
⎟⎠, (7)

[ê−
TM(k′)]m[ê+

TE(k)]n = 1

|k′||k|
c

ξ

⎛
⎜⎝

κ ′k′
xky −κ ′k′

xkx 0

κ ′k′
yky −κ ′k′

ykx 0

−iky|k′|2 ikx|k′|2 0

⎞
⎟⎠,

(8)

[ê−
TM(k′)]m[ê+

TM(k)]n

= 1

|k′||k|
c2

ξ 2

⎛
⎜⎝

−κ ′k′
xκkx −κ ′k′

xκky −iκ ′k′
x|k|2

−κ ′k′
yκkx −κ ′k′

yκky −iκ ′k′
y|k|2

iκkx|k′|2 iκky|k′|2 −|k′|2|k|2

⎞
⎟⎠.

(9)
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Now that we found the reflection operator for an
anisotropic polarizable particle, the interaction energy be-
tween it and a general surface is computed by substituting
Eq. (3) into Eq. (1), but taking z0 = 0 in the former, because
the propagation of the field along the z axis is already taken
into account in Eq. (1), described by the factor exp[−(κ +
κ ′)z0]. Thus, when performing this, one obtains

U (r0) = h̄

ε0c2

∫ ∞

0

dξ

2π
ξ 2

∑
m,n

αmn(iξ )

×
∫

d2k

(2π )2

∫
d2k′

(2π )2

e−(κ+κ ′ )z0

2κ ′ ei(k−k′ )·r0||

×
∑
p,p′

〈k, p|RS|k′, p′〉[ê−
p′ (k′)]m[ê+

p (k)]n. (10)

Note that, when we consider an isotropic particle [αmn(iξ ) =
α(iξ )δmn], we recover the expression for U (r0) obtained in
Ref. [17] [Eq. (11) of this reference].

B. The consideration of a corrugated surface

As discussed in Ref. [17], the calculation of the reflec-
tion operator for a corrugated surface is a highly nontrivial
problem. One way to do this is by writing this operator as
a perturbative expansion in powers of h(x, y). Such calcu-
lation was already done in Refs. [18,19] considering that
the corrugation amplitude [max|h(x, y)| = a] is the smallest
length scale in the problem. The solution obtained from this
calculation was used in Ref. [17] up to first perturbative or-
der. Following Ref. [17], let us also consider the reflection
operator for a corrugated surface as a perturbative expansion
in powers of h. Assuming that a � z0, we can consider this
perturbative expansion up to the first order, i.e.,

RS ≈ R(0)
S + R(1)

S , (11)

where R(0)
S is the unperturbed solution which describes the

specular reflection of the field on a plane surface, whereas
R(1)

S is the first-order correction to R(0)
S due to the surface

corrugation. In this context, the Casimir-Polder interaction
can be written as the sum

U (r0) ≈ U (0)(z0) + U (1)(r0). (12)

Note that the dependence of U (1) on the variables x0 and y0

gives rise to a lateral force (a force parallel to the reference
plane z = 0) that acts on the particle. Since we are interested
only in the behavior of this lateral force, we focus our attention
only on U (1), which involves R(1)

S .
The matrix elements of the first-order reflection operator

R(1)
S can be written as [17,19]

〈k, p|R(1)
S |k′, p′〉 = R(1)

pp′ (k, k′)H (k − k′), (13)

where H (k) is the Fourier transform of h(x, y), and the com-
ponents of the matrix R(1)

pp′ are given by [17,19]

R(1)
TE,TE(k, k′) = 2κ ′ κ − κt

κ ′ + κ ′
t
C, (14)

R(1)
TE,TM(k, k′) = 2κ ′ c

ξ

κ ′
t (κ − κt )

ε(iξ )κ ′ + κ ′
t
S, (15)

R(1)
TM,TE(k, k′) = 2κ ′ ξ/c

(κ ′ + κ ′
t )

[ε(iξ )κ − κt ]κt S
ξ 2

c2 − κ2[ε(iξ ) + 1]
, (16)

R(1)
TM,TM(k, k′) = −2κ ′ ε(iξ )κ − κt

ε(iξ )κ ′ + κ ′
t

[ε(iξ )|k||k′| + κtκ
′
tC]

ξ 2

c2 − κ2[ε(iξ ) + 1]
,

(17)

with κt =
√

ε(iξ )ξ 2/c2 + |k|2 and

S = sin(φ − φ′) = kyk′
x − kxk′

y

|k||k′| , (18)

C = cos(φ − φ′) = kxk′
x + kyk′

y

|k||k′| . (19)

Thus, substituting Eq. (13) into Eq. (10), we can write U (1) in
a similar way to Ref. [17], namely,

U (1)(r0) =
∫

d2k

(2π )2 eik·r0||g(k, z0)H (k), (20)

where g(k, z0) is the response function given by

g(k, z0) = h̄

ε0c2

∫ ∞

0

dξ

2π
ξ 2

∑
m,n

αmn(iξ )
∫

d2k′

(2π )2
amn

k′,k′−k,

(21)

with

amn
k′,k′′ = e−(κ ′+κ ′′ )z0

2κ ′′
∑
p′,p′′

R(1)
p′,p′′ (k′, k′′)[ê−

p′′ (k′′)]m[ê+
p′ (k′)]n.

(22)

We remark that these results are a generalization of those
found in Refs. [12,13] since they take into account the realistic
properties for the surface and retardation effects in the inter-
action. Besides this, they also generalize Eqs. (16) and (17)
of Ref. [17] by the consideration of an anisotropic electrically
polarizable particle. Using these results, we later investigate
the behavior of U (1) to obtain information about the lateral
force acting on the particle. But before this, let us discuss these
results within the vdW and CP regimes.

C. Van der Waals regime

The vdW regime is the limiting case where retardation
effects can be neglected, which occurs when z0 � λP, λS ,
with λP and λS being typical wavelengths that characterize the
optical responses of the particle and the surface, respectively.
In this regime, it is assumed that the particle-surface interac-
tion is instantaneous, which means that the limit c → ∞ can
be considered. Thus, by performing c → ∞ in Eqs. (20)–(22),
one obtains

U (1)
vdW(r0) =

∫
d2k

(2π )2 eik·r0||gvdW(k, z0)H (k), (23)

where

gvdW(k, z0) = h̄

ε0

∑
m,n

∫ ∞

0

dξ

2π
αmn(iξ )

∫
d2k′

(2π )2
e−(|k′|+|k′′|)z0

× [ε(iξ ) − 1]

[ε(iξ ) + 1]2

[
ε(iξ ) + k′

xk′′
x + k′

yk′′
y

|k′||k′′|

]
Gmn,

(24)
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with k′′ = k′ − k, and

Gmn =

⎛
⎜⎜⎝

−k′′
x k′

x −k′′
x k′

y −ik′′
x |k′|

−k′′
y k′

x −k′′
y k′

y −ik′′
y |k′|

ik′
x|k′′| ik′

y|k′′| −|k′′||k′|

⎞
⎟⎟⎠. (25)

Such result provides the vdW interaction between an
anisotropic polarizable particle and a corrugated surface made
of a real dispersive material.

When considering a nondispersive surface, one has ε(iξ ) =
ε, so that the integration over ξ has to be performed only on
the polarizability tensor components αmn(iξ ). One can write
these components as [20]

αmn(iξ ) = 2

h̄

∑
l 	=k

ωlk〈k|d̂m|l〉〈l|d̂n|k〉
ω2

lk + ξ 2
, (26)

where d̂i(i = x, y, z) are the components of the dipole moment
operator and ωlk is the frequency of a typical transition be-
tween the states l and k of the particle. Thus, by performing
the ξ integration on (26), one obtains∫ ∞

0
dξαmn(iξ ) = π

h̄
〈d̂md̂n〉. (27)

By substituting this result into Eq. (24), and performing the
integrals over k′, Eqs. (23)–(25) recover the result for U (1)

vdW
obtained in Ref. [13] [Eq. (50) of this reference with ε2 = 1].
In addition, when considering a perfectly conducting surface
[ε(iξ ) → ∞], Eqs. (23)–(25) recover the result for U (1)

vdW ob-
tained in Ref. [12] [Eq. (14) of this reference].

D. Casimir-Polder regime

The CP regime is the limiting case where retardation
effects must be taken into account, which occurs when
z0 
 λP, λS . In this regime, U (1)

CP is given by Eqs. (20)–(22)
with αmn(iξ ) → αmn(0) and ε(iξ ) → ε(0). When considering
metallic surfaces, one can also perform the limit ε(0) → ∞
in Eqs. (20)–(22), which acts only on the components of the
matrix R(1)

pp′ [Eqs. (14)–(17)] leading to [21]

lim
ε→∞ R(1)

TE,TE(k, k′) = −2κ ′C, (28)

lim
ε→∞ R(1)

TE,TM(k, k′) = −2
ξ

c
S, (29)

lim
ε→∞ R(1)

TM,TE(k, k′) = −2
ξ

c

κ ′

κ
S, (30)

lim
ε→∞ R(1)

TM,TM(k, k′) = 2

κ

(
|k||k′| + ξ 2

c2
C

)
, (31)

with S and C given by Eqs. (18) and (19).

III. SINUSOIDAL CORRUGATION

To investigate the behavior of U (1), it is convenient to
choose a corrugation profile for the surface. Let us investigate
the case of a sinusoidal corrugated surface with amplitude a
and corrugation period λc, which is described by h(x, y) =
a cos(kcx), where kc = 2π/λc and a � z0. For this case,
substituting the Fourier transform of h into Eq. (20), and

performing the k integration, one obtains

U (1)(x0, z0) = a

2
[eikcx0 g(k̃, z0) + e−ikcx0 g(−k̃, z0)], (32)

where k̃ = kcx̂ and g is given by Eqs. (21) and (22). By
carefully inspecting the k′ integration

∫
d2k′amn

k′,k′+k̃
within

g(−k̃, z0), we find that

∫
d2k′amn

k′,k′+k̃ =
∫

d2k′

⎛
⎜⎜⎝

axx
k′,k′−k̃

0 −axz
k′,k′−k̃

0 ayy
k′,k′−k̃

0

−axz
k′,k′−k̃

0 azz
k′,k′−k̃

⎞
⎟⎟⎠,

(33)

so that U (1)(x0, z0) is written as

U (1)(x0, z0) = ah̄

8ε0π3

∫ ∞

0
dξ

∫
d2k′ ξ

2

c2

×
[ ∑

m

αmm(iξ )amm
k′,k′−k̃ cos(kcx0)

+ 2iαxz(iξ )axz
k′,k′−k̃

sin(kcx0)

]
. (34)

By defining

Vxx(kc, z0) =
∫ ∞

0
dξ

∫
d2k′ ξ

2

c2
αxx(iξ )axx

k′,k′−k̃, (35)

Vyy(kc, z0) =
∫ ∞

0
dξ

∫
d2k′ ξ

2

c2
αyy(iξ )ayy

k′,k′−k̃
, (36)

Vzz(kc, z0) =
∫ ∞

0
dξ

∫
d2k′ ξ

2

c2
αzz(iξ )azz

k′,k′−k̃
, (37)

Vxz(kc, z0) = 2i
∫ ∞

0
dξ

∫
d2k′ ξ

2

c2
αxz(iξ )axz

k′,k′−k̃
, (38)

we can write Eq. (34) as

U (1)(x0, z0) = ah̄

8π3ε0
A(kc, z0) cos[kcx0 − δ(kc, z0)], (39)

where

A(kc, z0) =
√
V2

Sum + V2
xz, (40)

with VSum = Vxx + Vyy + Vzz, and δ(kc, z0) is a nontrivial
phase function defined by

δ(kc, z0) = arctan

( Vxz

VSum

)
. (41)

From Eq. (39), considering the behavior of U (1) with respect
to x0, one can see that the stable equilibrium points of U (1)

can be over the corrugation peaks (δ = π ), valleys (δ = 0), or
intermediate points between a peak and a valley (δ 	= 0, π ).
Such possibilities were first investigated in Refs. [12,13] and
were called peak, valley, and intermediate regimes, respec-
tively (see Fig. 2). In both Refs. [12,13], these effects were
studied within the vdW regime of the interaction, but the
corrugated surface was considered as a perfect conductor in
Ref. [12], while it was considered as a nondispersive sur-
face in Ref. [13]. Thus, Eqs. (39)–(41) generalize the results
obtained in these references by considering both realistic
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FIG. 2. Illustration of a neutral anisotropic particle (represented
by an ellipsoid) interacting with a corrugated surface (solid lines).
The stable equilibrium points (indicated by the circles) of U (1)(x0, z0)
(dashed lines), with respect to x0, can be over the corrugation peaks
[peak regime, (i)], valleys [valley regime, (ii)], or intermediate points
between a peak and a valley [intermediate regime, (iii)].

material properties for the surface and retardation effects in
the interaction, enabling us to investigate their effects on the
occurrence of the regimes of the lateral force.

It is worth to mentioning that Eqs. (20)–(22) can also be
applied to nonsmooth corrugation profiles, such as rectangular
or trapezoidal corrugations (see, for instance, Refs. [21,22]).
For this, we have to write the surface profile h(x, y) as a
Fourier series, i.e.,

h(x, y) = a

[
a0

2
+

∞∑
n=1

an cos (knx) +
∞∑

n=1

bn sin (knx)

]
,

(42)

where kn = 2πn/λc, and a0, an, and bn are the Fourier coeffi-
cients. For simplicity, one can also assume h(x, y) to be even,
resulting in

h(x, y) = a

[
a0

2
+

∞∑
n=1

an cos (knx)

]
. (43)

In this way, when substituting the Fourier transform of this
equation into Eq. (20), one notes that the calculations are very
similar to those described in this section.

A. Van der Waals regime of Eq. (39)

For our purposes, it is interesting to calculate Eq. (39) in
the vdW regime. When performing the limit c → ∞ on this

equation, one can see that it acts only on the functions Vmn,
enabling us to calculate the integrals over k′, obtaining

VvdW
xx = − 3π

64z4
A

∫ ∞

0
dξαxx(iξ )

[ε(iξ ) − 1]

[ε(iξ ) + 1]2

× [
ε(iξ )Kcond

xx (kcz0) + Kdiel
xx (kcz0)

]
, (44)

VvdW
yy = − 3π

64z4
A

∫ ∞

0
dξαyy(iξ )

[ε(iξ ) − 1]

[ε(iξ ) + 1]2

× [
ε(iξ )Kcond

yy (kcz0) + Kdiel
yy (kcz0)

]
, (45)

VvdW
zz = − 3π

64z4
A

∫ ∞

0
dξαzz(iξ )

[ε(iξ ) − 1]

[ε(iξ ) + 1]2

× [
ε(iξ )Kcond

zz (kcz0) + Kdiel
zz (kcz0)

]
, (46)

VvdW
xz = 3π

32z4
A

∫ ∞

0
dξαxz(iξ )

[ε(iξ ) − 1]

[ε(iξ ) + 1]2

× [
ε(iξ )Kcond

xz (kcz0) + Kdiel
xz (kcz0)

]
, (47)

where the functions Kcond
mn and Kdiel

mn are given by [13]

Kcond
xx (u) = u3K3(u) − u4K2(u),

Kdiel
xx (u) = [

56
3 u2 + u4

]
K2(u) − 11

3 u3K3(u), (48)

Kcond
yy (u) = u3K3(u),

Kdiel
yy (u) = 8u2K2(u) − u3K3(u), (49)

Kcond
zz (u) = [

16
3 u2 + u4

]
K2(u) + 2

3 u3K3(u),

Kdiel
zz (u) = 2u3K3(u) − u4K2(u), (50)

Kcond
xz (u) = 8

3 u3K2(u) − u4K3(u),

Kdiel
xz (u) = u4K3(u) − 16

3 u3K2(u), (51)

with K2 and K3 being modified Bessel functions of the second
kind. Thus, the vdW interaction between an anisotropic po-
larizable particle and a dispersive sinusoidal surface is given
by Eqs. (39)–(41) with Vmn → VvdW

mn given by Eqs. (44)–(51).
We remark that depending on the models for αmn(iξ ) and ε(iξ )
the ξ integrals in Eqs. (44)–(47) can also be performed. Lastly,
Eqs. (44)–(51) could also be obtained from Eqs. (23)–(25) by
considering in them a sinusoidal corrugation and performing
the k′ integration.

B. Model for αmn(iξ)

Let us describe, for simplicity (but without loss of general-
ity), the anisotropic polarizable particle as a prolate spheroidal
nanoparticle. This particle has a rotational symmetry axis
(named the particle axis), which we consider initially oriented
in the z direction, such that its polarizability tensor is repre-
sented by the matrix

αmn(iξ ) =

⎛
⎜⎝

α⊥(iξ ) 0 0

0 α⊥(iξ ) 0

0 0 α‖(iξ )

⎞
⎟⎠, (52)
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with [9]

α‖(iξ ) = ε0V
εP(iξ ) − 1

1 + [εP(iξ ) − 1]d
, (53)

α⊥(iξ ) = ε0V
εP(iξ ) − 1

1 + 1
2 [εP(iξ ) − 1](1 − d )

, (54)

which are the polarizabilities in the directions parallel and
normal to the particle axis, respectively. In these equations,
V is the spheroid’s volume, εP is the dielectric permittivity
of the material which the nanoparticle is made of, and d is the
depolarizing factor of the spheroid which is written in terms of
the particle aspect ratio r (ratio between its length and width)
as [9]

d = 1

1 − r2
+

r log
(

r+√
r2−1

r−√
r2−1

)
2(r2 − 1)3/2 , (55)

with 0 < d < 1, since r > 0. For a prolate spheroid, one has
r > 1, resulting in 0 < d < 1/3. The limit r → 1, which re-
sults in d → 1/3, corresponds to the case where the particle
is a sphere and its polarizability is isotropic. On the other
hand, in the limit r → ∞, which leads to d → 0, the particle’s
length is much greater than its width (like a needle), and it has
the greatest possible anisotropy in the direction of its sym-
metry axis. For 0 < r < 1, we have an oblate spheroid, and
the limit r → 0 (leading to d → 1) corresponds to the case
where the particle’s width is much greater than its length (like
a flat pancake), and it has the smallest possible anisotropy in
the direction of its symmetry axis. Here, we only consider the
particle as a prolate spheroid (r > 1 or 0 < d < 1/3), but all
the investigations carried out are similar for an oblate particle,
and lead to similar conclusions.

For a generic orientation of the particle, the polarizability
tensor is represented by a nondiagonal matrix and we can
write its components in terms of the spherical angles (θ, φ)
as

αxx = α⊥ + (α‖ − α⊥) sin2 θ cos2 φ, (56)

αyy = α⊥ + (α‖ − α⊥) sin2 θ sin2 φ, (57)

αzz = α⊥ + (α‖ − α⊥) cos2 θ, (58)

αxy = α‖ − α⊥
2

sin 2φ sin2 θ, (59)

αxz = α‖ − α⊥
2

sin 2θ cos φ, (60)

αyz = α‖ − α⊥
2

sin 2θ sin φ. (61)

We remark that the polarizability tensor is a symmetric tensor,
thus one has αyx = αxy, αzx = αxz, and αzy = αyz.

C. Models for ε(iξ) and εP (iξ)

Let us consider our formulas for the case of a gold
nanoparticle interacting with a corrugated gold surface, whose
permittivities are both described by the plasma model as

ε(iξ ) = εP(iξ ) = 1 + ω2
p

ξ 2
, (62)

where ωp is the plasma frequency of the metal. We can also
write the plasma frequency in terms of the plasma wave-
length λp as ωp = 2πc/λp. For gold, we have ωp ≈ 1.385 ×
1016 rad/s, which results in λp ≈ 136 nm. Since both the
nanoparticle and the surface are considered to be made of
gold, the value for λp is the reference to determine if we
are within the vdW or CP regimes, which are obtained when
z0 � λp and z0 
 λp, respectively. In addition, for the chosen
situation, the ξ integrals in Eqs. (44)–(47) can be performed,
which means that we have an analytic expression for the vdW
interaction between a gold spheroidal nanoparticle and a gold
corrugated surface.

IV. DISCUSSIONS

To investigate the behavior of the minimum points of U (1),
one has to study the behavior of the function δ, which depends
on the functions Vmn, as one can see in Eq. (41). Let us start
making some general discussions on the behavior of the func-
tion δ, which are similar to those made in Refs. [12,13]. From
this equation, we can see that the occurrence of intermediate
regimes just requires Vxz 	= 0, which occurs when αxz 	= 0.
For the considered spheroidal particle, this happens when it
is oriented such that sin 2θ cos φ 	= 0 in Eq. (60). When this
is not the case (for instance, when the particle is oriented such
that its axis coincides with x, y, or z), one has αxz = 0 (thus,
Vxz = 0), and we have that the function δ can only assume
the values zero or π , which correspond to valley and peak
regimes, respectively. In addition, we have one or the other
of these regimes depending on the sign of VSum, where we
have the valley regime when it is positive, and the peak regime
when it is negative [see Eq. (41)]. Among the functions Vxx,
Vyy, and Vzz, the only one that changes its sign is Vxx, and
thus it is responsible for the change of sign of VSum. As a
consequence, considering Eqs. (35)–(37), the greater αxx is in
relation to αyy and αzz, the greater can be the occurrence of the
valley regime. In other words, the more anisotropic the parti-
cle is in the direction of the corrugation, the greater can be the
occurrence of the valley regime. Next, we investigate how the
consideration of realistic material properties for the surface
and of retardation in the interaction affects such occurrence.

Let us start considering the particle oriented such that its
axis is parallel to the x axis. In this situation, αmn is de-
scribed by Eqs. (56)–(61) with θ = π/2 and φ = 0, and, as
discussed above, we have the valley regime when VSum > 0,
or the peak regime when VSum < 0. We begin investigating
the effects of the consideration of realistic material properties
for the surface on the occurrence of these regimes in the short
distance limit (vdW regime). For this, in Fig. 3, we consider
Eqs. (44)–(46) and we show the behavior of VSum, in terms of
λc/z0, for the cases in which the corrugated surface is con-
sidered dispersive, nondispersive [ε(iξ ) = ε], and perfectly
conductive [ε(iξ ) → ∞]. In this figure, it can be seen that the
general behavior of VSum is similar for all cases, differing only
numerically (this conclusion was first mentioned in Ref. [12]
through rough estimates). In Fig. 3(i), one notes that when the
surface is considered as a perfect conductor one has the great-
est magnitudes of VSum, since its reflectivity is perfect (for
the nondispersive cases, the surface has transparency and the
mentioned magnitudes decrease, as discussed in Ref. [13]).
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(i)

(ii)

i

i

FIG. 3. Behavior of VSum vs λc/z0 for a gold spheroidal nanopar-
ticle interacting with a gold sinusoidal surface within the vdW regime
[Eqs. (44)–(46)]. The particle is oriented such that its axis is parallel
to the x axis, and αmn is described by Eqs. (56)–(61) with θ = π/2
and φ = 0. The highlighted interval in panel (i) is shown in panel (ii)
in a zoomed in view. In each panel we consider z0 = 30 nm and r =
2, and we show the cases where the surface is considered dispersive
(solid line), perfectly conductive (dashed line), and nondispersive
[dotted line for ε(i8 × 1015) and dot-dashed line for ε(i5 × 1015)].
We remark that we have the valley regime when VSum > 0, and the
peak regime when VSum < 0.

The opposite happens when the surface is dispersive, since in
this case its reflectivity depends on the frequency of the field
fluctuation, decreasing as the frequency increases. Despite
this, VSum can change its sign, as shown in Fig. 3(ii), which
means that a transition between peak and valley regimes can
occur. Moreover, the consideration of realistic material prop-
erties for the surface can amplify the occurrence of the valley
regime, since the mentioned change of sign for the dispersive
case occurs at a greater value of λc/z0 than the other cases [as
shown, for instance, in Fig. 3(ii)]. In other words, although the
consideration of realistic material properties for the surface
weakens the interaction, it can increase the range of λc/z0

values in which the valley regime occurs, contributing to a
greater occurrence of this regime.

It is also interesting to perform the investigations above
in the long distance case. For this, in Fig. 4, we consider
Eqs. (35)–(37) for the particle oriented with its axis parallel
to the x axis, and we show the behavior of VSum, in terms of
λc/z0, for the cases in which the corrugated surface is con-
sidered dispersive, nondispersive, and perfectly conductive.
Similar to the vdW case, in this figure we have that the general
behavior of VSum is similar for all cases, differing only numer-
ically. Moreover, it is known that for long distances from the

i

i

FIG. 4. Behavior of VSum vs λc/z0 for a gold spheroidal nanopar-
ticle interacting with a gold sinusoidal surface computed using
Eqs. (35)–(37). The particle is oriented such that its axis is parallel to
the x axis, and αmn is described by Eqs. (56)–(61) with θ = π/2 and
φ = 0. The highlighted interval in panel (i) is shown in panel (ii) in
a zoomed in view. In each panel we consider z0 = 1 µm and r = 2,
and we show the cases where the surface is considered dispersive
(solid line), perfectly conductive (dashed line), and nondispersive
[dotted line for ε(i8 × 1015) and dot-dashed line for ε(i5 × 1015)].
We remark that we have the valley regime when VSum > 0, and the
peak regime when VSum < 0.

surface the smallest frequencies give the main contribution
to the interaction and, thus, ε(iξ ) can be replaced with its
zero-frequency value in Eqs. (35)–(37). Because of this, the
magnitudes of VSum for a dispersive surface are close to those
for a perfect conductor (thus, they are also greater than those
for a nondispersive surface), as expected, since ε(0) → ∞ for
a metallic surface. Despite this, in the long distance case, we
also have that the consideration of realistic material proper-
ties for the surface can amplify the occurrence of the valley
regime, since VSum changes its sign at a greater value of λc/z0

for the dispersive case than the other cases. Thus, although the
consideration of realistic material properties for the surface
weakens the interaction, it can increase the range of λc/z0

values in which the valley regime occurs for both short and
long distance cases.

The same previous discussions can also be made for the
intermediate regimes, and we obtain the same conclusions.
To illustrate this, let us consider the particle oriented such
that αmn is described by Eqs. (56)–(61) with θ = π/3 and
φ = 0 (its axis is oriented in the xz plane). In this situation,
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i

i

FIG. 5. Behavior of δ vs λc/z0 for a gold spheroidal nanoparticle
interacting with a gold sinusoidal surface within the vdW regime
[Eqs. (44)–(46)]. The particle is oriented such that αmn is described
by Eqs. (56)–(61) with θ = π/3 and φ = 0 (its axis is in the xz
plane). We consider z0 = 30 nm and r = 2, and we show the cases
where the surface is considered dispersive (solid line), perfectly con-
ductive (dashed line), and nondispersive [dotted line for ε(i8 × 1015)
and dot-dashed line for ε(i5 × 1015)].

αxz 	= 0, and we have intermediate regimes. In Fig. 5 we show
the behavior of the function δ [Eq. 41], versus λc/z0, within
the vdW regime for the cases in which the surface is con-
sidered dispersive, nondispersive, and perfectly conductive.
Remembering that δ = 0, π means valley and peak regimes,
respectively, it is noted that when the surface is considered
dispersive, the minimum points of U (1) tend to be further away
from the corrugation peaks than in the other cases. Thus, the
consideration of realistic material properties for the surface
also can amplify the occurrence of intermediate regimes. Al-
though we made this analysis within the vdW regime, we
remark that the same conclusions are obtained for the long
distance case.

The investigation of the effect of retardation in the dis-
cussed interaction can be made by considering the particle
at a long distance from the surface and comparing the re-
sults obtained from Eqs. (35)–(38) with those obtained from
Eqs. (44)–(47). In this way, let us consider, again, the particle
oriented such that its axis is parallel to the x axis, and αmn is
described by Eqs. (56)–(61) with θ = π/2 and φ = 0. As pre-
viously discussed, in this situation we have the valley regime
when VSum > 0, or the peak regime when VSum < 0. In Fig. 6,
we consider two values for z0 outside the vdW regime and we
show the behaviors of VSum obtained from Eqs. (35)–(37) and
from Eqs. (44)–(46). Note that, as expected, the consideration
of retardation weakens the interaction. On the other hand, it
has a small effect on the occurrence of the valley regime,
since VSum changes its sign by a slightly smaller value of
λc/z0 in both cases shown in Fig. 6. This means that, when
the goal is to estimate the value of λc/z0 in which we have
a transition between peak and valley regimes, the formulas
within the vdW regime [i.e., Eqs. (44)–(46)] provide good
approximate results. Otherwise, when the goal is in obtaining

(a)

(b)

µm

µm

FIG. 6. Behavior of VSum vs λc/z0 for a gold spheroidal nanopar-
ticle interacting with a gold sinusoidal surface. In both figures, the
solid line shows this behavior disregarding retardation effects, i.e.,
using Eqs. (44)–(46), while the dashed line shows it considering
these effects by using Eqs. (35)–(37). In addition, we consider a
particle with r = 2 and oriented such that its axis is parallel to the
x axis, so that αmn is described by Eqs. (56)–(61) with θ = π/2 and
φ = 0. (a) z0 = 0.5 µm. (b) z0 = 1.0 µm. We remark that we have the
valley regime when VSum > 0, and the peak regime when VSum < 0.

precise values of the magnitudes of the energy, Eqs. (35)–(37)
must be used.

We also investigate the effects of retardation on the occur-
rence of the intermediate regimes. This is shown in Fig. 7,
where we consider the particle at a distance from the surface
outside the vdW regime and we show the behaviors of δ

obtained from Eqs. (35)–(38) and from Eqs. (44)–(47). We
also consider the particle oriented such that αmn is described
by Eqs. (56)–(61) with θ = π/3 and φ = 0 (its axis is oriented
in the xz plane). Remembering that δ = 0, π means valley
and peak regimes, respectively, it is noted in Fig. 7 that the
consideration of retardation can amplify the occurrence of the
intermediate regimes up to a certain value of λc/z0, above
which it begins to inhibit the effect. This is reinforced in
the inset of Fig. 7, where we show the ratio between the
results calculated considering retardation effects and those
disregarding them.
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FIG. 7. Behavior of δ vs λc/z0 for a gold spheroidal nanoparticle
interacting with a gold sinusoidal surface. The solid line shows this
behavior disregarding retardation effects, i.e., using Eqs. (44)–(46),
while the dashed one shows it considering these effects by using
Eqs. (35)–(37). In addition, we consider the particle at z0 = 1.0 µm,
with r = 2, and oriented such that αmn is described by Eqs. (56)–
(61) with θ = π/3 and φ = 0 (its axis is in the xz axis). The inset
shows the ratio between the results calculated considering retardation
effects and those disregarding them.

V. FINAL REMARKS

By means of the scattering approach, we obtained the
Casimir-Polder interaction between a neutral anisotropic po-
larizable particle and a corrugated surface. Focusing on the
lateral force, which arises due to the presence of corruga-
tion on the surface, we investigated how the occurrence of
the peak, valley, and intermediate regimes is affected by the
consideration of realistic dielectric properties for the surface
and of retardation on the interaction. In this context, the dis-
cussions made here go beyond those made in Refs. [12,13],
which considered idealized situations only in the vdW regime
and also only obtained preliminary insights about the behavior
of the mentioned effects.

Our main results are given by Eqs. (20)–(22), the ap-
plication of which to a sinusoidal corrugation results in
Eqs. (39)–(41), with the functions Vmn given by Eqs. (35)–
(38). These equations, which take into account realistic
properties for the surface and retardation effects in the interac-
tion, not only generalize those found in Refs. [12,13], but also
generalize the corresponding ones found in Ref. [17], since
we consider an anisotropic electrically polarizable particle.
Moreover, we showed that the consideration of realistic ma-
terial properties for the surface, when compared to idealized
materials (perfectly conductive or nondispersive), amplifies
the occurrence of the valley and intermediate regimes. Specif-
ically, it increases the range of the values of λc/z0 in which the
valley regime occurs, or, when we have intermediate regimes,
it shifts the minimum points of U (1) further away from the
corrugation peaks (see Figs. 3–5). In addition, we also showed
that the effect of retardation on the occurrence of the valley
regime is small (see Fig. 6), indicating that our vdW formulas
[Eqs. (44)–(47)] provide good approximate results when the
interest is in estimating the value of λc/z0 in which we have a
transition between peak and valley regimes. On the occurrence
of intermediate regimes, however, the consideration of retar-
dation can amplify or inhibit it, which depends on the value of
λc/z0 (see Fig. 7). The results obtained here, which consider
more realistic aspects for the particle-surface interaction, pro-
vide a more precise description of the interaction between an
anisotropic particle and a corrugated surface, giving a better
understanding of the nontrivial aspects of the lateral Casimir-
Polder force.
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