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Integrals for relativistic nonadiabatic energies of H2 in an exponential basis
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Accurate predictions for hydrogen molecular levels require the treatment of electrons and nuclei on equal
footing. While nonrelativistic theory has been effectively formulated this way, calculation of relativistic and
quantum electrodynamic effects using an exponential basis with explicit correlations that ensure well-controlled
numerical precision is much more challenging. In this work, we derive a complete set of integrals for the
relativistic correction and demonstrate their application to several of the lowest rovibrational levels. Together
with similar advancements for quantum electrodynamic corrections, this will improve the accuracy beyond 10−9

and hopefully explain discrepancies with recent experimental values.
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I. INTRODUCTION

Molecular hydrogen is the most abundant molecule in the
universe [1]. It is also the dominant component of the atmo-
sphere of giant planets in the solar system [2]. Hence, it draws
the attention of astronomers and laboratory physicists [3–6].
In particular, laboratory spectroscopy provides indispensable
data for, e.g., constructing astronomical models and databases
[7–10], determining physical constants [11,12], and searching
for new physics beyond the standard model [13–15]. In re-
cent years, precision spectroscopy of molecular hydrogen has
reached an accuracy that enables testing the QED theory at an
accuracy level of several parts per billion [16–21].

In several recent studies, a systematic discrepancy on the
level of 1.5–2.0 MHz (∼5–7 × 10−5 cm−1) between theo-
retical and experimental vibrational transition energies of
H2, HD, and D2 was reported [19–22]. This inconsistency
corresponds to 1σ−3σ of theoretical uncertainty. As an
illustration, we can quote the currently most accurate ex-
perimental energy for the S2(0) rovibrational transition in
H2: 252 016 361.164(8)MHz [20]. The corresponding theo-
retical prediction is 252 016 358.6(16)MHz [23] and differs
from the measured value by 2.6 MHz, i.e., 1.6σ . Given
that the theoretical nonrelativistic energy is known with
kilohertz (∼10−7 cm−1) accuracy, incomplete accounting
for nuclear motion in relativistic and/or QED components
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of the total energy is most likely the source of these
discrepancies.

In this study, we tackle relativistic correction by treating
electrons and nuclei on equal footing. We introduce a compu-
tational method that achieves an accuracy of a few kilohertz,
similar to that for nonrelativistic energies. We employ the
nonadiabatic James-Coolidge (naJC) basis function, which
was previously used to solve the four-body Schrödinger equa-
tion [24], yielding the nonrelativistic energy of rovibrational
levels with a relative accuracy of 10−13−10−14 [25–28]. This
approach retains its accuracy for rotationally and vibrationally
excited states. Additionally, this accuracy surpasses the uncer-
tainty arising from the imprecise nuclear masses. The naJC
wave function fully accounts simultaneously for both the elec-
tron correlation and the movement of the nuclei. This means
that there is no need to separate the electronic and nuclear
degrees of freedom or introduce common approximations
such as the one-electron and Born-Oppenheimer approxima-
tions. Evaluation of matrix elements with the nonrelativistic
Hamiltonian necessitated finding a new class of integrals,
which was the main difficulty in constructing the naJC-based
method.

Applying the naJC wave function to relativistic and QED
corrections is even more involved. Matrix elements of the
relativistic Breit-Pauli Hamiltonian in the basis of naJC func-
tions require the evaluation of unknown classes of integrals.
Determination of these integrals is the sine qua non of de-
veloping this approach and of achieving the accuracy needed
for testing QED. This paper presents methods and techniques
employed in the evaluation of three new classes of such rela-
tivistic integrals and presents a proof of concept for the lowest
rovibrational levels of H2.

A. Wave function

The nonadiabatic James-Coolidge basis function is a spe-
cial case of a general four-particle exponential function of the
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form

ψ (�r1, �r2, �rA, �rB; {w j, u j, ni}) = e−w1 r12−w2 r2A−w3 r2B−u1 rAB−u2 r1B−u3 r1A

× rn0
AB rn1

12 (r1A − r1B)n2 (r2A − r2B)n3 (r1A + r1B)n4 (r2A + r2B)n5 . (1)

This function contains all interparticle distances ri j = |�ri − �r j |, with �r1 and �r2 pointing at electrons and �rA and �rB pointing at
nuclei. The nonlinear parameters w j and u j are assumed to be positive real numbers, and the exponents ni are non-negative
integers. Matrix elements of the nonrelativistic Hamiltonian evaluated with these general exponential functions lead to integrals
of the form

g(w1,w2,w3, u1, u2, u3, {ni}) =
∫

d3r12

4 π

∫
d3r2A

4 π

∫
d3r2B

4 π

e−w1 r12

r12

e−w2 r2A

r2A

e−w3 r2B

r2B

e−u1 rAB

rAB

e−u2 r1B

r1B

e−u3 r1A

r1A

× rn0
AB rn1

12 (r1A − r1B)n2 (r2A − r2B)n3 (r1A + r1B)n4 (r2A + r2B)n5 . (2)

The sequence of integer exponents n0, n1, n2, n3, n4, n5 is denoted as {ni}. When this symbol is omitted, it means {0} ≡
0, 0, 0, 0, 0, 0, and the corresponding integral is called the master integral. It is convenient to express the function (1) in
ellipticlike variables:

ζ1 = r1A + r1B, η1 = r1A − r1B, ζ2 = r2A + r2B, η2 = r2A − r2B, R = rAB, (3)

which entails introducing new symbols for linear combinations of parameters

w2 = w + x, w3 = w − x, u2 = u − y, u3 = u + y, u1 = t . (4)

In this notation

ψ (�r1, �r2, �rA, �rB; t,w1, y, x, u,w, {ni}) = e−t R−w1 r12−y η1−x η2−u ζ1−w ζ2 Rn0 rn1
12 η

n2
1 η

n3
2 ζ

n4
1 ζ

n5
2 , (5)

and corresponding integrals assume the following form:

g(t,w1, y, x, u,w, {ni}) =
∫

dV
e−t R e−w1 r12 e−y η1 e−x η2 e−u ζ1 e−w ζ2

R r12 r1A r1B r2A r2B
× Rn0 rn1

12 η
n2
1 η

n3
2 ζ

n4
1 ζ

n5
2 , (6)

where we introduced the shorthand notation
∫

dV ≡
∫

d3r12

4 π

∫
d3r2A

4 π

∫
d3r2B

4 π
. Unfortunately, such integrals are difficult to

handle [29,30], which prompts a slight simplification of the general function (1). This simplification is achieved by setting

w1 = 0, y = 0, x = 0, w = u. (7)

The corresponding function

ψ (�r1, �r2, �rA, �rB; t, u, {ni}) = e−t R−u (ζ1+ζ2 ) Rn0 rn1
12 η

n2
1 η

n3
2 ζ

n4
1 ζ

n5
2 (8)

was named the nonadiabatic James-Coolidge function because of its resemblance to the two-electron James-Coolidge function
used in clamped nuclei calculations with H2 [31].

B. Integrals in the James-Coolidge basis

The whole class of integrals appearing in the matrix elements of the nonrelativistic Hamiltonian in the naJC basis (8) was
implemented [24]. Arbitrary {ni} integrals can be formally defined as multiple derivatives with respect to nonlinear parameters
present in the general master integral g(t,w1, y, x, u,w) of Eq. (6),

G(t, u; {ni}) =
(

− ∂

∂t

)n0
(

− ∂

∂w1

)n1

w1=0

(
− ∂

∂y

)n2

y=0

(
− ∂

∂x

)n3

x=0

(
− ∂

∂u

)n4

u=w

(
− ∂

∂w

)n5

g(t,w1, y, x, u,w). (9)

In the above formulas and in what follows, we use the
notation in which simplified versions of integrals g will be
denoted by a capital G and will appear in two variants, one
with w = u and the other one with w �= u:

G(t, u; {ni}) ≡ g(w1 = 0, y = 0, x = 0,w = u), (10)

G(t, u,w; {ni}) ≡ g(w1 = 0, y = 0, x = 0). (11)

Hence, we write explicitly

G(t, u; {ni}) =
∫

dV
e−t R e−u (ζ1+ζ2 )

R r12 r1A r1B r2A r2B

× Rn0 rn1
12 η

n2
1 η

n3
2 ζ

n4
1 ζ

n5
2 , (12)

G(t, u) =
∫

dV
e−t R e−u (ζ1+ζ2 )

R r12 r1A r1B r2A r2B
. (13)
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From now on, we also assume that the condition t > 2u is
satisfied, and formulas for −2u � t � 2u are obtained by
analytic continuation.

Techniques developed by one of the authors to evalu-
ate such integrals were described in Refs. [32,33]. In short,
this approach relies on a set of partial differential equa-
tions (PDEs) to which the integrals g are solutions. All these
PDEs can be written as

σ
∂g

∂β
+ 1

2

∂σ

∂β
g + Pβ = 0, (14)

where β is one of the six parameters t , w1, y, x, u, and w and
σ is the following polynomial in these six parameters:

σ = w2
1 t4 + w2

1 (u + w − x − y)(u − w + x − y)

× (u − w − x + y)(u + w + x + y)

+ t2
[
w4

1 − 2 w2
1 (u2 + w2 + x2 + y2) + 16u w x y

]
− 16(u y − w x)(u x − w y)(u w − x y). (15)

Properly manipulating these equations leads to recurrence
relations in all variables, which enables finding arbitrary non-
relativistic integrals of Eq. (12). In particular, the explicit
formulas for the master integrals are

G(t, u,w) = 1

4u w

[ ln 2u w
(t+u+w)(u+w)

t + u + w
− ln 2u

t+u+w

t − u + w

− ln 2 w
t+u+w

t + u − w
+ ln 2 (u+w)

t+u+w

t − u − w

]
, (16)

G(t, u) = 1

4u2

[
ln u

t+2u

t + 2u
− 2 ln 2u

t+2u

t
+ ln 4u

t+2u

t − 2u

]
. (17)

Similarly, we proceed with the relativistic integrals re-
sulting from evaluating matrix elements with the Breit-Pauli
Hamiltonian. The new relativistic integrals can be divided into
three classes:

GAB(t, u; {ni}) =
∫

dV
e−t R e−u (ζ1+ζ2 )

R2 r12 r1A r1B r2A r2B

× Rn0 rn1
12 η

n2
1 η

n3
2 ζ

n4
1 ζ

n5
2 , (18)

G12(t, u; {ni}) =
∫

dV
e−t R e−u (ζ1+ζ2 )

R r2
12 r1A r1B r2A r2B

× Rn0 rn1
12 η

n2
1 η

n3
2 ζ

n4
1 ζ

n5
2 , (19)

G1B(t, u; {ni}) =
∫

dV
e−t R e−u (ζ1+ζ2 )

R r12 r1A r2
1B r2A r2B

× Rn0 rn1
12 η

n2
1 η

n3
2 ζ

n4
1 ζ

n5
2 . (20)

The remaining integrals (G1A, G2A, and G2B) can be obtained
by a permutation of variables. To find integrals (18)–(20) from
their master integrals, we need to established the recurrence
relation for all six indices n0, n1, n2, n3, n4, and n5. Each type
of these integrals requires a different treatment. Therefore,
a separate section will be devoted to each of them. In each
section, we will describe the derivation of the pertinent master
integral first and then the recursive relations in all variables.

II. GAB INTEGRALS

Let us first note that

GAB(t, u; {ni}) = G(t, u; n0 − 1, n1, n2, n3, n4, n5), (21)

so all the integrals with n0 � 1 are considered to be known.
What we need are the remaining GAB integrals with n0 = 0, in
particular, the master integral

GAB(t, u) =
∫

dV
e−t R e−u (ζ1+ζ2 )

R2 r12 r1A r1B r2A r2B
. (22)

The GAB(t, u) master integral can be found analytically by
direct integration of G(t, u) over t . For this purpose, we first
rearrange Eq. (17),

G(t, u) = − t ln 2 − 2u ln t+2u
2u

tu(t − 2u) (t + 2u)
. (23)

Then, relying on the integral

e−t R

R2
=

∫ ∞

t
dt

e−t R

R
, (24)

we evaluate

GAB(t, u) =
∫ ∞

t
dt G(t, u) (25)

and express the result in terms of dilogarithms (Li2), namely,

GAB(t, u) = 1

2u2

[
1

2
Li2

(
t − 2u

t + 2u

)
− Li2

(
t

t + 2u

)
+ π2

12

]
.

(26)

The integration in Eq. (25) can also be performed numerically
and confronted with the analytic result to verify its accu-
racy. All other GAB(t, u; 0, n1, n2, n3, n4, n5) integrals were
evaluated by numerical integration with respect to t of corre-
sponding G(t, u; 0, n1, n2, n3, n4, n5) functions; therefore, no
recurrences are needed in this case.

III. G12 INTEGRALS

A. The G12(t, u) master integral

Let us note that

G12(t, u; {ni}) = G(t, u; n0, n1 − 1, n2, n3, n4, n5), (27)

which means that all the G12 integrals with n1 � 1 are identi-
cal to the corresponding nonrelativistic integrals G. Of interest
to us are the remaining G12 integrals with n1 = 0. We start
with the evaluation of the master integral

G12(t, u) =
∫

dV
e−t R e−u (ζ1+ζ2 )

R r2
12 r1A r1B r2A r2B

. (28)

Because this integral does not depend explicitly on the w1

parameter (related to the r12 variable), the direct integration
method applied to GAB functions will not work, and a more
sophisticated method, described below, must be applied.

Let g(−w1) = g(t,w1, y, x, u,w) [see Eq. (6)], and con-
sider the following Hankel’s contour integral (see Eq. (6.1.4)
of Ref. [34] and Fig. 1):

gα = 
̂(ω−α g(ω)) ≡ 1

2 π i

∫ (0+ )

−∞
g(ω) ω−α dω (29)
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FIG. 1. Integration path for Hankel’s integral in Eq. (29).

for an arbitrary real α. We show that, subject to y = 0, x = 0,
and w = u,

g′
0 ≡ dgα

dα

∣∣∣∣
α=0

= G12(t, u). (30)

If in Eq. (29) we change the order of dV with dω integrations,
then the ω integral takes the form

rα−2
12

�(α)
= 1

2 π i

∫ (0+ )

−∞

eω r12

r12
ω−α dω. (31)

Because the derivative at α = 0 on the left side is

d

dα

∣∣∣∣
α=0

rα−2
12

�(α)
= d

dα

∣∣∣∣
α=0

α rα−2
12 = 1

r2
12

, (32)

Eq. (30) is proved.
Consider now two PDEs of Eq. (14), the first with β = w1

and the second with β = t , where σ (y = 0, x = 0,w = u) =
w2

1 t2 (w2
1 + t2 − 4u2) and where Pw1 and Pu1 are taken from

Appendix A. We transform the first equation by substituting
w1 = −ω and multiplying by t−2 ω−3−α ,

ω−α−1(t2 − 4u2 + ω2)
∂g(ω)

∂ω
+ ω−α−2(t2 − 4u2 + 2ω2)g(ω)

− t−2 ω−α−3Pw1 (ω) = 0. (33)

In the next step, we apply 
̂ from Eq. (29) to the above
equation and use the relation


̂

(
ω−α ∂g(ω)

∂ω

)
= α 
̂(ω−α−1g(ω)) (34)

to obtain

(α + 2)(t2 − 4u2) 
̂(ω−α−2g(ω)) (35)

+ (α + 1) 
̂(ω−αg(ω)) − t−2 
̂(ω−α−3Pw1 (ω)) = 0.

Recalling the definition of gα in Eq. (29), we get

(α + 2)(t2 − 4u2)gα+2 + (α + 1)gα − Gw1 (α + 3) = 0,

(36)

where

Gβ (α) = 1

t2

̂(ω−αPβ (ω)), (37)

and hence,

gα+2 = −(α + 1)gα + Gw1 (α + 3)

(α + 2)(t2 − 4u2)
. (38)

Now, let us transform the second PDE. Again, we set w1 =
−ω; next, we multiply it by t−1 ω−4−α and then apply the 
̂

operator to get

t (t2 − 4u2)
∂gα+2

∂t
+ t

∂gα

∂t
+ 2 (t2 − 2u2) gα+2 + gα

= −tGu1 (α + 4). (39)

Now, we insert gα+2 from Eq. (38) and multiply the result by
(2 + α)(t2 − 4u2), obtaining

t (t2 − 4u2)
∂gα

∂t
+ [t2 (2 + α) − 4u2] gα = Hα, (40)

where

Hα = −(2 + α) t (t2 − 4u2) Gu1 (α + 4) (41)

− t (t2 − 4u2)
∂Gw1 (α + 3)

∂t
+ 4u2 Gw1 (α + 3).

Differentiation of Eq. (40) with respect to α at α = 0, bearing
in mind that g0 = 0, yields the partial differential equation of
the form

t (t2 − 4u2)
∂g′

0(t )

∂t
+ (

2 t2 − 4u2
)

g′
0(t ) = H ′

0. (42)

The solution to this equation is the master integral g′
0 we are

looking for. First, however, we must find an explicit formula
for H ′

0. For this purpose, we evaluate

H ′
0 = ∂Hα

∂α

∣∣∣∣
α=0

= −t (t2 − 4u2) Gu1 (4) − 2 t (t2 − 4u2) G′
u1

(4)

− t (t2 − 4u2)
∂G′

w1
(3)

∂t
+ 4u2 G′

w1
(3). (43)

Explicit formulas for Gβ functions can be obtained from the
corresponding Pβ polynomials [see Eq. (37)] and are listed in
Appendix B. After insertion of these formulas into Eq. (43),
H ′

0 simplifies greatly to its final form:

H ′
0 = −π2

12
+ 2 Li2

(
t

t + 2u

)
. (44)

We can now return to Eq. (42) and solve it for g′
0:

g′
0 = G12(t, u) = 1

t
√

t2 − 4u2

∫ t

2u
dt

H ′
0√

t2 − 4u2
. (45)

The lower integration limit is 2u, because g′
0 must be finite at

every positive t , including t = 2u.
Integration by parts and appropriate variable changes en-

able the working representation of the above integral, suitable
for effective numerical integration to a desired accuracy:

G12(t, u) = 1

t
√

t2 − 4u2

{
H ′

0(t, u) ln(τ +
√

τ 2 − 1)

−
∫ √

τ−1
τ+1

0
dy

4 y

y2 + 1
ln

1 − y2

2
ln

1 − y

1 + y

}
, (46)

where τ = t/(2u). The numerical integration is performed
over a bounded interval with the upper limit

√
τ−1
τ+1 < 1, and

the integrand is a monotonic function of y. Therefore, the
convergence of a numerical quadrature is fast.
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B. Recurrences

Our next goal is to establish recurrence relations which en-
able the evaluation of an arbitrary integral G12(t, u; {ni}) from
integrals with lower values of exponents ni. We proceed like
in the derivation of the master integral. The main difference is
that we set y = 0, x = 0, and w = u only after differentiation
with D̂ in Eq. (53). We start by employing the PDE (14) with
β = w1 and σ from Eq. (15). For clarity, we write the latter as

σ = w4
1 Aw1 + w2

1 Bw1 + Cw1 (47)

and
1

2

∂σ

∂w1
= 2 w3

1 Aw1 + w1 Bw1 , (48)

where

Aw1 = t2, (49)

Bw1 = t4 − 2 t2(u2 + w2 + x2 + y2)

+ (u + w − x − y)(u − w + x − y)

× (u − w − x + y)(u + w + x + y), (50)

Cw1 = 16 t2uwxy − 16(uy − wx)(ux − wy)(uw − xy). (51)

Subsequently, we set w1 = −ω, multiply the PDE by ω−α−3,
apply the operator 
̂ defined in Eq. (29), and use Eqs. (34)
and (37). As a result, we get

(α + 1)Aw1 gα + (α + 2)Bw1 gα+2 + (α + 3)Cw1 gα+4

− t2Gw1 (α + 3) = 0. (52)

The obtained equation is differentiated using the following
operator:

D̂ ≡ (−1)n2+n3+n4+n5

×
(

∂

∂w

)n5
∣∣∣∣
w=u

(
∂

∂u

)n4
(

∂

∂x

)n3
∣∣∣∣
x=0

(
∂

∂y

)n2
∣∣∣∣
y=0

. (53)

The resulting expression is a long combination of multiple
derivatives of gα , gα+2, and gα+4 of the order of at most
n2 + n3 + n4 + n5 plus a single Gw1 term [see Eq. (37)].
Among them, one gα function and one gα+2 function occur
with the highest shell of exponents n2, n3, n4, and n5. Let us
extract this gα+2 function to obtain the relation

gα+2(t, u; n2, n3, n4, n5) = (· · · ) gα (t, u; n2, n3, n4, n5) + · · ·
(54)

needed for recursion in the parameter α.
Next, we employ another PDE (14) with β = y. This time,

1

2

∂σ

∂y
= w2

1 Ay + By, (55)

where

Ay = −2(t2y − 2uwx + u2y + w2y + x2y − y3), (56)

By = 8t2uwx + 8x(−wx + uy)(ux − wy)

+ 8w(−wx + uy)(uw − xy)

− 8u(ux − wy)(uw − xy). (57)

We treat this PDE in a way similar to the first one; we set
w1 = −ω, multiply it by ω−α−4, and apply the 
̂ operator,

obtaining

Ay gα+2 + By gα+4 + Aw1

∂gα

∂y
+ Bw1

∂gα+2

∂y

+ Cw1

∂gα+4

∂y
+ t2 Gy (α + 4) = 0, (58)

which we differentiate using D̂. There are two functions with
arguments from the maximal shell, gα (t, u; n2 + 1, n3, n4, n5)
and gα+2(t, u; n2 + 1, n3, n4, n5). We use Eq. (54) to eliminate
gα+2(t, u; n2 + 1, n3, n4, n5) to get the new relation

gα (t, u; n2 + 1, n3, n4, n5) = · · · , (59)

which expresses gα in terms of the other gα , gα+2, and gα+4

from lower shells, as well as by functions Gw1 and Gy origi-
nating from inhomogeneous terms.

Now, we can repeat this procedure for the other pairs of pa-
rameters (and pertinent PDEs), (w1, x), (w1, u), and (w1,w),
each time obtaining the corresponding recursive relation for

gα (t, u; n2, n3 + 1, n4, n5) = · · · , (60)

gα (t, u; n2, n3, n4 + 1, n5) = · · · , (61)

gα (t, u; n2, n3, n4, n5 + 1) = · · · . (62)

From the obtained set of five gα relations for arbitrary α,
we get corresponding relations at α = 0 and derivatives in α

at α = 0. The final 10 relationships together with the initial
g′

0 of Eq. (45) form an exhaustive set of recurrences needed to
evaluate the function g′

0 with arbitrary n2, n3, n4, and n5:

g′
0(t, u; n2, n3, n4, n5) = G12(t, u; 0, 0, n2, n3, n4, n5). (63)

Other functions g0, g2, g4, g′
2, and g′

4 appearing within these
relationships are just auxiliary and serve only to maintain the
complete scheme of recurrences.

The last step is to construct G12 integrals for any exponent
n0 from the relation

G12(t, u; n0, 0, n2, n3, n4, n5)

=
(

− ∂

∂t

)n0

G12(t, u; 0, 0, n2, n3, n4, n5). (64)

Inspection of the achieved explicit expressions permits the
writing of functions to be differentiated in a general form:

G12(t, u; 0, 0, n2, n3, n4, n5)

= u−(n2+n3+n4+n5 )
3∑

i=0

ci(x) fi, (65)

where x = 2u/t ,

f0 = u2G12(t, u), f1 = π2

24
− Li2

(
t

t + 2u

)
,

f2 = log

(
2u

t + 2u

)
, f3 = 1 (66)

and where the coefficients ci(x) are simple rational functions
of x, for example,
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G12(t, u; 0, 0, 0, 0, 1, 0) = 1

u3

2 f0 + f1

x2 − 1
, (67)

G12(t, u; 0, 0, 1, 1, 0, 0) = − 1

u4

2 f0 (x2 − 4) − f1 (x2 + 2) + f2 (x − 1)(x2 − 2) + (x − 1)2

(x2 − 1)2
, (68)

G12(t, u; 0, 0, 0, 2, 0, 0) = x2

u4

f2 (x − 1) x4 − f1 (x2 − 4) x2 + 2 f0
(
x4 − 2x2 + 4

) + (x − 1)2

16 (x2 − 1)2
. (69)

Differentiating such functions does not pose any particular
difficulties.

IV. G1B INTEGRALS

A. The G1B(t, u) master integral

We are going to derive here an explicit formula for the
master integral

G1B(t, u) =
∫

dV
e−t R e−u (ζ1+ζ2 )

R r12 r1A r2
1B r2A r2B

. (70)

For this purpose we express this integral in terms of the
derivative of the function g:

G1B(t, u) =
∫ ∞

u2

du2 g(t, u2, u3,w)
∣∣∣
u2=u3=u

(71)

= −
∫ ∞

u
du2

∫ ∞

t
dt

∂g(t, u2, u,w)

∂t
(72)

= −
∫ ∞

t
dt

∫ ∞

u
du2

∂g(t, u2, u,w)

∂t
. (73)

Because g satisfies the PDE (14) with β = t = u1, σ = (u2 −
u3)2 (u2 + u3)2 w2, and

∂σ

∂t
= 0, its derivative can be found

immediately:

∂g(t, u2, u3,w)

∂t
= −Pu1

σ
. (74)

Hence, we arrive at

G1B(t, u) = −
∫ ∞

t
dt

∫ ∞

u2

du2

(
− Pu1

σ

)∣∣∣
u2=u3=u

. (75)

The function Pβ , for arbitrary arguments, is presented in Ap-
pendix A. It is a combination of logarithms and simple rational
functions; thus, the integral in u2 can readily be performed,
and the result for w = u is

G1B(t, u) = −
∫ ∞

t
dt

1

4u2

[
g1(t, u)

t − 2u
− g1(t, u)

t
+ g2(t, u)

t
− g2(t, u)

t + 2u

]
, (76)

where

g1(t, u) = π2

12
− 1

2
ln2

(
2u

t + 2u

)
− Li2

(
t

t + 2u

)
+ Li2

(
t − 2u

t + 2u

)
, (77)

g2(t, u) = π2

12
+ 1

2
ln2

(
2u

t + 2u

)
− 2 Li2

(
t

t + 2u

)
+ Li2

(
t − 2u

t + 2u

)
. (78)

Repeating the above derivation but with w �= u, we obtain

G1B(t, u,w) = −
∫ ∞

t
dt

∂G1B(t, u,w)

∂t
, (79)

∂G1B(t, u,w)

∂t
= 1

4uw

[
g1(t, u,w)

t − u − w
− g1(t, u,w)

t + u − w
+ g2(t, u,w)

t − u + w
− g2(t, u,w)

t + u + w

]
, (80)

where

g1(t, u,w) = Li2

(
t − u − w

t + u + w

)
− Li2

(
t + u − w

t + u + w

)
− Li2

(
− u

w

)
− 1

2
ln2

(
2w

t + u + w

)
, (81)

g2(t, u,w) = Li2

(
t − u − w

t + u + w

)
− 2 Li2

(
t − u + w

t + u + w

)
+ Li2

(
− u

w

)
+ 1

2
ln2

(
2w

t + u + w

)
+ π2

6
. (82)

For the recurrence relations discussed in the following section, we will also need derivatives of the master integral with respect
to u and w:

∂G1B(t, u,w)

∂u
= −G1B(t, u,w)

u
− 1

4uw

[
g1(t, u,w)

t − u − w
+ g1(t, u,w)

t + u − w
+ g2(t, u,w)

t − u + w
+ g2(t, u,w)

t + u + w

]
, (83)
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∂G1B(t, u,w)

∂w
= −G1B(t, u,w)

w
− 1

4uw

[
g1(t, u,w)

t − u − w
− g1(t, u,w)

t + u − w
− g2(t, u,w)

t − u + w
+ g2(t, u,w)

t + u + w

]
. (84)

These derivatives can be obtained from Eqs. (79) and (80) as follows:

∂G1B(t, u,w)

∂w
= ∂

∂w

(
−

∫ ∞

t
dt

∂G1B(t, u,w)

∂t

)
(85)

= −
∫ ∞

t
dt

∂

∂w

1

4uw

[
g1(t, u,w)

t − u − w
− g1(t, u,w)

t + u − w
+ g2(t, u,w)

t − u + w
− g2(t, u,w)

t + u + w

]

= −G1B(t, u,w)

w
− 1

4uw

∫ ∞

t
dt

∂

∂w

[
g1(t, u,w)

t − u − w
− g1(t, u,w)

t + u − w
+ g2(t, u,w)

t − u + w
− g2(t, u,w)

t + u + w

]

= −G1B(t, u,w)

w
− 1

4uw

∫ ∞

t
dt

{
∂

∂t

[
− g1(t, u,w)

t − u − w
+ g1(t, u,w)

t + u − w
+ g2(t, u,w)

t − u + w
− g2(t, u,w)

t + u + w

]
+ X

}
,

where

X =
(

1

t − u − w
− 1

t + u − w

) (
∂

∂w
+ ∂

∂t

)
g1(t, u,w) +

(
1

t − u + w
− 1

t + u + w

) (
∂

∂w
− ∂

∂t

)
g2(t, u,w) ≡ 0. (86)

Hence, Eq. (84) is proved.
The direct integral representation of G1B(t, u,w), namely,

G1B(t, u,w) =
∫ ∞

0
dk g(t, u + k, u,w), (87)

where

g(t, u2, u3,w) = 1

2 w(u2 − u3)(u2 + u3)

[
− Li2

(
t − u3 − w

t + u2 + w

)
+ Li2

(
t − u3 + w

t + u2 + w

)
+ Li2

(
t + u2 − w

t + u2 + w

)

+ Li2

(
t − u2 − w

t + u3 + w

)
− Li2

(
t − u2 + w

t + u3 + w

)
− Li2

(
t + u3 − w

t + u3 + w

)]
, (88)

will also be needed to derive the recurrences. The latter for-
mula was obtained using

g(t, u2, u3,w) = −
∫ ∞

t
dt

∂g

∂t
(t, u2, u3,w) (89)

with the integrand taken from Eq. (74).

B. Recurrences

In this section we derive formulas for G1B(t, u; {ni}) in
Eq. (20) for arbitrary ni, and the subsequent steps of this
derivation are as follows.

1. Recurrence in n3

In the first step, we obtain formulas for the standard inte-
gral g(t,w1, x, u2, u3,w; n3) at w1 = x = 0. For this purpose,
we employ the PDE (14) with β = x. For w1 = 0, we take

σ = 16 t2uwxy − 16 (−wx + uy)(ux − wy)(uw − xy) (90)

and Px = Pw2 − Pw3 (see Appendix A). Next, we differentiate
this PDE n3 times with respect to x, set x = 0, and extract the
highest-order derivative

g(n3) ≡ g(t,w1, x, u2, u3,w; n3)
∣∣
x=0 = (−1)n3

∂n3 g

∂xn3

∣∣∣∣
x=0

.

(91)

The obtained recursive formula enables the n3th deriva-
tive g(n3) to be evaluated from lower-order derivatives of
g and the derivative of the inhomogeneous term Px(n3) ≡
(−1)n3

∂n3 Px

∂xn3
|x=0,

g(n3) = − (2n3 − 1)
(
t2 − u2 − w2 − y2

)
2uwy

g(n3 − 1)

− (n3 − 1)2
(
u2w2 + u2y2 + w2y2

)
u2 w2 y2

g(n3 − 2)

− (n3 − 2)(2n3 − 3)(n3 − 1)

2uwy
g(n3 − 3)

+ Px(n3 − 1)

16u2w2y2
. (92)

The g(n3) obtained from this relation is the starting point for
the next recurrence.

2. Recurrence in n1

In the second step, we will obtain formulas for
g(t,w1, x, u2, u3,w; n1, n3) at w1 = x = 0. In a way similar
to that above, we use the PDE (14) with β = w1, σ from
Eq. (15), and Pw1 taken from Appendix A. We differentiate
this equation n1 times with respect to w1 and set w1 = 0.
Then, we differentiate the obtained relationship again n3 times
with respect to x and set x = 0. These operations yield
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g(n1, n3) ≡ (−1)n1+n3
∂n3

∂xn3

∂n1

∂w
n1
1

g

∣∣∣∣
w1=x=0

, (93)

with the following recursion relations:

g(n1, n3) (94)

= c1 (n1 − 1)2 (n3 − 1) n3 g(n1 − 2, n3 − 2)

8u2w2y2
− c2 (n1 − 1)2 g(n1 − 2, n3)

16 u2 w2 y2
− c3 (n3 − 1) n3 g(n1, n3 − 2)

u2 w2 y2

− c4 n3 g(n1, n3 − 1)

u w y
− (n1 − 3) (n1 − 2)2 (n1 − 1) t2 g(n1 − 4, n3)

16 u2 w2 y2
− (n3 − 2) (n3 − 1) n3 g(n1, n3 − 3)

u w y

− (n1 − 1)2 (n3 − 3) (n3 − 2) (n3 − 1) n3 g(n1 − 2, n3 − 4)

16 u2 w2 y2
+ (n1 − 1)2 n3 g(n1 − 2, n3 − 1)

2 u w y
+ Pw1 (n1 − 1, n3)

16 u2 w2 y2
,

where

c1 = t2 + u2 + w2 + y2, c2 = t4 − 2 t2u2 + u4 − 2t2w2 − 2u2 w2 + w4 − 2 t2 y2 − 2u2y2 − 2w2y2 + y4,

c3 = u2w2 + u2 y2 + w2y2, c4 = −t2 + u2 + w2 + y2 (95)

and we have defined g(0, n3) ≡ g(n3) in Eq. (92) and

Pw1 (n1, n3) ≡ (−1)n1+n3
∂n3

∂xn3

∂n1

∂w
n1
1

Pw1

∣∣∣∣
w1=x=0

.

3. Integration with respect to u2

In the third step, we perform analytic integration of
g(t, u2, u3,w; n1, n3) with respect to u2 in order to obtain a
function with an additional power of 1/r1B,

G1B(t, u,w; 0, n1, 0, n3, 0, 0)

=
∫ ∞

0
dk g(t, u + k, u,w; n1, n3)

∣∣∣∣
w1=x=0

. (96)

The integrand combines Li2, logarithmic, and rational func-
tions of t, u,w, and k. The Li2 functions always appear in the
same combination as in Eq. (88); namely, they form g(t, u +
k, u,w), and we use this equation to express the integral in
terms of G1B(t, u,w) according to Eq. (87). Further on, the
integration of logarithmic functions gives dilogarithms Li2 in
such a combination, which can always be expressed in terms
of g1 and g2 functions defined in Eqs. (81) and (82). What
remains after the integration are the logarithmic and rational
functions of t , u, and w.

4. Recurrence in n4 and n5

In the fourth step, we derive G1B(t, u; 0, n1, 0, n3, n4, n5)
by taking derivatives with respect to u and w of
G1B(t, u,w; 0, n1, 0, n3, 0, 0),

G1B(t, u; 0, n1, 0, n3, n4, n5) (97)

=
(

− ∂

∂w

)n5

w=u

(
− ∂

∂u

)n4

G1B(t, u,w; 0, n1, 0, n3, 0, 0),

and in this operation we make use of Eqs. (83) and (84).

5. Recurrence in n2

Recurrence in the n2 exponent can be found from an alge-
braic relation between variables,

η
n2
1

r1B
= η

n2−1
1

(
ζ1

r1B
− 2

)
, (98)

which leads directly to the following formula:

G1B(t, u; 0, n1, n2, n3, n4, n5)

= G1B(t, u; 0, n1, n2 − 1, n3, n4 + 1, n5)

− 2 G(t, u; 0, n1, n2 − 1, n3, n4, n5). (99)

As we can see, apart from G1B integrals of lower order in n2,
it also involves standard integrals G from Eq. (12).

6. Recurrence in n0

The last exponent for which we need to find a recurrence
is n0, which relates to the internuclear variable R and the non-
linear parameter t . Because of the presence of the parameter t
in the naJC basis function [Eq. (8)], the n0 = 0 integrals have
an explicit dependence on t , e.g.,

G1B(t, u; 0, 0, 0, 0, 0, 1)

= 1

2tu

[
2tG1B(t, u) + g1(t, u)

t − 2u
− g2(t, u)

t + 2u

]
, (100)

G1B(t, u; 0, 1, 0, 0, 0, 0)

= 1

2tu (t + 2u)
ln

(
2u

t + 2u

)
, (101)

G1B(t, u; 0, 1, 1, 0, 0, 0)

= 1

t (t + 2u)2

[
1

2 u
+ 1

t
ln

(
2u

t + 2u

)]
. (102)

032822-8



INTEGRALS FOR RELATIVISTIC NONADIABATIC … PHYSICAL REVIEW A 109, 032822 (2024)

TABLE I. Numerical values of the master integrals, defined in
Eqs. (22), (28), and (70), evaluated for t = 38.38 and u = 1.956, are
shown with a precision of 32 significant digits.

Master integral Value

GAB(t, u) 0.007 321 991 591 821 939 899 610 091 538 52
G12(t, u) 0.002 007 747 417 108 337 201 534 734 124 51
G1B(t, u) 0.002 832 386 807 422 208 953 576 913 409 21

Therefore, it is sufficient to perform a direct differentiation of
pertinent G1B integrals with respect to this variable,

G1B(t, u; {ni}) =
(

− ∂

∂t

)n0

G1B(t, u; 0, n1, n2, n3, n4, n5),

(103)

using Eq. (76) to obtain formulas for an arbitrary n0. This
concludes the derivation of explicit formulas for an arbitrary
G1B integral. A few examples of moderate-size formulas are
as follows:

G1B(t, u; 1, 0, 0, 0, 0, 1)

= − t2 − 4tu + 2u2

2t2u2 (t − 2u)2
g1(t, u) − t2 + 4tu + 2u2

2t2u2 (t + 2u)2
g2(t, u)

+ 8u

t (t − 2u)2(t + 2u)2
ln 2

− t3 − 3t2u − 12u3

t2u (t − 2u)2(t + 2u)2
ln

2u

t + 2u
, (104)

G1B(t, u; 1, 1, 0, 0, 0, 0)

= 1

2tu (t + 2u)2

[
1 + 2(t + u)

t
ln

2u

t + 2u

]
, (105)

G1B(t, u; 1, 1, 1, 0, 0, 0)

= 1

t2 (t + 2u)3

[
3 t + 4u

2u
+ 4(t + u)

t
ln

2u

t + 2u

]
. (106)

V. NUMERICAL RESULTS

In this section, we present a small selection of numerical
results that can be helpful in the reproduction and numerical
implementation of the equations derived in previous sections.
Among many formulas employed to produce the full set of
the relativistic integrals, those for the master integrals seem
to be the most important. Because they are the seeds of all
recurrences, their numerical values must be known to a suffi-
ciently high precision. Every step of the recurrence in ni may
introduce a small round-off error, which when accumulated
would deteriorate the precision of the highest-order terms.
Because the target precision imposed on all the integrals is
about 64 digits, the master integrals must be evaluated to a
significantly higher accuracy. This goal was achieved using
MPFR libraries [35] coupled with a MPFUN library [36] and
linked to a source code in FORTRAN 95. Numerical values
of the master integrals representing three different classes of
relativistic integrals are listed in Table I.

The total energy of a rovibrational level of a light molecule
described by the vibrational v and rotational J quantum num-
bers is represented as a series in powers of the fine-structure
constant α,

E (v,J ) = α2 E (v,J )
nr + α4 E (v,J )

rel + α5 E (v,J )
qed + · · · . (107)

Our ultimate purpose, for which the integrals described above
are indispensable, is an accurate prediction of the relativistic
correction E (v,J )

rel for rovibrational states of H2 and its isotopo-
logues. This correction is evaluated as an expectation value
〈�|HBP|�〉 of the mass-dependent Breit-Pauli Hamiltonian
(in atomic units, m = 1),

HBP = − p4
1

8 m3
− p4

2

8 m3
− p4

A

8 m3
A

− p4
B

8 m3
B

+ π

m2
δ(3)(r12) + π

2

(
1

m2
+ δIA

m2
A

)
[δ(3)(r1A) + δ(3)(r2A)]

+ π

2

(
1

m2
+ δIB

m2
B

)
[δ(3)(r1B) + δ(3)(r2B)] − 1

2 m2
pi

1

(
δi j

r12
+ ri

12 r j
12

r3
12

)
pj

2 − 1

2 mA mB
pi

A

(
δi j

rAB
+ ri

AB r j
AB

r3
AB

)
pj

B

+ 1

2 m mA
pi

1

(
δi j

r1A
+ ri

1A r j
1A

r3
1A

)
pj

A + 1

2 m mB
pi

1

(
δi j

r1B
+ ri

1B r j
1B

r3
1B

)
pj

B

+ 1

2 m mA
pi

2

(
δi j

r2A
+ ri

2A r j
2A

r3
2A

)
pj

A + 1

2 m mB
pi

2

(
δi j

r2B
+ ri

2B r j
2B

r3
2B

)
pj

B, (108)

with the wave function � expanded in the basis of the naJC
functions [Eq. (8)]. In the above equation, subscripts A and
B, accompanying symbols of mass m, momentum p, and the
coordinate r, concern nuclei, while 1 and 2 refer to electrons.
The nuclear-spin factor δI , present in Dirac delta terms, de-
pends on the nucleus’s spin I: δI = 1 for I = 1/2 and δI = 0
otherwise. All the electron spin-dependent terms are omit-
ted as they vanish for the ground electronic state of 1�+

g

symmetry, while nuclear-spin-dependent terms are also omit-
ted because we do not consider the fine and hyperfine
structures. Due to its negligible magnitude, we have also omit-
ted the nucleus-nucleus Dirac delta term.

Table II contains preliminary numerical results of the rel-
ativistic correction obtained for the three lowest rovibrational
levels of H2. E (v,J )

rel was evaluated with a sequence of wave
functions of growing quality, which enables estimation of
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TABLE II. Convergence of the relativistic correction E (v,J )
rel (in a.u.) calculated using the nonadiabatic James-Coolidge wave function for

the (v, J ) rovibrational level of H2. K is the size of the nonadiabatic James-Coolidge basis set employed, governed by 
, the largest shell
enabled. Calculations were performed using the nuclear mass M/m = 1836.152 673 43(11) [40].


 K E (0,0)
rel K E (0,1)

rel K E (0,2)
rel

9 28 756 −0.204 547 752 0 49 042 −0.204 326 998 3 49 042 −0.203 890 204 8
10 42 588 −0.204 547 538 4 73 164 −0.204 326 718 0 73 164 −0.203 889 953 8
11 61 152 −0.204 547 467 0 105 840 −0.204 326 616 4 105 840 −0.203 889 881 7
12 85 904 −0.204 547 434 3 149 408 −0.204 326 587 7 149 408 −0.203 889 846 0
13 117 936 −0.204 547 423 1
14 159 120 −0.204 547 417 6

∞ −0.204 547 412(5) ∞ −0.204 326 56(3) ∞ −0.203 889 81(3)

its numerical accuracy. The size of the wave-function ex-
pansions was determined by the shell parameter 
, limiting
from above the sum of the exponents n1 + n2 + n3 + n4 +
n5 of the naJC basis functions (8) included. The extrapo-
lation to the infinite basis size was performed at the level
of individual operators present in the Hamiltonian (108).
The relativistic integrals were evaluated for integer exponents
fulfilling the following conditions: n1 + n2 + n3 + n4 + n5 �
35 and n0 � 85, which enables application of wave func-
tions with a shell 
 up to 14 for J = 0 and up to 12 for
J > 0.

For the rotationless level (J = 0), analogous results are
available in the literature. In 2018, Wang and Yan [37] re-
ported E (0,0)

rel = −0.204 544(5) a.u., in agreement with our
results, whereas Puchalski et al. [38] obtained E (0,0)

rel =
−0.204 547 56(4) a.u., which is off by 4σ from the new
result. Reinvestigating the convergence of the latter correc-
tion revealed that the error-bar estimation was too optimistic.
Calculations performed by Stanke and Adamowicz [39] in
2013 yielded E (0,0)

rel = −0.201 3 a.u. The uncertainty of this
number is unknown. Assuming that all the digits quoted are
significant, we note a considerable disagreement with all the
other values.

In contrast to the nonadiabatic explicitly correlated Gaus-
sian functions [38,39], the naJC wave function exhibits the
correct behavior at interparticle distances tending to zero or
infinity. This results in fast convergence of the relativistic
operators, allowing for a total relativistic correction with an
accuracy of 10−8. This level of accuracy is essential given the
present and upcoming measurements.

For the rotationally excited levels there are no anal-
ogous data available in the literature. A comparison can
be made to the relativistic correction obtained within
the adiabatic approximation, e.g., within the nonadiabatic
perturbation theory (NAPT) implemented in the pub-
licly available H2SPECTRE program [23,41]. For J = 1,
NAPT yields E (0,1)

rel = −0.204 326 8(2) a.u., which agrees to
within 1.2σ with the direct nonadiabatic (DNA) result in
Table II. The uncertainty of the NAPT result is due to
neglected higher-order finite-nuclear-mass effects; the com-
parison with the DNA value validates the method of
uncertainty estimation. For J = 2, NAPT gives E (0,2)

rel =
−0.203 889 6(2) a.u., which is in agreement with the DNA
result.

VI. CONCLUSIONS

The naJC wave function, together with the nuclear-mass-
dependent Breit-Pauli Hamiltonian in Eq. (108), fully takes
into account nonadiabatic effects (nuclear recoil) in the rel-
ativistic correction. However, the expectation values of the
operators present in this Hamiltonian evaluated in the naJC
basis require access to new, previously unknown classes of
integrals. The mathematical techniques reported in this paper
enabled the evaluation of such extended integrals, allowing
an unprecedented relative accuracy of 3 × 10−8 for the rel-
ativistic correction of the ground state of H2. Regarding the
dissociation energy of a rovibrational level, this corresponds
to an absolute accuracy of 6 × 10−8 cm−1 (∼2kHz). Previ-
ous calculations, apart from the rotationless cases mentioned
above, were performed in the framework of the adiabatic ap-
proximation using the second-order NAPT with the inclusion
of the relativistic terms proportional to the electron-to-nucleus
mass ratio. The new DNA method, which is 2 orders of
magnitude more accurate, removes the uncertainty caused
by unknown higher-order terms of the NAPT expansion and
allows the error estimation of the NAPT computation to be
verified.

One of the essential features opened up by the extended
classes of integrals is the possibility of accurately determining
the relativistic correction for higher rotational levels. As in the
case of the nonrelativistic energy [24–28], the accuracy now
achieved allows the error from the relativistic correction to be
neglected in the total error budget. From now on, the missing
recoil contribution to the QED correction and the unknown
higher-order-in-α corrections will be the only factors that
determine the overall energy uncertainty.

Apart from the relativistic correction itself, the new classes
of integrals will also enable an extension of the field of ap-
plication of the naJC wave function to the evaluation of the
operators present in the QED term of the expansion (107)
as well as to various electric and magnetic properties of the
hydrogen molecule.
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APPENDIX A: INHOMOGENEOUS TERMS Pβ

The PDE (14) is satisfied by the general four-body integral
of Eq. (2). These equations involve inhomogeneous terms Pβ

with β = ui,wi. All these terms can be expressed by a single
general function P:

Pw1 = P(w1, u1; w2, u2; w3, u3)

= P(w1, u1; w3, u3; w2, u2),

Pu1 = P(u1,w1; w2, u2; u3,w3),

Pw2 = P(w2, u2; w3, u3; w1, u1),

Pu2 = P(u2,w2; w3, u3; u1,w1),

Pw3 = P(w3, u3; w1, u1; w2, u2),

Pu3 = P(u3,w3; u1,w1; w2, u2). (A1)

The explicit formula for P was obtained in [33] and is repeated
here for completeness:

P(w1, u1; w2, u2; w3, u3)

= u1 w1 [(u1 + w2)2 − u2
3]

(−u1 + u3 − w2) (u1 + u3 + w2)
ln

[
u2 + u3 + w1

u1 + u2 + w1 + w2

]

+ u1 w1
[
(u1 + u3)2 − w2

2

]
(−u1 − u3 + w2) (u1 + u3 + w2)

ln

[
w1 + w2 + w3

u1 + u3 + w1 + w3

]

−u2
1 w2

1 + u2
2 w2

2 − u2
3 w2

3 + w1 w2
(
u2

1 + u2
2 − w2

3

)
(−w1 − w2 + w3) (w1 + w2 + w3)

ln

[
u1 + u2 + w3

u1 + u2 + w1 + w2

]

−u2
1 w2

1 − u2
2 w2

2 + u2
3 w2

3 + w1 w3
(
u2

1 + u2
3 − w2

2

)
(−w1 + w2 − w3) (w1 + w2 + w3)

ln

[
u1 + u3 + w2

u1 + u3 + w1 + w3

]

+u2 (u2 + w1)
(
u2

1 + u2
3 − w2

2

) − u2
3

(
u2

1 + u2
2 − w2

3

)
(−u2 + u3 − w1) (u2 + u3 + w1)

ln

[
u1 + u3 + w2

u1 + u2 + w1 + w2

]

+u3 (u3 + w1)
(
u2

1 + u2
2 − w2

3

) − u2
2

(
u2

1 + u2
3 − w2

2

)
(u2 − u3 − w1) (u2 + u3 + w1)

ln

[
u1 + u2 + w3

u1 + u3 + w1 + w3

]

−w1
[
w2

(
u2

1 − u2
2 + w2

3

) + w3
(
u2

1 − u2
3 + w2

2

)]
(w1 − w2 − w3) (w1 + w2 + w3)

ln

[
u2 + u3 + w1

u2 + u3 + w2 + w3

]

−w1
[
u2

(
u2

1 + u2
3 − w2

2

) + u3
(
u2

1 + u2
2 − w2

3

)]
(−u2 − u3 + w1) (u2 + u3 + w1)

ln

[
w1 + w2 + w3

u2 + u3 + w2 + w3

]
. (A2)

In the main text, we often referred to Eq. (14) with β being
a linear combination of wi and ui as in Eq. (4). In such a case,
Pβ can be obtained from one of the following equations:

Pw = Pw2 + Pw3 , Px = Pw2 − Pw3 ,

Pu = Pu2 + Pu3 , Py = Pu3 − Pu2 . (A3)

APPENDIX B: EXPLICIT FORMULAS FOR Gβ(α)
FUNCTIONS AND THEIR DERIVATIVES

The functions Gβ (α) were defined in Eq. (37). Explicit
formulas for these functions and their derivatives with respect
α, G′

β (α), needed for the evaluation of H ′
0 in Eq. (43), are as

follows:

Gu1 (4) = −t + u

tu(t + 2u)2
, (B1)

G′
u1

(4) = − 1

8tu2
+ 5

4u(t + 2u)2
+ 1

8u2(t + 2u)

+ ln(2u)

tu(t + 2u)
− 3 ln(t + 2u)

t (t + 2u)2
, (B2)

G′
w1

(3) = − 1

2u2
− π2

48u2
+ 2

u(t + 2u)
− ln(2u)

2u2
(B3)

+ 2 ln(t + 2u)

u(t + 2u)
− ln

(
t+2u

2u

)
tu

+ Li2
(

t
t+2u

)
2u2

,

∂G′
w1

(3)

∂t
= − 1

2tu2
+ 1

2u2(t + 2u)

2(t + u) ln
(

t+2u
2u

)
t2u(t + 2u)

− 2 ln(t + 2u)

u(t + 2u)2
. (B4)
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