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Positronium hydride (PsH) is a weakly bound (molecular) state of two electrons (e−), a positron (e+), and a
proton (p+). Due to the e− − e+ annihilation, it decays to a number of processes, where the radiationless decay is
one of the most important channels. In this decay process, the photons released from the e− − e+ annihilation are
absorbed by the remaining e− and p+ in PsH, giving us PsH → e− p+. For a particular spin (singlet) configuration
of the constituents of PsH, the radiationless decay rate of PsH was determined by Aslam et al. [Phys. Rev. A
104, 052803 (2021)]. In this work, we calculate the decay rate of PsH → e− p+ by exercising all possible spin
orientations of PsH and the final states e− and p+. By summing all the contributions, we verify that the result is
the same if we calculate it using the standard fermion spin-sum technique of quantum field theory.

DOI: 10.1103/PhysRevA.109.032820

I. INTRODUCTION

In 1951, Ore first showed the existence of positronium
hydride [1], which is a four-body system consisting of two
electrons (e−), a positron (e+), and a proton (p+) bound to-
gether weakly. That triggered a lot of theoretical interest, and
the properties of PsH were studied [2–19] using the variational
approach with different trial wave functions. The first suc-
cessful experimental effort was made by Pareja et al. [20], in
which they reported the existence of such a bound state within
a condensed phase. However, the most convincing evidence
of this compound was reported by Schrader et al. [21] in
positron-methane collisions, and they estimated its binding
energy as Eb = −1.1 ± 0.2eV, which is in agreement with
most of the theoretical predictions [4–6,9,11–13,17–19]. PsH
is a special case of the Coulombic system that lies between H2

and dipositronium molecules (Ps2), and it is essentially a four-
body system, in which the three light constituents (2e−, e+)
cluster around the p+. In addition to the ground state of PsH,
resonance states lying in the PsH scattering continuum have
also been investigated (see, e.g., [22–24]).

The presence of e− and e+ makes PsH unstable against dis-
association, causing it to decay into a number of final states.
When e+ meets e−, they can form a spin-singlet or -triplet
state, decaying into an even or odd number of photons. When
the photons emitted through the annihilation are absorbed by
the other constituents of PsH, the process is called radiation-
less decay; i.e., PsH → e− p+. In Ref. [25], the decay rate is
calculated for a particular spin orientation of the constituents
of PsH, where the wave function of the two electrons is taken
to be in a spin singlet (↑↓ − ↓↑)/

√
2 and the positron has up

spin (↑). The proton is considered a static spinless source of
the Coulomb interactions.

In this work, using two different methods, we will calculate
the PsH → e− p+ decay rate using all possible spin configura-
tions of the initial- and final-state particles and see whether the
results coincide. In the first method, we consider the following
spin combinations for the constituents of PsH:

(1) Both the pair of electrons and (e+ p+) are in a spin-
singlet state, and both are in a spin-triplet state.

(2) The two electrons are in a spin-singlet state, whereas
(e+ p+) are in a spin-triplet state.

(3) The two electrons are in a spin-triplet state, and (e+ p+)
are in a spin-singlet state.

Using these spin orientations, we will calculate the rate for
each configuration and then sum them together according to
their weighted averages. The second method is the standard
textbook method, where we sum over the spins and calculate
the traces using the Casimir trick. Finally, we will match the
two results and see whether they agree with each other. This
was already established for the radiationless decay of Ps2,
which is also a four-body system [26].

This paper is organized as follows: In Sec. II we discuss
the various possible Feynman diagrams contributing to this
process. The rates for the particular spin orientations, as well
as using the fermion spin-sum method for this decay, are
discussed in detail there. Finally, in Sec. III, we conclude our
findings. In the Appendixes, we tabulate the amplitudes for
particular spin configurations and give the simplified form of
the phase space for PsH → e− p+.

II. RADIATIONLESS DECAY OF PsH

The decay rate of PsH proceeds due to the annihilation
of e− and e+, which is known as a two-particle coalescence
probability. It corresponds to the expectation value of a two-
particle delta function, i.e., δ−+, where the subscripts denote
the charges of the annihilating particles. Now if the photons
emitted due to this annihilation are absorbed by the remaining
e− and p+ in PsH, this results in a change in the energy
momentum of e− and p+. This is known as radiationless
decay and corresponds to the coalescence probability of all
four particles at one point, which is an expectation value of
δp+−− defined in Eq. (B7). In the weak binding limit, we
can safely ignore the three momenta of initial-state particles
compared to their masses in PsH; i.e., the four-momentum of
the initial-state constituents for each electron and positron is
(m, 0), and for the proton it is (M, 0).

Due to the antisymmetrization of electrons in the initial
state, there are 12 possible Feynman diagrams which can be
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FIG. 1. The possible Feynman diagrams for PsH → e− p+ at leading order (LO) in α. The diagrams in the first, second, and third rows are
types A, B, and C, respectively.

generated using FEYNARTS [27]. They are drawn in Fig. 1.
These topologies are divided into A-, B-, and C-type diagrams
in Fig. 2. In A-type diagrams, for the nonzero value of the
decay amplitude, the annihilating e− − e+ need to have the
same spin (spin triplet). This resulting photon is absorbed
by the remaining e− in the initial state after bremsstrahlung.
The bremsstrahlung photon is absorbed by the p+ in PsH,
leading to a change in its momentum. In B-type diagrams, the
annihilation of e− − e+ is possible for the spin-singlet state,
as it is annihilated into two photons. Both e− and p+ will
absorb a photon in this case. The C-type diagrams are akin
to the A-type ones, with the difference that in this case, it is
the initial state p+ that emits the photon (bremsstrahlung) and
e− in PsH that absorbs it. Here, we keep the mass of p+ and
calculate the results to the leading order in δ ≡ m/M. Because
the initial state has zero total momentum, we also assume that
after absorbing the photons, the final states e− and p+ are
moving back to back (say, along the z axis).

A. Specific spin orientations

In this section, we discuss the decay rate of PsH → e− p+,
employing a simplified spinor technique developed in [26]
to calculate the decays of the positronium ion (Ps−) and Ps2

(see, e.g., [28] for a comprehensive review of these molecular
states). The main idea of this technique is expressing the
combination of Dirac spinors in terms of the γ matrices,
which will help us to calculate the traces at an amplitude
level.

Considering the proton as a static source of Coulomb inter-
action, a positron with spin up, and a pair of electrons in PsH
in a spin-singlet state, the decay rate for PsH → e− p+ was
calculated in [25]. The corresponding result of the amplitude
is

M = − e4

8m3
, (1)

FIG. 2. A-, B-, and C-type Feynman diagrams for PsH → e− p+.
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TABLE I. The exact amplitude for all possible Feynman diagrams for various spin configurations of the constituents of PsH and the final
states e− and p+.

M Me+
↑(↓) p+

↓(↑)

e−
↑ e−

↓
Me+

↑(↓) p+
↓(↑)

e−
↓ e−

↑
Me+

↑(↓) p+
↑(↓)

e−
↑ e−

↓
Me+

↑(↓) p+
↑(↓)

e−
↓ e−

↑
Me+

↓(↑) p+
↑(↓)

e−
↑ e−

↑
Me+

↓ p+
↓

e−
↑ e−

↑

M1

√
2δ+1

m2(δ+1)
−

√
2δ+1(3δ+1)
4m2 (δ+1)2 0 −

√
2δ+1(3δ+1)
4m2(δ+1)2

√
2δ+1(3δ+1)
4m2 (δ+1)2

√
2δ+1

2m2 (δ+1)

M2 0
√

2δ+1(3δ+1)(δ+3)
4m2 (δ+1)3

√
2δ+1(3δ+1)
m2(δ+1)2

√
2δ+1(3δ+1)(δ+3)

4m2 (δ+1)3 −
√

2δ+1(3δ+1)(δ+3)
4m2 (δ+1)3

(δ−1)
√

2δ+1
2m2 (δ+1)2

M3 −
√

2δ+1(3δ+1)
8m2δ

√
2δ+1(3δ+1)

16m2δ
−

√
2δ+1(3δ+1)

8m2δ

√
2δ+1(3δ+1)

16m2δ
−

√
2δ+1(3δ+1)

16m2δ
−

√
2δ+1
4m2

M4
(δ−1)

√
2δ+1(3δ+1)

8m2δ(δ+1)
−

√
2δ+1(3δ+1)(δ+3)

16m2δ(δ+1)
(δ−1)

√
2δ+1(3δ+1)

8m2δ(δ+1)
−

√
2δ+1(3δ+1)(δ+3)

16m2δ(δ+1)

√
2δ+1(3δ+1)(δ+3)

16m2δ(δ+1)
(δ−1)

√
2δ+1

4m2 (δ+1)

M5 −
√

2δ+1(3δ+1)(δ+3)
4m2 (δ+1)3 0 −

√
2δ+1(3δ+1)(δ+3)

4m2 (δ+1)3 −
√

2δ+1(3δ+1)
m2 (δ+1)2 −M2 −M2

M6

√
2δ+1(3δ+1)
4m2(δ+1)2 −

√
2δ+1

m2 (δ+1)

√
2δ+1(3δ+1)
4m2 (δ+1)2 0 −M1 −M1

M7 −
√

2δ+1(3δ+1)
16m2δ

√
2δ+1(3δ+1)

8m2δ
−

√
2δ+1(3δ+1)

16m2δ

√
2δ+1(3δ+1)

8m2δ
−M3 −M3

M8

√
2δ+1(3δ+1)(δ+3)

16m2δ(δ+1)
− (δ−1)

√
2δ+1(3δ+1)

8m2δ(δ+1)

√
2δ+1(3δ+1)(δ+3)

16m2δ(δ+1)
− (δ−1)

√
2δ+1(3δ+1)

8m3δ(δ+1)
−M4 −M4

M9 − (δ−1)
√

2δ+1(3δ+1)2

16m2δ(δ+1)2

√
2δ+1(3δ+1)2

8m2δ(δ+1)
− (δ−1)

√
2δ+1(3δ+1)2

16m2δ(δ+1)2

√
2δ+1(3δ+1)2

8m2δ(δ+1)
− (δ−1)

√
2δ+1(3δ+1)2

16m2δ(δ+1)2

√
2δ+1(3δ+1)
2m2 (δ+1)

M10 −M9 −M9 −M9 −M9 −M9 0

M11

√
2δ+1(3δ+1)2

8m2δ(δ+1)
− (δ−1)

√
2δ+1(3δ+1)2

16m2δ(δ+1)2

√
2δ+1(3δ+1)2

8m2δ(δ+1)
− (δ−1)

√
2δ+1(3δ+1)2

16m2δ(δ+1)2
(δ−1)

√
2δ+1(3δ+1)2

16m2δ(δ+1)2 0

M12 −M11 −M11 −M11 −M11 −M11 −M9

Mtot
(δ−1)

√
2δ+1(5δ2+2δ+1)

8m2δ(δ+1)3 − (δ−1)
√

2δ+1(5δ2+2δ+1)
8m2δ(δ+1)3

√
2δ+1(3δ+1)(7δ2+2δ−1)

8m2δ(δ+1)3 −
√

2δ+1(3δ+1)(7δ2+2δ−1)
8m2δ(δ+1)3 0 0

and the resulting decay rate is

�(PsH → e− p+) =
√

2π3α13m

8
〈δp+−−〉. (2)

We know that in the case of Ps2 → e−e+ decay, the only
nonzero decay rate is for spin-singlet pairs of electrons and
positrons [29]. Here, we will see whether this is the case for
PsH → e− p+ decay too.

As a first step, unlike [25], we consider the spin of the p+ in
the initial and final states and calculate the rates for different
spin orientations. In terms of these rates, the full decay rate of
PsH → e− p+ can be written as

�(PsH→ e− p+) = 1
16 (�(1,1) + 3�(1,3) + 3�(3,1) + 9�(3,3)),

(3)

where the superscripts represent the multiplicity of the spins
of pair of electrons and the combined spin of positron and
proton; for example, (1, 3) corresponds to the case when both
electrons in PsH are in a spin-singlet state and p+ and e+
have the same spin (spin triplet). Furthermore, the decay rate
associated with specific spin orientations is multiplied by the
corresponding multiplicity factor. In this case, the factor 1

16 is
an overall normalization factor.

Singlet-singlet orientation. In this particular spin combina-
tion, using the technique developed in [26], the amplitudes for
the 12 possible Feynman diagrams are calculated and given in
Appendix B (see the first two columns of Table I). Expanding
in leading powers of δ ≡ m/M, the net amplitude in this case
becomes

M(1,1) =
√

2Me4

8m3
. (4)

It differs by a factor of
√

2 from the result (1) due to the spin
of the proton, which does not occur Eq. (1). The decay rate of

PsH → e− p+ can be written as

�(PsH → e− p+)

= |�(0, 0, 0, 0)|2 1

2

∫
d3k1

(2π )32|k1|
d3k2

(2π )32|k2|

× 1

�in(2E )
(2π )4δ4

⎛
⎝ 4∑

i=1

pi −
2∑

j=1

k j

⎞
⎠|M|2, (5)

where M is the amplitude and |�(0, 0, 0, 0)|2 is the spatial
wave function of PsH evaluated at the origin. k1,2 represent
the energies (momenta) of outgoing particles, which in terms
of the masses of incoming particles are given in (A2). The
energy E in �in(2E ) denotes the energy of individual con-
stituents of PsH, which is equal to the mass of the respective
particle. The denominator includes a factor of 2 to account
for the indistinguishability of identical electrons in the ini-
tial state. We know that the wave function at the origin is
related to the expectation value of the Dirac δ function, i.e.,
|�(0, 0, 0, 0)|2 = 〈δp+−−〉a−9

0 , where a0 is the Bohr radius
[25].

Using the result of phase space from Appendix A, the
corresponding decay rate becomes

�(1,1)(PsH→ e− p+) = π3α13m

4
√

2
〈δp+−−〉, (6)

which agree with Eq. (2). Using α = 1/137, m = 0.511 MeV,
and δp+−− = 1.8738 × 10−4, which is presented in Table III
of [19] for 4000 basis, we get

�(1,1)(PsH→ e− p+) = 1.331 × 10−10s−1. (7)

Singlet-triplet orientation. In this case, the amplitudes of
the individual diagrams and their sum are given in the third
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and fourth columns of Table I (Appendix B). The correspond-
ing sum of the amplitudes at leading order in m/M for all the
diagrams gives

M(1,3) =
√

2Me4

8m3
, (8)

and the decay rate for this particular spin orientation becomes

�(1,3)(PsH→ e− p+) = π3α13m

4
√

2
〈δp+−−〉

= 1.331 × 10−10 s−1. (9)

Triplet-singlet and triplet-triplet orientations. In the limit
of heavy protons, to leading order in m/M, the corresponding
amplitudes add up to zero (fifth and sixth columns in Table I),
i.e.,

M(3,1) = M(3,3) = 0, (10)

and hence, we have

�(3,1)(PsH→ e− p+) = �(3,3)(PsH→ e− p+) = 0. (11)

Assembling, Eqs. (6)–(11) in Eq. (3), the final result for the
decay rate of PsH is

�(PsH→ e− p+) = π3α13m

16
√

2
〈δp+−−〉 = 3.328 × 10−11 s−1.

(12)

B. General spin configurations

The second method is based on the standard technique of
particle physics, in which we write the amplitude, multiply it
by its complex conjugate, and then average over the spins of
initial-state particles and sum over the final ones. The same
spinors sum up to give the trace, and this way of creating the
trace is known as the Casimir trick, i.e.,

|M|2 = 1

16

∑
all spins

|M|2, (13)

where the factor of 1
16 ensures spin averaging over the initial-

state particles.
Using FEYNARTS [27], one can generate all the possible

Feynman diagrams and write the corresponding amplitudes.
As there are 12 possible diagrams for this process, to find
|M|2, we have to calculate 144 terms. To perform the fermion
spin sum and to calculate the traces, we used the Mathematica
package FEYNCALC [30]. The corresponding |M|2 becomes

|M|2 = e8M2

2048m6
. (14)

Using Eq. (14) together with Eq. (A4) and the kinematics
in Eq. (5), the leading order in the m/M decay rate becomes

�(PsH → e− p+) = π3α13m

16
√

2
〈δp+−−〉, (15)

which is in agreement with the result presented in Eq. (12).

III. CONCLUSION

We have calculated the radiationless annihilation rate of
PsH using two different techniques. In addition to the spin

orientation of the constituents of PsH considered in [25],
we included all the other possibilities of the spins for the
initial- and final-state particles. Using standard QED rules,
we expressed the amplitudes in terms of the Dirac spinors,
which, after we specify the spin orientation, can be expressed
in terms of the traces of γ matrices. We found that if we
include all possible spins and calculate the decay rate, the
result is different from that in [25]. That was not the case for
the similar decay of Ps2, for which the rate does not change if
we include all spin orientations [29]. With the second method,
we drew the leading-order QED diagrams using automated
computational tools, namely, FEYNARTS [27], and calculated
the corresponding square of the amplitude using FEYNCALC

[30]. We found that all the diagrams are strongly correlated.
Finally, we found that the results for the radiationless decay
rate of PsH calculated using two different techniques are the
same.
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APPENDIX A: PHASE SPACE FOR PsH → e− p+

The phase space for PsH → e− p+ decay is calculated as∫
d�LIPS =

∫
d3k1

(2π )32|k1|
d3k2

(2π )32|k2|

×(2π )4δ4

⎛
⎝ 4∑

i=1

pi −
2∑

j=1

k j

⎞
⎠. (A1)

In the weak binding limit, we can ignore the momenta of the
constituents of PsH compared to their masses; therefore, we
can write E = (m, 0, 0, 0) for each initial-state electron and
positron and E = (M, 0, 0, 0) for the proton. Hence, the total
energy of the initial state is just 3m + M. In order to conserve
the three momenta, the final-state particles have to move back
to back (say, along the z axis for convenience). Therefore,
we can write the four-momenta k1 and k2 for p+ and e−,
respectively, as

k1 = (Ek1 , k1), k2 = (Ek2 , k2), (A2)

where

Ek1 = 4m2 + 3Mm + M2

3m + M
, Ek2 = m(5m + 3M )

(3m + M )
,

k1 = −k2 =
(

0, 0,
2m

(3m + M )

√
2(m + M )(2m + M )

)
.

Using these kinematics, Eq. (A1) simplifies to
∫

d�LIPS =
√

m2(2m2 + 3mM + M2)√
2π (3m + M )2

=
√

m2M2(2δ2 + 3δ + 1)√
2πM2(3δ + 1)2

, (A3)
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where δ = m/M. To leading order in δ, we have

∫
d�LIPS = 1√

2π
δ. (A4)

APPENDIX B: AMPLITUDES FOR VARIOUS
SPIN CONFIGURATIONS

The amplitudes for various spin combinations are given in
Table I. To give an idea of how to calculate these amplitudes
using the technique developed in [25], let us calculate it for the
second diagram for the C-type ones shown in Fig. 2. Using the
kinematics from Eq. (A2), the corresponding amplitude can be
written as

M2 = e4(3m + M )2

64m5(m + M )3
[v̄(p2)γ μu(p1)][ū(k2)γαu(p3)]

×{ū(k1)γμ[(m − Ek2 + M )γ 0 + M + k2 · γ]γ αu(p4)}.
(B1)

Here, p1,3 represent the momenta of electrons in the initial
state, and p2 and p4 are the momenta of e+ and p+, respec-
tively. k1 and k2 correspond to the momenta of outgoing p+
and e−, respectively. For a particular spin orientation, we can
switch the spinors in each bracket and form the trace, i.e.,

M2 = e4(3m + M )2

64m5(m + M )3
Tr[u↑(p1)v̄↑(p2)γ μ]

×Tr[u↓(p3)ū↑(k2)γα]Tr{u↑(p4)ū↑(k1)γμ}
×[(m − Ek2 + M )γ 0 + M + k2 · γ]γ α. (B2)

In our case, the initial-state particles are at rest; therefore,
we can write

u↑ =
√

2m

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠, u↓ =

√
2m

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠, v↑ =

√
2m

⎛
⎜⎜⎝

0
0
0

−1

⎞
⎟⎟⎠,

v↓ =
√

2m

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠. (B3)

Similarly, for the final-state proton we can write

u↑(k1) = √
Ek1 + M

⎛
⎜⎜⎜⎝

1
0

|k1|
Ek1 +M

0

⎞
⎟⎟⎟⎠,

u↓(k1) = √
Ek1 + M

⎛
⎜⎜⎜⎝

0
1
0

− |k1|
Ek1 +M

⎞
⎟⎟⎟⎠, (B4)

and for the electron we have to replace M by m and Ek1 by
Ek2 in Eq. (B4). The product of these spinors yields the 4 × 4
matrices, which can be expressed in terms of the γ matrices
as

u↑(p1)v̄↑(p2) = −(2m)
1 + γ 0

2

γ 1 + iγ 2

2
γ 0,

u↓(p3)ū↑(k2) = √
2m(Ek2 + m)

γ 1 − iγ 2

2

γ 5 − γ 3

2

×
(

1 + |k2|
Ek2 + m

γ 5

)
γ 0,

u↑(p4)ū↑(k1) = √
2m(Ek1 + M )

1 + γ 0

2

γ 5 + γ 3

2

×
(

γ 5 + |k1|
Ek1 + M

)
γ 0. (B5)

Inserting these combinations in Eq. (B2) and taking the trace
give us the desired amplitude. Using a similar method for
the other spin combinations, we can calculate the amplitudes
given in Table I.

These are the free-state amplitudes, and they can be used
to calculate the decay rate of a bound state as [31]

�(PsH → e− p+) = |�(0, 0, 0, 0)|2
2 × 2MT

1

�in(2E )

∫
d3k1

(2π )32|k1|

× d3k2

(2π )32|k2| (2π )4δ4

⎛
⎝ 4∑

i=1

pi −
2∑

j=1

k j

⎞
⎠

×|M f |2, (B6)

where M f = √
2MTM, with MT representing the total mass

of the initial bound state. |�(0, 0, 0, 0)|2 is the wave function
of PsH at the origin. We can calculate it through the expecta-
tion value of the δ function, i.e.,

〈δp+−−〉 = 〈�∣∣δp+−−
∣∣�〉

〈�|�〉 . (B7)

As PsH is a four-body system, if the positions of electrons are
labeled 1 and 2 and those of e+ and p+ are labeled 3 and 4,
respectively, the relative positions can be defined as

	r12 = 	r2 − 	r1, 	r13 = 	r3 − 	r1, 	r14 = 	r4 − 	r1. (B8)

Also, we can write

	r23 = 	r13 − 	r12, 	r24 = 	r14 − 	r12, 	r34 = 	r14 − 	r13. (B9)

In the decay process we are discussing here, the electron and
positron annihilate and produce photon(s), and they are later
absorbed by the remaining constituents of PsH. Therefore,
the four-particle coalescence probability can be calculated
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as

〈δp+−−〉 ∝ 〈δ(	r12)δ(	r23)δ(	r34)〉

=
∫

d3	r12d3	r13d3	r14δ(	r12)δ(	r23)δ(	r24)|�(	r12, 	r13, 	r14, 	r23, 	r24, 	r34)|2

∝
∫

d3	r12d3	r13d3	r14δ(	r12)δ(	r23)δ(	r14 − 	r13)|�(	r12, 	r13, 	r14, 	r23, 	r14 − 	r12, 	r14 − 	r13)|2

∝
∫

d3	r12d3	r13δ(	r12)δ(	r13 − 	r12)|�(	r12, 	r13, 	r13, 	r13 − 	r12, 	r13 − 	r12, 0)|2

∝
∫

d3	r12δ(	r12)|�(	r12, 	r12, 	r12, 0, 0, 0)|2

∝ |�(0, 0, 0, 0)|2. (B10)

For the particular choice of � in the correlated Gaussian basis, its value is calculated in [19].
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