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The dynamic electric dipole polarizabilities of the 5s2 1S0, 5s5p 3P0, and 5s5p 3P2 states for Cd atoms are
calculated using the relativistic configuration interaction plus many-body perturbation theory method. The magic
wavelengths for the 5s2 1S0 → 5s5p 3P0 and 5s2 1S0 → 5s5p 3P2 transitions within a range of 300–500 nm
are identified. The possibility of achieving triple magic trapping for the transitions 5s2 1S0 → 5s5p 3P0 and
5s2 1S0 → 5s5p 3P2 is investigated. It is found that no common magic wavelength could be identified for
achieving triple magic trapping with the linearly polarized light. However, if the degree of ellipticity is between
0.358 and 1, the triple magic trapping can be achieved at 419.88 nm for the 5s2 1S0 → 5s5p 3P2 (Mi = ±2) and
5s2 1S0 → 5s5p 3P0 transitions.
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I. INTRODUCTION

The development of state-of-the-art optical atomic clocks
has made significant progress thanks to advances in laser
technologies such as optical frequency combs [1,2], narrow
linewidth lasers [3,4], and frequency transmission technolo-
gies using optical fibers [5]. Currently, the highest precision
of optical clocks is below 10−18 [6–9]. To evaluate the perfor-
mance of optical clocks in experiments, a common approach
is to compare two independent clocks to assess their stability,
repeatability, and system uncertainty [9–15]. Such compar-
isons have been made with the same or different types of
atoms or ions.

It is known that some ions or atoms, such as Yb [16–19],
Yb+ [20,21], Al+ [22], and Sr [23], possess two long-lived
metastable states. Recently, it has been demonstrated that
transitions from these metastable states to ground states can
be used as clock transitions with very narrow linewidths. This
implies that two clock transitions can be measured simulta-
neously in the same atomic clock. By comparing these two
clock transitions within a single atomic clock, it is possible
to eliminate system effects and investigate the variation of
the fine-structure constant [20–25]. In recent experiments, the
optical frequency ratio of the 2S1/2(F = 0) → 2F7/2(F = 3)
and 2S1/2(F = 0) → 2D3/2(F = 2) transitions in 171Yb+ was
measured by Filzinger et al. [21], improving the existing limits
on a linear temporal drift of the fine-structure constant [21];
Bohman et al. pointed out that the 1S0 → 3P2 transition of the
Al+ ions is another clock transition and can be used to search
for physics beyond the standard model [22]; and Trantmann
et al. [23] have proposed triple magic trapping in Sr atoms,
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where the Stark shifts for the 5s2 1S0, 5s5p 3P0, and 5s5p 3P2

states are identical, to eliminate the Stark shifts of the two
clock transitions.

Cd atoms have two valence electrons, and the 5s2 1S0 →
5s5p 3P0 transition is an ultranarrow clock transition. Cd
atoms are promising candidates for compact and transportable
optical clocks [26–30]. Yamaguchi et al. achieved magic trap-
ping at 419.88(14) nm [29], where the Stark shifts of the
5s2 1S0 and 5s5p 3P0 states are equal [31,32]. In theory, there
are some works [28,33–36] to calculate the black-body radi-
ation (BBR) shifts, the magic wavelength of the 5s2 1S0 →
5s5p 3P0 clock transition, and the multipolar polarizabilities
and hyperpolarizabilities of the 5s2 1S0 and 5s5p 3P0 states.
Similar to Sr atoms, the 5s5p 3P2 state of Cd is also a long-
lived metastable state. As shown in Table I, the lifetime of
5s5p 3P2 is very close to that of the 5s5p 3P0 state. There-
fore, the 5s2 1S0 → 5s5p 3P2 transition of Cd can also be
considered as a second clock transition. Moreover, the static
differential polarizability between 5s2 1S0 and 5s5p 3P2 states
is similar to that between 5s2 1S0 and 5s5p 3P0 states. In
addition, the BBR shifts experienced by both the 5s2 1S0 →
5s5p 3P0 and 5s2 1S0 → 5s5p 3P2 transitions are an order of
magnitude smaller than those of Sr and Yb lattice clocks
operating at the same room temperature [28,37].

In this paper, we employ the relativistic configuration in-
teraction plus second-order many-body perturbation theory
(RCI + MBPT) method to calculate the dynamic polariz-
abilities of the 5s2 1S0 and 5s5p 3P0,2 states in Cd. The
magic wavelengths of the 5s2 1S0 → 5s5p 3P0,2 transitions
are confirmed based on the dynamic polarizabilities. We
then investigate the conditions required for achieving triple
magic trapping for the 5s2 1S0 → 5s5p 3P0 and 5s2 1S0 →
5s5p 3P2 transitions near the magic wavelength of 419.88 nm.
Throughout this paper, atomic units are used unless otherwise
specified.
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FIG. 1. The schematic of the geometrical parameters of the electromagnetic plane wave and the one-dimensional optical lattice trap. The
elliptical area is swept by the electric field vector in one period. The unit vector ε̂maj (ε̂min) is aligned with the semimajor (-minor) axis of the
ellipse. �ez is the quantization axis, which determines the direction of the magnetic field in the experiment. �k is the direction of the wave vector.
θp is the angle between the polarization vector ε̂ and the quantization axis �ez, and θk is the angle between �ez and �k. Here ε̂maj, ε̂min, and �k are
orthogonal to each other. θmaj (θmin) is the angle between ε̂maj (ε̂min) and �ez. ψ is directly related to the degree of circular polarization of the
electromagnetic plane wave. Probe laser 1 and Probe laser 2 represent two probe lasers with wavelengths of 332.07 and 314.20 nm of the two
clock transitions 5s2 1S0 → 5s5p 3P0 and 5s2 1S0 → 5s5p 3P2, respectively.

II. THEORY

A. The expression of the polarizabilities

When an ion or atom exposed to a laser field with the laser
frequency ω, degree of ellipticity A, and direction of the wave
vector �k, as shown in Fig. 1, the energy shift due to the Stark
effect can be written as [40]

�Ei = − 1
2αi(ω)F 2 + · · · , (1)

where αi(ω) is the dynamic dipole polarizability of the quan-
tum state i, and F is a measure of the strength of the ac
electromagnetic field. The dipole polarizability can be cal-
culated using the sum-over-states method, and the general
expression of dynamic dipole polarizability can be written as
[40–43]

αi(ω) = αS
i (ω) + Acosθk

Mi

2Ji
αV

i (ω)

+3cos2θp − 1

2

3M2
i − Ji(Ji + 1)

Ji(2Ji − 1)
αT

i (ω), (2)

where Mi is the component of the total angular momentum
Ji. θk is the angle between �ez and �k, �ez is the quantization
axis (the direction of static magnetic field), and cosθk = �k · �ez.
Geometrically, θp is related to θmaj and θmin, it can be written
as

cos2θp = cos2ψcos2θmaj + sin2ψcos2θmin

= sin2ψsin2θk + cos(2ψ )cos2θmaj. (3)

Here, θmaj (θmin) is the angle between the major (minor) axis
of the ellipse and the �ez axis. For linearly polarized light, θp

is the angle between the laser polarization vector ε̂ and the �ez

axis. The degree of ellipticity A is directly related to the angle
ψ (|ψ | � 45◦),

A = sin2ψ. (4)

A = 0 is linearly polarized light, and A = +1 and −1 are
the right-handed and left-handed circularly polarized light,
respectively. αS

i (ω), αV
i (ω), and αT

i (ω) are the scalar, vector,
and tensor polarizabilities, and they can be expressed as

αS
i (ω) = 2

3(2Ji + 1)

∑
n

εin〈γnJn‖d‖γiJi〉2

ε2
in − ω2

, (5)

αV
i (ω) = − 2

√
6Ji

(Ji + 1)(2Ji + 1)

×
∑

n

(−1)Ji+Jn

{
1 1 1
Ji Ji Jn

}
ω〈γnJn‖d‖γiJi〉2

ε2
in − ω2

,

(6)

and

αT
i (ω) = 4

(
5Ji(2Ji − 1)

6(Ji + 1)(2Ji + 1)(2Ji + 3)

)1/2

×
∑

n

(−1)Ji+Jn

{
Ji 1 Jn

1 Ji 2

} 〈γnJn‖d‖γiJi〉2ε2
in

ε2
in − ω2

,

(7)

where εin = En − Ei is excitation energy, and 〈γnJn‖d‖γiJi〉
is the reduced E1 transition matrix element. If ω = 0, the
dynamic polarizabilities in Eqs. (5) and (7) are reduced to
the static polarizabilities, and the static vector polarizability
equals 0.

The dynamic polarizability of the Cd2+ core is calcu-
lated using a pseudospectral oscillator strength distribution
method, similar to that used in Refs. [44–47]. Table II lists
the pseudospectral oscillator strength distribution for Cd2+,
where the pseudo-oscillator strength fn is equal to the num-
ber of electrons in the shell. The excitation energy is set by
adding a constant to the Koopman energies and adjusting
the constant until the core polarizability, calculated from the
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TABLE I. The lifetimes (in seconds) of the 5s5p 3P2 and
5s5p 3P0 states of Cd [38].

Atom τ (5s5p 3P2) τ (5s5p 3P0)

111Cd 19.0 17.9
113Cd 18.0 16.1

oscillator strength sum rule, matches the known core polariz-
ability 4.97 a.u. [40,48,49].

B. RCI + MBPT Method

The wave functions and energy levels of Cd are obtained
by the RCI + MBPT calculation. In this method, the many-
electron atomic or ionic system is divided into a frozen core
part and valence electron parts. The initial step is to perform
a self-consistent Dirac-Fock (DF) calculation to obtain all
the single-particle orbitals. These orbitals are then used to
build the configuration space. In this step, we use the no-pair
Dirac Hamiltonian and treat both the Coulomb and the Breit
interactions on an equal footing, similar to Refs. [50–52]. The
next step involves carrying out second-order many-body per-
turbation and configuration interaction calculations to account
for the core-valence and valence-valence correlations.

The effective interaction equation for the divalent atomic
system can be expressed as{

2∑
i

[HDF(ri ) + 
1(ri )] +
(

1

r12
+ 
2

)}
|γ J〉 = E |γ J〉,

(8)

where HDF and 1
r12

denote the DF Hamiltonian and the
electron-electron Coulomb interaction, respectively. 
1 is the
one-body correlation potential, which describes the corre-
lation interaction between a valence electron and the core.
The 
2 represents the two-body correlation potential, which
describes the screening of the Coulomb interaction between
valence electrons and the core electrons. The matrix elements
of the one-body and two-body correlation potentials are given
in Ref. [53]. To account for the correlation effects beyond the
second order, we introduce the rescaling parameter ρκ and
substitute the one-body correlation potentials 
1 with ρκ
1

TABLE II. Pseudospectral oscillator strength distribution for
Cd2+ ions. The transition energies �E 2

n→i are given in a.u.

n �E 2
n→i fn

1 961625.7331 2.0
2 20777.9141 2.0
3 565.0139 2.0
4 0.6154 2.0
5 352.5699 6.0
6 132.0840 6.0
7 5.5682 6.0
8 67.3807 10.0
9 23.0199 10.0

in practice. The rescaling parameter ρκ is tuned to reproduce
the experimental energy of the lowest state for each angular
quantum number κ of a monovalent atomic system, which
is similar to the Dirac-Fock plus core polarization (DFCP)
method [50]. The rescaling parameter can accelerate the con-
vergence of the RCI + MBPT method.

For the transition matrix element calculation, it is neces-
sary to consider the core polarization correction. In present
work, we take the core polarization correction into account
by using the random phase approximation [54,55]. Fur-
ther details on the RCI + MBPT method can be found in
Refs. [53,56–60].

In the DF calculation, the large and small components of
the Dirac wave functions are expanded using 50 B-spline
bases of order k = 13 and the box size Rmax = 240. The
partial waves are limited to 
max = 5 and the lowest 40 orbital
sets of each partial wave are used to construct the config-
uration space. In the second-order many-body perturbation
calculations, the summation is carried out over the entire basis
set. The rescaling parameters are ρ−1 = 0.902, ρ1 = 0.971,
ρ−2 = 0.982, ρ2 = 1.028, ρ−3 = 1.037, and ρothers = 1.0,
respectively.

III. RESULTS AND DISCUSSION

A. Energy levels, reduced E1 matrix elements,
and static polarizabilities

Table III lists the presently calculated energy levels and
compares them with the National Institute of Standards and
Technology (NIST) tabulations [39]. Our RCI + MBPT
results are in excellent agreement with the NIST results, es-
pecially for the low-lying states such as the 5s2 1S0, 5s5p 3P0,
3P1, and 3P2 states, with differences of only 0.05%, 0.02%,
0.02%, and 0.03%, respectively. For other excited states, the
largest discrepancy does not exceed 0.5%.

Table IV presents the reduced matrix elements for some of
the main transitions and compares them with other available
results. The present results for the transitions from the 5s2 1S0

state agree well with those of the configuration interaction
plus an all-order linearized coupled-cluster (CI + All) method
[29], the configuration interaction plus many-body perturba-
tion theory (CI + MBPT) [28,29], and the DFCP method
[36]; the differences are about 1%, 1%, and 2%, respectively.
For the transitions from the 5s5p 3P0 state, the differences
between the present results with these three methods are about
0.3%, 0.5%, and 2.5%, respectively. Regarding the transitions
from the 5s5p 3P1, 5s5p 3P2, and 5s5p 1P1 states, there are no
other theoretical results available for comparison. However,
all of the present results are in agreement with those of the
NIST [39].

Table V lists the results of the static dipole polarizabilities
of the 5s2 1S0, 5s5p 3P0,1,2, and 5s5p 1P1 states. In the present
calculations, the experimental transition energies are used for
the low-lying excited states. The numbers of the intermedi-
ate states are NJP=1+ = 10 457, NJP=1− = 10 140, NJP=2+ =
14 390, and NJP=3+ = 15 077, where + and – represent even
and odd parity, respectively. For the 5s2 1S0 state, the present
static polarizability of 47.4(1.5) a.u. is in excellent agree-
ment with the experimental value of 47.5(2.0) a.u. [62]. The
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TABLE III. Comparison of energy levels (in cm−1) for some low-
lying states. All the energies are given relative to the ground state of
the Cd2+ core. The relative differences between the present energy
and the NIST energy [39] are listed as Diff.

State Present NIST [39] Diff.

5s2 1S0 −208818.3 −208914.8 0.05%
5s5p 3Po

0 −178829.2 −178800.8 0.02%
5s5p 3Po

1 −178291.1 −178258.7 0.02%
5s5p 3Po

2 −177138.6 −177087.8 0.03%
5s5p 1Po

1 −166007.0 −165222.4 0.47%
5s6s 3S1 −157917.5 −157430.8 0.31%
5s6s 1S0 −156035.7 −155604.7 0.28%
5s6p 3Po

0 −151075.4 −150523.9 0.37%
5s6p 3Po

1 −151004.8 −150453.2 0.37%
5s6p 3Po

2 −150829.1 −150279.1 0.37%
5s5d 1D2 −150217.9 −149695.0 0.35%
5s5d 3D1 −150019.9 −149429.0 0.40%
5s5d 3D2 −150008.7 −149416.9 0.40%
5s6p 1Po

1 −149642.4 −149007.5 0.43%
5s7s 3S1 −146945.8 −146351.3 0.41%
5s7s 1S0 −146398.1 −145827.9 0.39%
5s7p 3Po

0 −144522.3 −143918.9 0.42%
5s7p 3Po

1 −144496.1 −143889.3 0.42%
5s7p 3Po

2 −144427.7 −143821.1 0.42%
5s6d 1D2 −144364.5 −143780.0 0.41%
5s6d 3D1 −144184.8 −143561.4 0.43%
5s6d 3D2 −144179.6 −143555.9 0.43%
5s7p 1Po

1 −144044.6 −143413.4 0.44%
5s4 f 3F o

2 −143971.2 −143328.7 0.45%
5s8s 3S1 −142854.1 −142232.7 0.44%
5s8s 1S0 −142618.6 −142009.1 0.43%
5s8p 3Po

0 −141710.1 −141085.1 0.44%
5s7d 1D2 −141686.2 −141076.4 0.43%
5s8p 3Po

2 −141663.3 −141039.6 0.44%
5s7d 3D1 −141557.7 −140925.0 0.45%
5s7d 3D2 −141554.9 −140922.1 0.45%
5s5 f 3F o

2 −141461.7 −140821.1 0.45%
5s9s 1S0 −140740.4 −140116.0 0.45%
5s9p 3Po

0 −140232.2 −139600.7 0.45%

differences between the present results and the CI + All and
CI + MBPT results are about 0.9 a.u. These differences are
mainly due to the difference in the reduced matrix elements,
as shown in Table IV. If we replace the present reduced matrix
element of the 5s2 1S0 → 5s5p 1P1 transition, which domi-
nantly contributes to the polarizability of the 5s2 1S0 state,
with the CI + All value of 3.440 [29] or the CI + MBPT value
of 3.435 a.u. [28], the corresponding values become 46.17 and
46.38 a.u., respectively. The differences between the present
results and the results of the relativistic coupled-cluster the-
ory (RCC) [35], the DFCP method [36], and the relativistic
coupled-cluster single-double excitations approach (RCCSD)
[64] are about 1.4 a.u. These differences are mainly caused
by the difference in reduced matrix elements and transition
energies. The uncertainties given in this table are determined
by introducing 2% changes in the dominant matrix elements,
since most of the present results agree with other results
within 2%.

FIG. 2. The dynamical polarizabilities of the 5s2 1S0 and
5s5p 3P0 states in the 300–500 nm wavelength range. The verti-
cal dashed lines indicate the positions of the resonant transitions.
The magic-zero wavelengths (λ0) are determined by locating points
where either 5s5p 3P0 or 5s2 1S0 polarizabilities are equal to zero and
the magic wavelengths (λm) are determined by locating points where
the 5s5p 3P0 and 5s2 1S0 polarizabilities are equal to each other. They
are all identified by arrows.

For the 5s5p 3P0 state, the differences between the present
calculations and the other theoretical results are within 3%.
As for the 5s5p 3P1, 5s5p 3P2, and 5s5p 1P1 states, it is found
that the present results are in agreement with the results of
the RCCSD calculations [64]. The tensor polarizability of the
5s5p 3P1 state, 7.74(22) a.u., is in good agreement with the
experimental value of 7.11(32) a.u. [65].

It should be noted that the differential polarizabili-
ties α(5s5p 3P0) − α(5s2 1S0) and α(5s5p 3P2 Mi = ±2) −
α(5s2 1S0) are 29.9(2.8) and 21.1(2.5) a.u., respectively, as
shown in Table VI. The difference between these two values is
small. This means that at the same temperature the BBR shift
of the 5s2 1S0 → 5s5p 3P2 Mi = ±2, transition is similar to
that of the 5s2 1S0 → 5s5p 3P0 transition.

B. The magic wavelengths for linearly polarized light

For linearly polarized light, that is, ψ = 0 and A = 0,
Eq. (2) can be simplified as

αi(ω) = αS
i (ω) + 3cos2θp − 1

2

3M2
i − Ji(Ji + 1)

Ji(2Ji − 1)
αT

i (ω), (9)

where θp satisfies 0 � cos2θp � 1. For states with Ji � 1,
the polarizabilities include the scalar and tensor components,
which are associated with Mi and θp. For Ji = 0 states, how-
ever, the polarizabilities are determined only by the scalar
component.

Figure 2 shows the dynamic polarizabilities of the 5s2 1S0

and 5s5p 3P0 states. Three magic wavelengths for the
5s2 1S0 → 5s5p 3P0 transition are found and identified by
arrows. The longest magic wavelength obtained from our
results is 420.20(57) nm, which agrees well with the exper-
imental measurement of 419.88(14) nm [29] and theoretical
calculations of 420.1(7) nm using the CI + All approach
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TABLE IV. Comparison of some reduced E1 matrix elements (in a.u.) for principal transitions of Cd. The numbers in the parentheses are
uncertainties.

Transition Present CI + All [29] CI + MBPT DFCP [36] Expt.c [39]

5s2 1S0 → 5s5p 1P1 3.479 3.440 3.426 [29] 3.4787a 3.01
3.435 [28] 3.4292b

5s2 1S0 → 5s5p 3P1 0.167 0.158 [28] 0.14
5s2 1S0 → 5s6p 1P1 0.670 0.689 0.675 [29] 0.5957a

0.6552b

5s5p 3P0 → 5s6s 3S1 1.493 1.491 1.502 [29] 1.6085a 1.42
1.486 [28] 1.5619b

5s5p 3P0 → 5s5d 3D1 2.325 2.318 2.306 [29] 2.4537a 2.12
2.222 [28] 2.3667b

5s5p 3P0 → 5s7s 3S1 0.433 0.433 0.432 [29] 0.4479a

0.4445b

5s5p 3P0 → 5s6d 3D1 1.066 1.061 1.062 [29] 1.0998a 0.97
1.0778b

5s5p 3P1 → 5s5d 3D2 3.543 3.51
5s5p 3P1 → 5s6s 3S1 2.642 2.58
5s5p 3P1 → 5s5d 3D1 2.044 2.03
5s5p 3P2 → 5s5d 3D3 5.045 4.63
5s5p 3P2 → 5s6s 3S1 3.592 3.30
5s5p 3P2 → 5s5d 3D2 2.128 2.03
5s5p 1P1 → 5s5d 1D2 5.427 6.23
5s5p 1P1 → 5s6s 1S0 3.923

aRepresents the values obtained without including the high-order one-body and two-body core-polarization potentials.
bRepresents the values obtained with the high-order one-body and two-body core-polarization potentials.
cThe values of the experimental matrix elements are obtained from the oscillator strengths.

[29] and 420 nm calculated using the CPMP approach [33].
The number in parentheses represents the uncertainty of the
magic wavelength. The uncertainty was primarily caused
by the uncertainty of the dominant matrix elements. In the

present work, we change the dominant matrix elements by
2% separately to calculate the change of the magic wave-
length. Subsequently, the uncertainty of the magic wavelength
is determined as the root mean square of each change. There

TABLE V. Comparison of the static dipole polarizabilities (a.u.) of the low-lying states of Cd with available experimental and theo-
retical results. Numbers in parentheses represent the uncertainties in the last digits. The polarizability of the core in the present work is
αcore = 4.97 a.u. [40,48,49].

αS αT

Present Refs. Expt. Present Refs. Expt.

5s2 1S0 47.4(1.5) 46.53 CI + All [29] 49.65(165) [61]
46.52 CI + MBPT [28] 47.5(2.0) [62]
46.02(50) RCC [35]
46.9 DHF [63]

46(2) DFCP [36]
45.92(10) RCCSD [64]
44.63 CPMP [33]

5s5p 3P0 77.3(2.3) 76.2 CI + All [29]
78(6) DFCP [36]

75.31 CI + MBPT [28]
75.03(42) RCCSD [64]
75.29 CPMP [33]

5s5p 3P1 80.2(2.2) 77.87(40) RCCSD [64] 7.74(33) 7.30(7) RCCSD [64] 7.11(32) [65]
6.30 Model potential [66] 5.35(16) [67]

6.91 [68]
6.83(28) [69]

5s5p 3P2 87.7(1.8) 84.82(34) RCCSD [64] −19.15(84) −18.05(13) RCCSD [64]
5s5p 1P1 218.0(6.2) 225.18(2.59) RCCSD [64] −84.9 (2.6) −90.99 (1.75) RCCSD [64]
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TABLE VI. Comparison of the differential polarizabilities
�α(3P0 − 1S0 ) and �α(3P2 − 1S0 ). The total polarizability
α(5s5p 3P2) is calculated by letting αV

i = 0 and θp = 0◦ in Eq. (2).

�α Present Refs.

�α(3P0 − 1S0 ) 29.9(2.8) 29.67 CI + All [29]
28.79 CI + MBPT [28]
29.11(43) RCCSD [64]
30.66 CPMP [33]

�α(3P2 − 1S0)
Mi = ±2 21.1(2.5) 20.85(38) RCCSD [64]
Mi = ±1 49.9(2.5) 47.93(38) RCCSD [64]
Mi = 0 59.4(2.5) 56.95(38) RCCSD [64]

are no comparable theoretical or experimental results for the
other two magic wavelengths, 326.13(1) and 309.09(2) nm.
These two magic wavelengths have difficulties trapping Cd
atoms, because they are very close to the resonance wave-
lengths of the 5s2 1S0 → 5s5p 3P1 and 5s5p 3P0 → 5s7s 3S1

transitions, which are 326.20 and 308.17 nm, respectively.
Figure 3 shows the dynamic polarizabilities of the 5s2 1S0

state and each of the magnetic sublevels of the 5s5p 3P2

state for the case θp = 0◦. The magic wavelengths, denoted
by arrows, are listed in Table VII. It can be seen that there
are two magic wavelengths for each of the magnetic sub-
level transitions of 5s2 1S0 → 5s5p 3P2 |Mi| = 0, 1, 2. These
magic wavelengths lie within two resonance intervals. The
magic wavelengths near 300 nm lie between the resonance
wavelengths of the 5s5p 3P2 → 5s7s 3S1 and 5s5p 3P2 →
5s6d 1D2 transitions. The longest magic wavelengths for each
of these transitions lie between the resonance wavelengths
of the 5s5p 3P2 → 5s6s 3S1 and 5s5p 3P2 → 5s5d 1D2

transitions.
It is worth noting that these longest magic wavelengths

are located in the same resonance transition region as the
419.88-nm magic wavelength of the 5s2 1S0 → 5s5p 3P0

transition. This is a crucial requirement for finding a common
magic wavelength to achieve triple magic trapping for both the
5s2 1S0 → 5s5p 3P0 and 5s2 1S0 → 5s5p 3P2 clock transi-
tions. Additionally, it should be noted that when θp = 0◦ there
is no magic wavelength for the 5s2 1S0 → 5s5p 3P2 |Mi| =
2 transition in this range. This is due to the cancellation

TABLE VII. Magic wavelengths of the 5s2 1S0 → 5s5p 3P2 tran-
sition in the case of the magnetic field being vertical to the wave
vector �k with the linearly polarized light, that is, cos2θp = 1 and
A = 0.

Resonances λres |Mi| = 0 |Mi| = 1 |Mi| = 2

5s5p 3P2 → 5s6s 3S1 508.72
433.31(97) 442.0(1.4)

5s5p 3P2 → 5s5d 1D2 365.06
5s5p 3P2 → 5s5d 3D1 361.55

326.01(2)
5s5p 3P2 → 5s7s 3S1 325.35

303.97(15) 304.34(25) 306.18(25)
5s5p 3P2 → 5s6d 1D2 300.23

FIG. 3. The dynamical polarizabilities of 1S0 and 3P2 states. The
vertical dashed lines indicate the positions of the resonant transitions
and are given on the top of the figures. The magic wavelengths (λm)
are determined by locating points where the 5s5p 3P2 and 5s2 1S0 po-
larizabilities are equal to each other, and the magic-zero wavelength
(λ0) of a state is determined when the polarizability is zero. They are
all identified by arrows.

of the contribution of the tensor and scalar terms of the
5s5p 3P2 → 5s6s 3S1 transition to the dynamic polarizability
of the 5s5p 3P2 |Mi| = 2 states. As a result, the polarizability
of 5s5p 3P2 |Mi| = 2 changes slowly near the 5s5p 3P2 →
5s6s 3S1 resonance wavelength, as shown in Fig. 3(c).

Figure 4 shows the variation of the longest magic wave-
length of the 5s2 1S0 → 5s5p 3P2 Mi = 0, 1, 2 transitions
with the angle θp. In the range of 0◦ � θp � 90◦, the magic
wavelength for the Mi = 0 and 1 transitions exhibits a mono-
tonically increasing trend. The minimum values are 433.31
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FIG. 4. The variation of the longest magic wavelengths with
θp under the linearly polarized light for the 5s2 1S0 → 5s5p 3P2

transition.

and 442.0 nm at θp = 0◦ for the Mi = 0 and 1 transitions,
respectively. However, for the Mi = 2 transition, the magic
wavelength decreases with increasing angle θp, and reaches a
minimum value of 442 nm at θp = 90◦. Therefore, all of these
magic wavelengths are greater than 419.88 nm. Consequently,
it is not possible to find a common magic wavelength that can
achieve triple magic trapping for the 5s2 1S0 → 5s5p 3P0 and
5s2 1S0 → 5s5p 3P2 transitions.

C. Magic wavelengths for circularly polarized light

According to Eq. (2), the dynamic polarizabilities for the
negative Mi states with left-handed polarized light are the
same as those of the positive Mi state with right-handed polar-
ized light. For this reason, in the following discussion we only
give the polarizabilities of the 5s5p 3P2 Mi = 0, 1, 2 states for
right-handed polarized light.

For the right-handed circularly polarized light, ψ = π/4,
A = 1, and cos2θp = 1

2 sin2θk , and Eq. (2) can be expressed as

αi(ω) = αS
i (ω) + cosθkMi

2Ji
αV

i (ω)

+
3
2 sin2θk − 1

2

3M2
i − Ji(Ji + 1)

Ji(2Ji − 1)
αT

i (ω), (10)

where the polarizability depends on Mi and θk due to the
contribution of the vector and tensor components αV

i (ω) and
αT

i (ω).
When θk = 90◦, the polarizabilities for circularly polar-

ized light are the same as those for linearly polarized light.
Therefore, the magic wavelength should be the same for
both cases. Figure 5 depicts the dependence of the longest
magic wavelength for the magnetic sublevel transitions of
5s2 1S0 → 5s5p 3P2 M = 0, 1, 2 on the angle θk . We can see
that the magic wavelengths for the transitions from the Mi = 0
and ±1 states are all greater than 419.88 nm. However, it
is worth noting that the magic wavelengths of the Mi = +2
and −2 transitions are 419.88 nm at θk = 61.33(51)◦ and
118.67(50)◦, respectively. This implies that 419.88 nm is a

FIG. 5. θk-dependent magic wavelengths under the circularly po-
larized light for the 5s2 1S0 → 5s5p 3P2 transition. The triply magic
trapping conditions are indicated by dots.

common magic wavelength for the 5s2 1S0 → 5s5p 3P0 and
5s2 1S0 → 5s5p 3P2 Mi = ±2 transitions to achieve triple
magic trapping.

D. The triple magic trapping conditions
for elliptically polarized light

According to Eqs. (2) and (3), for the elliptically polarized
light, the polarizability of the 5s5p 3P2 state can be expressed
as

αi(ω) = αS
i (ω) + AcosθkMi

2Ji
αV

i (ω)

+
3
(

1−√
1−A2

2 sin2θk + √
1 − A2cos2θmaj

)
− 1

2

×3M2
i − Ji(Ji + 1)

Ji(2Ji − 1)
αT

i (ω), (11)

where the polarizability for each of the magnetic sublevels
depends on A, θk , and θmaj. Therefore, the magic wavelength
of the clock transition of 5s2 1S0 → 5s5p 3P2 depends on
these three parameters as well.

We have made a thorough analysis of the variation of
the longest magic wavelength for each magnetic sublevel
transition of the 5s2 1S0 → 5s5p 3P2 M = 0, 1, 2 transitions
with respect to these three parameters. For the 5s2 1S0 →
5s5p 3P2 |Mi| = 0, 1 transitions, the magic wavelength is al-
ways greater than 420 nm. However, for the 5s2 1S0 →
5s5p 3P2 Mi = ±2 sublevel transitions, the variation of the
longest magic wavelength is more significant as these pa-
rameters change. Interestingly, we find that 419.88 nm is a
common magic wavelength for the 5s2 1S0 → 5s5p 3P0 and
5s2 1S0 → 5s5p 3P2 Mi = ±2 transitions when these three
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FIG. 6. Triple magic trapping conditions for 5s2 1S0 → 5s5p 3P0

and 5s2 1S0 → 5s5p 3P2 Mi = −2 clock transitions in the case of the
elliptically polarized light at the 419.88-nm magic wavelength. The
gray area represents the three parameters A, θk , and θmaj satisfying
the conditions of the triple magic trapping.

parameters satisfy the relation

70.9079 = 76.5011MiAcosθk + 32.3004

×
3
(

1−√
1−A2

2 sin2θk + √
1 − A2cos2θmaj

)
− 1

2
,

(12)

where Mi = ±2. In this equation, the theoretical dynamic
polarizabilities αS

1S0
(ω), αS

3P2
(ω), αV

3P2
(ω), and αT

3P2
(ω) at

λ = 419.88 nm are used.
In Fig. 6, the gray area represents the range where

triple magic trapping at 419.88 nm can be achieved for the
5s2 1S0 → 5s5p 3P0 and 5s2 1S0 → 5s5p 3P2 Mi = −2 clock
transitions under right-handed elliptically polarized light. The
solid lines indicate the corresponding values of θk for the
triple magic trap. It can be seen that triple magic trapping can
be achieved within 0.358 � A � 1, and 2.28◦ � θk � 61.33◦.
For left-handed elliptically polarized light (A < 0), the triple
magic condition for the Mi = −2 transition is symmetrical to
that of right-handed light (A > 0) with respect to the direc-
tion of θk = 90◦, i.e., θk should satisfy 180◦ − 2.28◦ � θk �
180◦ − 61.33◦. For the Mi = 2 transition, the triple magic
condition is the same as for the 5s2 1S0 → 5s5p 3P2 Mi = −2
transition, except for the opposite polarization A.

To make the experiment easier to perform, we suggest
setting the angle θmaj to 90◦, i.e., the direction of the magnetic
field lies within the plane formed by the ε̂min and �k axes. In
this case, triple magic trapping can be achieved by adjusting
only the angle θk , as shown in Fig. 7. A and θk satisfy the
following equation:

87.0581 = 76.5011MiAcosθk

+24.2253(1 −
√

1 − A2)sin2θk . (13)

Here, A should be within the range of 0.358 � |A| � 1.
For right-handed light, the range for the angle θk is 2.28◦ �

FIG. 7. Representation of the triple magic trapping conditions
when θmaj = 90◦. The magnetic field �ez rotates in the plane composed
of ε̂min and �k. The gray area indicates the range of magnetic field
directions within which the triple magic trapping condition can be
achieved under the elliptically polarized light for the 5s2 1S0 →
5s5p 3P0 and 5s2 1S0 → 5s5p 3P2 Mi = −2 transitions at the longest
magic wavelength.

θk � 61.33◦ (indicated by the gray area in the figure) for the
5s2 1S0 → 5s5p 3P2 Mi = −2 transition and 180◦ − 2.28◦ �
θk � 180◦ − 61.33◦ for the 5s2 1S0 → 5s5p 3P2 Mi = 2 tran-
sition. The range of θk for left-handed light can be determined
by its symmetry with right-handed light.

Finally, we evaluated the sensitivity coefficient [70,71] for
the 5s2 1S0 → 5s5p 3P0 and 5s2 1S0 → 5s5p 3P2 transitions:
q ≈ ω(+δ)−ω(−δ)

2δ
, where ω is the transition energy and δ is

the change of the fine-structure constant. In these estimates,
we changed the fine-structure constant by 0.1% and recalcu-
lated the excitation energies of the 5s2 1S0 → 5s5p 3P0 and
5s2 1S0 → 5s5p 3P2 transitions. The sensitivity coefficients
for these two transitions are 5000 and 8150 cm−1, respec-
tively, and the enhancement factors [70,71], K = 2q

ω
, are

0.388 and 0.299, respectively. The difference between these
sensitivities is small.

IV. CONCLUSIONS

The energy levels and the reduced E1 transition ma-
trix elements of Cd atoms are calculated using the RCI +
MBPT method. The static and dynamic dipole polarizabil-
ities of the 5s2 1S0, 5s5p 1P1, and 5s5p 3P0,1,2 states are
then determined by the sum-over-states method. The present
results are in good agreement with the available theoret-
ical and experimental results. Since the 5s5p 3P2 state is
also a long-lived metastable state, the 5s2 1S0 → 5s5p 3P2

transition can also be considered as a second clock transi-
tion. The static differential polarizability between the 5s2 1S0

and 5s5p 3P2 Mi = ±2 states is close to that between the
5s2 1S0 and 5s5p 3P0 states. The magic wavelengths for the
5s2 1S0 → 5s5p 3P0 and 5s2 1S0 → 5s5p 3P2 transitions are
identified. The presently calculated magic wavelength of
420.20(57) nm for the 5s2 1S0 → 5s5p 3P0 transition is in
good agreement with the experimental value of 419.88 nm
[29] and other theoretical results [33].
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In addition, we analyze the common magic wavelengths
for the clock transitions 5s2 1S0 → 5s5p 3P0 and 5s2 1S0 →
5s5p 3P2 under linearly, circularly, and elliptically polarized
light. While no common magic wavelength is found for lin-
early polarized light, it is observed that, for 0.358 � |A| � 1,
419.88 nm can be used as a common magic wavelength for the
5s2 1S0 → 5s5p 3P0 and 5s2 1S0 → 5s5p 3P2 Mi = ±2 tran-
sitions to achieve triple magic trapping. We suggest that by
setting the angle θmaj to 90◦, triple magic trapping can be
achieved by adjusting only the angle between the direction of
the static magnetic field and the direction of the wave vector
�k (i.e., θk). Overall, our results provide valuable insights into

the properties of Cd atoms and the potential for clock tran-
sitions at specific wavelengths under different types of light
polarization.
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