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Nuclear magnetic shielding in heliumlike ions
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Ab initio QED calculations of the nuclear magnetic shielding constant in heliumlike ions are presented. We
combine the nonrelativistic QED approach based on an expansion in powers of the fine-structure constant α and
the so-called all-order QED approach, which includes all orders in the parameter Zα but uses a perturbation
expansion in the parameter 1/Z (where Z is the nuclear charge number). The combination of the two comple-
mentary methods makes our treatment applicable to both low-Z and high-Z ions. Our calculations confirm the
presence of a rare antiscreening effect for the relativistic shielding correction and demonstrate the importance of
the inclusion of the negative-energy part of the Dirac spectrum.
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I. INTRODUCTION

Magnetic moments of nuclei are often determined from
nuclear magnetic resonance (NMR) measurements. Despite
the high precision of these experiments, the accuracy of the
extracted nuclear moments is severely limited by the restricted
knowledge of the magnetic shielding caused by the chemical
surrounding. Such effects are difficult to calculate reliably,
which has often led to significant deficiencies in the literature
data on nuclear magnetic moments [1,2]. As an example,
the so-called bismuth hyperfine puzzle [3,4] was recently
resolved [5] and traced back to an inaccuracy of the nuclear
magnetic moment caused by shortcomings in calculations of
the shielding correction.

Much more accurate determinations of nuclear magnetic
moments can be achieved by Penning-trap measurements of
the combined Zeeman and hyperfine structure of few-electron
atoms or ions. The shielding constants of such systems can
be calculated ab initio within the framework of QED, with a
detailed analysis of uncertainties due to omitted higher-order
effects. Precise determinations of magnetic moments of a
number of light nuclei by this method were reported in recent
years [6–9]. In particular, the magnetic moment of the proton
was accurately measured by the Penning-trap technique in
Ref. [10]. This technique can in principle be extended to
measurements of other nuclei and closed-shell ions.

Highly sophisticated calculations of the nuclear shielding
have been recently accomplished for the helium atom [11–13],
motivated by perspectives of using the hyperpolarized helium
NMR probes as a new standard for absolute magnetometry
[14–16]. The calculation of Ref. [11] revealed a rare effect
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of antiscreening for the relativistic shielding correction, cor-
responding to the situation when an effect for two correlated
(1s)2 electrons is larger than for two noninteracting 1s elec-
trons. This defies the physically intuitive picture in which each
of the correlated electrons should experience a slightly smaller
nuclear charge because it is effectively screened by the second
electron, the effect commonly known as screening. So far the
presence of the antiscreening effect has not been confirmed by
an independent calculation.

The goal of the present study is to perform ab initio QED
calculations of the nuclear magnetic shielding of heliumlike
ions for a wide range of nuclear charges Z . This is achieved
by merging together two complementary methods, namely,
the nonrelativistic QED (NRQED) approach based on an ex-
pansion in powers of the fine-structure constant α and the
so-called all-order QED approach, which includes all orders
in the parameter Zα but uses a perturbation expansion in
the parameter 1/Z . The NRQED method alone is applicable
only to low-Z ions, since the uncalculated higher-order effects
scale with high powers of Z . By contrast, the all-order method
is effective in the high-Z region, since the 1/Z expansion con-
verges fast there. In this work we unify these two methods so
that the resulting approach becomes applicable for the whole
range of Z . For the first time such a unified approach was
applied by Drake to calculate energies and transition rates of
heliumlike ions in Refs. [17,18].

The outline of our calculations is as follows. First, we em-
ploy the NRQED approach to calculate the leading shielding
contribution of order α2 as well as the relativistic, nuclear,
and QED corrections of orders α4, α2m/M, and α5 ln α. Then
we address the higher-order corrections within the all-order
method. We calculate the one-electron shielding contribution,
the one-photon exchange, QED, and the nuclear magnetiza-
tion distribution effects. By analyzing the Zα expansion of the
individual corrections, we identify the lowest-order contribu-
tions already included in the NRQED treatment and remove
them, thus avoiding double counting and obtaining the final
results for the shielding constant.
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II. NONRELATIVISTIC QED APPROACH

Within the NRQED approach, the shielding constant σ of
low-Z atoms is represented as a double expansion in α and the
electron-to-nucleus mass ratio m/M,

σ = α2σ (2) + α4σ (4) + α2 m

M
σ (2,1) + α5σ (5) + · · · . (1)

As is customary in NRQED calculations, we will use atomic
units in the following formulas in this section. To the leading
order in α and zeroth order in m/M, the shielding constant σ

takes the form [19]

σ (2) = 1

3

∑
a

〈
1

ra

〉
, (2)

where ra is the distance between the nucleus and ath electron
and the summation runs over all electrons. The relativistic
shielding correction of order α4 was derived in Ref. [11], with
the result
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where �r ≡ �r1 − �r2, (piqi )(2) = piq j/2 + pjqi/2 − δi j �p · �q/3,
and 1/(E − H )′ is the reduced Green’s function (with the
reference state removed from the sum over the spectrum).

The leading-order nuclear recoil correction was derived in
Ref. [20] and later corrected in Ref. [13]. The result is

σ (2,1) ≡ 1 − gN

gN
σ (2,1)

a + σ
(2,1)
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where �pN = −∑
a �pa; gN = (M/mp)(μ/μN )/(ZI ) is the nu-

clear g factor; M, I , and μ are the nuclear mass, spin, and
magnetic moment, respectively; mp is the proton mass; and
μN is the nuclear magneton.

The logarithmic part of the leading QED correction of
order α5 was derived in Ref. [11]. We write it as

σ
(5)
log = ln(Zα)
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This formula differs from the one from Ref. [11] by ln Z in the
second-order correction containing δ(�r ). In obtaining it, we
take into account that the two-electron Lamb shift contains,
in addition to ln α, an implicit ln Z term usually hidden in

the Araki-Sucher term 〈r−3〉 [21]. The nonlogarithmic QED
contribution of order α5 was derived and calculated for helium
in Ref. [12]. Its numerical calculation is rather complicated as
it involves perturbations of the so-called Bethe logarithm. For
this reason, we address this and higher-order QED corrections
within the 1/Z expansion in the next section.

Numerical calculations of the NRQED corrections summa-
rized above were carried out with the basis set of exponential
functions e−αir1−βir2−γir [22]. The method of calculations was
developed in our previous investigations; see Ref. [23] for a
review. The most computationally intense part was the cal-
culation of σ (4). While the evaluation of first-order matrix
elements in Eq. (3) was relatively straightforward, the com-
putation of second-order matrix elements turned out to be
rather demanding. To achieve high numerical accuracy, we
used carefully optimized basis sets for the intermediate elec-
tron states. The optimization was carried out for symmetric
second-order corrections, using nonuniform distributions of
nonlinear basis-set parameters (see Ref. [23] for details), with
a typical size of the basis set N = 1200. The obtained basis
sets were then used for computation of nonsymmetric second-
order corrections in Eq. (3).

Results of our numerical calculations of σ (2), σ (2,1), σ (4),
and σ

(5)
log for Z � 12 are presented in Table I. The correspond-

ing values for Z > 12 can be readily obtained by using the
1/Z expansion, which is of the form

σ (2)

Z
=

∞∑
k=0

ck

Zk
, (6)

and similarly for other corrections. The leading coefficients
c0 are known analytically from the hydrogen theory, whereas
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TABLE I. NRQED shielding corrections for different nuclear charges Z and their 1/Z-expansion coefficients ck .

Z σ (2)/Z σ (4)/Z3 σ
(5)
log /[Z3 ln(Zα)] σ (2,1)

a /Z σ
(2,1)
b /Z

2 0.562 772 266 9 2.321 754 4 −0.710 693 3 0.510 465 64 −0.597 289 84
0.562 772 266 8a 2.321 42a

3 0.597 316 533 2.070 397 4 −0.837 418 1 0.560 658 46 −0.619 929 38
4 0.614 625 068 1.979 393 5 −0.906 430 9 0.586 503 61 −0.631 434 60
5 0.625 021 856 1.933 018 3 −0.949 438 3 0.602 232 65 −0.638 394 84
6 0.631 957 258 1.905 101 6 −0.978 729 3 0.612 807 06 −0.643 058 72
7 0.636 912 900 1.886 523 9 −0.999 940 0 0.620 402 23 −0.646 401 72
8 0.640 630 484 1.873 300 7 −1.016 000 2 0.626 121 09 −0.648 915 36
9 0.643 522 387 1.863 423 1 −1.028 579 1 0.630 582 19 −0.650 874 23
10 0.645 836 163 1.855 771 1 −1.038 696 3 0.634 159 23 −0.652 443 72
11 0.647 729 404 1.849 672 8 −1.047 009 0 0.637 091 24 −0.653 729 45
12 0.649 307 201 1.844 700 8 −1.053 960 0 0.639 538 22 −0.654 801 99

c0
2
3

97
54 − 32

9π

2
3 − 2

3
c1 − 5

24 0.514 442 6 0.947 740 −0.327 804 0.143 12
c2 0.000 000 0 0.770 0 −0.159 8 0.026 44 −0.008 9
c3 0.002 899 7 0.288 −0.104 0.008 6 0.000 3
c4 −0.000 592 0.40 0.003
c5 −0.001 04

aReference [11].

the higher-order coefficients ck were obtained by fitting our
numerical results.

For the relativistic correction σ (4) we find a small deviation
from the helium result of Ref. [11]. The difference comes from
the second-order contribution with the 3D intermediate states,
labeled as Q12 in Ref. [11]. The deviation is small and does
not influence the final theoretical prediction for the helium
shielding constant within its estimated error.

Our results summarized in Table I confirm the previous
findings [11] of the presence of the unusual antiscreening
effect for σ (4). Indeed, the absolute values of σ (4)/Z3 for all
nuclear charges are larger than the corresponding limiting
value for noninteracting electrons, c0 = 97

54 ≈ 1.796. This is
in contrast to all other corrections examined in Table I, which
exhibit the normal screening effect. It is important to note
that the first two 1/Z-expansion coefficients c0 and c1 of σ (4)

are independently cross-checked by our calculation of the
one-photon-exchange correction in Sec. III, thus excluding the
possibility of a technical mistake in the derivation of σ (4).
The probable explanation of the antiscreening effect is the
singlet-triplet mixing. Specifically, the relativistic effects mix
the ground 1 1S0 state with intermediate n 3S states. This mix-
ing is quite large and changes the behavior of the relativistic
correction in the case of heliumlike atoms compared to the
hydrogenlike case.

III. ALL-ORDER APPROACH

In order to access the higher-order effects of order
α5+, we will adopt the so-called all-order QED approach.
This method includes all orders in the parameter Zα

but expands in the electron-electron interaction, with the
expansion parameter 1/Z . In order to separate out the
higher-order contributions beyond what is already included

into the NRQED treatment in Sec. II, we examine the Zα

expansion of the all-order results and remove the double
counting by subtracting the leading-order contributions. The
zeroth order in 1/Z is delivered by the independent-particle
approximation, which neglects the interaction between the
electrons. Further terms of the 1/Z expansion are described
by Feynman diagrams containing an exchange of one, two,
etc., virtual photons between the electrons. In this section we
will use relativistic units h̄ = c = 1.

A. Electron-structure effects

We start by examining the so-called electron-structure
effects, which are induced by Feynman diagrams without
radiative loops.

1. One-electron case

In the independent-particle approximation, the relativistic
shielding constant for the (1s)2 state of the heliumlike ion is
(see Ref. [24] for details)

σrel,1el = α
∑
μa

∑
n 	=a

1

εa − εn
〈a|Vg|n〉〈n|Vh|a〉, (7)

where μa is the momentum projection of the 1s electron, the
sum over n runs over the complete spectrum of the Dirac
equation, and Vg and Vh are effective interactions of a Dirac
electron with the external magnetic field Vg and with the
magnetic dipole nuclear field Vh,

Vg = (�r × �α)z, Vh = (�r × �α)z

r3 . (8)
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For the point nuclear charge, Eq. (7) can be calculated analyt-
ically [25–29], with the result

σrel,1el = 2

(
−4αZα

9

)(
1

3
− 1

6(1 + γ )
+ 2

γ
− 3

2γ − 1

)

= 2αZα

(
1

3
+ 97

108
(Zα)2 + 289

216
(Zα)4

+ 3269

1728
(Zα)6 + · · ·

)
, (9)

where γ =
√

1 − (Zα)2. For an extended nuclear charge dis-
tribution, Eq. (7) can be readily calculated numerically with
help of the dual-kinetic-balance finite-basis-set method [30].

The higher-order one-electron relativistic correction is ob-
tained from the expression (9) by subtracting the first two
terms of the Zα expansion,

σ HO
rel,1el = σrel,1el − 2α(Zα)

[
1
3 + 97

108 (Zα)2]. (10)

It should be noted that when performing the summation over
the Dirac energy spectrum in Eq. (7), the inclusion of the

negative-energy part of the spectrum is mandatory, as its
contribution is very large, especially for low-Z ions. This
is explained by the fact that the nonrelativistic limit of the
nuclear shielding constant in atoms is induced solely by
the negative-energy part of the Dirac spectrum. So for Z = 2
the negative-energy states induce 99.9% of the total re-
sult. With the increase of Z , the relative contribution of the
negative-energy states gradually diminishes but is still promi-
nent, e.g., for Z = 60 it is 37%. This is in sharp contrast to
calculations of transition energies, where the negative-energy
contribution is suppressed by a factor of (Zα)3 compared to
the leading nonrelativistic result [31].

2. One-photon exchange

The one-photon exchange correction to the nuclear mag-
netic shielding can be obtained as a perturbation of the
one-photon exchange correction to the energy by two external
interactions Vg and Vh. For the ground state of a heliumlike
ion, we obtain

σrel,1ph = α
∑

P

(−1)P[〈PaPb|I|δhgab〉 + 〈PaPb|I|δghab〉

+ 〈PaPb|I|δhaδgb〉 + 〈δhPaPb|I|δgab〉 + 〈δhPaPb|I|aδgb〉
− 〈PaPb|I|ab〉〈δha|δga〉 − 〈a|Vg|a〉〈PaPb|I|δ̃hab〉 − 〈a|Vh|a〉〈PaPb|I|δ̃gab〉], (11)

where a and b denote the two electrons in the (1s)2 shell, P is
the permutation operator (PaPb = ab or ba), (−1)P is the sign
of the permutation, the perturbations of the wave functions are
defined by

|δia〉 =
εn 	=εa∑

n

|n〉〈n|Vi|a〉
εa − εn

, (12)

|δ̃ia〉 =
εn 	=εa∑

n

|n〉〈n|Vi|a〉
(εa − εn)2

, (13)

|δhga〉 =
εn1 	=εa∑

n1

εn2 	=εa∑
n2

|n1〉〈n1|Vh|n2〉〈n2|Vg|a〉
(εa − εn1 )(εa − εn2 )

, (14)

and |δgha〉 is obtained from Eq. (14) by interchanging g and
h. Furthermore, I ≡ I (r12) denotes the electron-electron inter-
action operator in the Coulomb gauge for the zero transferred
energy,

I (r12) = α

r12
− α

2r12
[�α1 · �α2 + (�α1 · �̂r12)(�α2 · �̂r12)], (15)

where �α are the Dirac matrices, �r12 = �r1 − �r2, and �̂r = �r/r.
We note that in obtaining Eq. (11) we took into account that
the two electrons in the (1s)2 shell have the same energy, so
the frequency dependence of the electron-electron interaction
operator does not play any role in this case.

We calculated Eq. (11) numerically with help of the B-
spline basis-set method [32] for the point-charge nuclear
model and with the dual-kinetic-balance method [30] for the
extended-charge nuclear model. The typical basis size used
in the computation was N = 100–150. In order to achieve
high numerical accuracy in the low-Z region (required for

a high-precision fitting of the d2 coefficient), we had to use
quadruple precision (approximately 32 decimal digits) in our
computation.

The results for the point nuclear model are listed in
Table II. In order to remove the double counting with the
NRQED results, we analyze the Zα expansion of the one-

TABLE II. One-photon exchange shielding correction σrel,1ph for
different nuclear charges and coefficients of its Zα expansion, for the
point nuclear model.

Z σrel,1ph/α
2

2 −0.208 223 677
3 −0.208 086 391
4 −0.207 893 786
6 −0.207 340 881
8 −0.206 560 303
10 −0.205 545 466
14 −0.202 776 655
18 −0.198 940 386
22 −0.193 905 594
28 −0.183 713 434
34 −0.169 616 681
40 −0.150 469 629
46 −0.124 653 329
52 −0.089 862 182

d0 − 5
24

d2 0.514 442 6
d4 1.693 21
d6 2.469
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photon exchange correction, which is of the form

σrel,1ph = α2
∞∑

k=0

d2k (Zα)2k . (16)

The coefficients d2k obtained by fitting our numerical re-
sults are listed in Table II. The first coefficient d0 = − 5

24
corresponds to the 1/Z1 coefficient of expansion of σ (2)/Z
(see Table I). The second coefficient d2 corresponds to the
1/Z1 coefficient of σ (4)/Z3 (see Table I). Other coefficients
represent contributions of order α6 and higher which have not
been accounted for in Sec. II. The higher-order one-photon
exchange contribution is obtained as

σ HO
rel,1ph = σrel,1ph − α2[d0 + d2(Zα)2], (17)

where d0 and d2 are listed in Table II.
Analyzing contributions induced by the positive- and

negative-energy parts of the Dirac spectrum in the one-
photon exchange shielding correction, we observe that,
similarly to the one-electron case, the contribution of the
negative-energy states is rather large. For Z = 2, they con-
tribute 99.9% of the total result, whereas for Z = 60, the
negative- and positive-energy contributions are of the same
magnitude and of opposite sign. This demonstrates the im-
portance of the proper treatment of the negative-energy part
of the Dirac spectrum in calculations of the nuclear shield-
ing. We note that a similar dominance of the negative-energy
contribution was recently found for the M1 polarizability in
strontium [33].

3. Exchange of two or more photons

The uncertainty due to the exchange of two or more
photons is estimated based on the pattern of the available
1/Z-expansion coefficients of the σ (4) correction. Specifically,

σ HO
rel,2ph+ ≈ ±σ HO

rel,1ph2
c2

c1Z
≈ ±σ HO

rel,1ph
3

Z
, (18)

where 2 is the conservative factor.

B. QED effects

In the independent-particle approximation, the QED con-
tribution for the (1s)2 state is twice the 1s QED correction
calculated for hydrogenlike ions to all orders in Zα in
Refs. [24,34]. The analytical result for the leading Zα-
expansion term was obtained in Refs. [24,34] and later

corrected in Ref. [12]. Separating out the leading-order result,
we represent the one-electron QED contribution for the (1s)2

state of heliumlike ions as

σQED,1el = 2α2(Zα)3

(
− 16

9π
ln(Zα)

− 1.896 642 389 + GQED(Zα)

)
, (19)

where GQED(Zα) ≈ 2.182(Zα) + O((Zα)2) is the remain-
der function containing one-electron contributions of higher
orders in Zα. The logarithmic term in the formula (19) corre-
sponds to the 1/Z0 term of the expansion of σ

(5)
log , whereas the

other terms have not been included in the NRQED treatment
of Sec. II. The remainder function GQED(Zα) was calculated
to all orders in Zα in Refs. [24,34]. In the present work we
use the data obtained in those works and ascribe to it the
relative uncertainty of ±0.3(Zα)2, to account for the uncal-
culated diagrams with magnetic-loop vacuum polarization. So
the higher-order QED contribution beyond those included in
Sec. II is

σ HO
QED,1el = 2α2(Zα)3[−1.896 642 389 + GQED(Zα)]. (20)

In order to estimate the effects of the screening of the
one-electron QED correction by the second electron, we in-
troduce the screening factor ζscr basing on known results for
the logarithmic QED contribution σ

(5)
log . Specifically, we define

ζscr = −σ
(5)
log /[Z3 ln(Zα)] − c0

c0
, (21)

where c0 = − 32
9π

is the leading 1/Z-expansion coefficient (see
Table I). Using this screening factor, we estimate the QED
screening contribution as

σ HO
QED,1ph+ ≈ −ζscrσ

HO
QED,1el ± 30%. (22)

This estimate of uncertainty is supported by the complete
NRQED calculation of σ (5) for helium [12].

C. Nuclear magnetization distribution

Within the independent-particle approximation, the nuclear
magnetization distribution correction for the (1s)2 state is
twice the 1s hydrogenlike contribution, derived to the leading
order in Zα in Ref. [13]. Formulas presented in Ref. [13]
include both the finite nuclear size (FNS) and the nuclear
magnetization distribution [Bohr-Weisskopf (BW)] effects.

TABLE III. Individual contributions to the shielding constant in He-like ions, in units of 10−6.

Contribution 7Li+ 9Be2+ 17O6+ 43Ca18+ 73Ge30+ 129Xe52+

σ (2) 95.423 74 130.918 47 272.9155 698.924 1124.94 1906.0
σ (2,1) −0.013 36 −0.020 13 −0.0229 −0.029 −0.04 −0.0
σ (4) 0.158 52 0.359 23 2.7198 41.378 168.48 806.5
σ

(5)
log 0.001 79 0.004 24 0.0306 0.346 1.09 3.4

σ HO
rel,1el 0.000 04 0.000 23 0.0102 1.150 12.92 204.2

σ HO
rel,1ph+ 0.000 02 (2) 0.000 06 (5) 0.0010 (4) 0.041 (6) 0.29 (3) 2.7 (2)

σ HO
QED −0.001 53 (16) −0.003 90 (29) −0.0341 (12) −0.544 (8) −2.23 (4) −11.4 (5)

σ HO
BW −0.000 02 (1) −0.000 12 (6) −0.0029 (14) −0.148 (74) −1.13 (57) −10.8 (54)

σ 95.569 20 (16) 131.258 09 (30) 275.6172 (19) 741.119 (75) 1304.30 (57) 2900.5 (54)
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TABLE IV. Nuclear magnetic shielding constant σ for the ground state of heliumlike ions with the nuclear charge number Z and mass
number A.

Z A σ × 103 Z A σ × 103 Z A σ × 103

3 7 0.095 569 20 (16) 30 67 1.200 56 (43) 56 137 3.106 4 (64)
4 9 0.131 258 09 (30) 31 69 1.251 86 (49) 57 139 3.214 8 (69)
5 11 0.167 087 88 (50) 32 73 1.304 30 (57) 58 139 3.327 0 (74)
6 13 0.203 069 60 (79) 33 75 1.358 04 (65) 59 141 3.443 3 (79)
7 14 0.239 245 6 (12) 34 77 1.413 05 (74) 60 143 3.563 5 (85)
8 17 0.275 617 2 (19) 35 79 1.469 43 (83) 62 149 3.816 9 (99)
9 19 0.312 259 7 (29) 36 83 1.527 20 (94) 63 151 3.951 (11)
10 21 0.349 167 0 (44) 37 85 1.586 5 (11) 64 155 4.089 (12)
11 23 0.386 411 0 (63) 38 87 1.647 3 (12) 65 159 4.235 (12)
12 25 0.423 972 7 (88) 39 89 1.709 8 (13) 66 161 4.382 (13)
13 27 0.461 945 (12) 40 91 1.774 0 (15) 67 165 4.539 (14)
14 29 0.500 306 (16) 41 93 1.839 9 (16) 68 167 4.699 (15)
15 31 0.539 126 (22) 42 95 1.907 6 (18) 69 169 4.869 (16)
17 35 0.618 236 (38) 43 99 1.977 3 (20) 70 171 5.043 (17)
18 39 0.658 585 (48) 44 101 2.049 0 (22) 71 175 5.222 (18)
19 39 0.699 566 (60) 45 103 2.122 9 (25) 72 177 5.414 (19)
20 43 0.741 119 (75) 46 105 2.199 0 (27) 73 181 5.611 (20)
21 45 0.783 380 (92) 47 107 2.277 4 (30) 74 183 5.817 (22)
22 47 0.826 32 (11) 48 111 2.358 2 (32) 75 185 6.033 (23)
23 51 0.870 04 (13) 49 113 2.441 6 (35) 76 187 6.255 (24)
24 53 0.914 52 (16) 50 119 2.527 6 (39) 77 191 6.489 (26)
25 55 0.959 85 (19) 51 121 2.616 3 (42) 78 195 6.731 (27)
26 57 1.006 07 (23) 52 125 2.707 9 (46) 79 197 6.985 (29)
27 59 1.053 18 (27) 53 127 2.802 6 (50) 80 199 7.07 (12)
28 61 1.101 27 (31) 54 129 2.900 5 (54) 83 209 8.102 (42)
29 63 1.150 39 (37) 55 133 3.001 7 (59) 91 231 10.92 (13)

Removing the FNS part, we get

σBW,1el = 2

(
−2α(Zα)3

3

)[
m2r2

M + 4Zαm(rZ − 〈r〉)
]
, (23)

where rM and rZ are the magnetic and the Zemach ra-
dius, respectively, and 〈r〉 is the mean nuclear charge radius.
Within the Gaussian model for the nuclear charge distribution
ρC (r) = ρ0 exp(−3r2/2r2

C ) (and similar to the magnetization
distribution), we obtain

rZ =
√

8

3π

√
r2

C + r2
M, 〈r〉 =

√
8

3π
rC, (24)

where rC = 〈r2〉1/2 is the root-mean-square nuclear charge
radius.

For light nuclei with Z = 3 and 4, we use Eq. (23) with the
experimental values of the Zemach radii rZ (7Li) = 3.33 fm
[35] and rZ (9Be) = 4.04 fm [36]. For heavier nuclei, the
Zemach radius is not readily available from experiment. For
some nuclei, the 1s shielding BW correction was calculated
in Ref. [24] within the effective single-particle model of the
nuclear magnetization distribution. However, this model is not
universal and is applicable for some selected nuclei only. In
the present work we use Eq. (23) with the magnetic radius
expressed in terms of the charge radius by rM = √

3rC for
nuclear charges Z < 80. We find that with this choice of the
magnetic radius, Eq. (23) qualitatively reproduces results of
the single-particle model calculations of Ref. [24]. We esti-
mate the uncertainty of this approximation of the one-electron

BW correction to be 50%, which can be compared to the
30% uncertainty estimate of the single-particle model results
in Ref. [24]. For Z > 80, Eq. (23) is no longer adequate. We
thus apply the single-particle nuclear model as described in
Ref. [24] to compute the BW correction for several high-Z
ions, specifically, with Z = 80, 83, and 91. The effects of the
electron-electron interaction on the one-electron BW correc-
tions are estimated analogously to Eq. (22).

IV. RESULTS AND DISCUSSION

In this work we performed numerical calculations of the
nuclear shielding correction for the ground state of helium-
like ions for a wide range of nuclear charges. The nuclear
parameters were taken from Ref. [2] (magnetic moments),
Ref. [37] (charge radii), and Ref. [38] (masses). Individual
shielding contributions for selected ions are presented in Ta-
ble III. We observe that for the lightest ions, the dominant
theoretical uncertainty comes from the QED screening effect.
This uncertainty can be improved further by a calculation of
the nonlogarithmic α5 QED correction, as accomplished for
helium in Ref. [12]. For heavier ions, the largest theoreti-
cal uncertainty comes from the extended distribution of the
nuclear magnetic moment (the BW effect). This uncertainty
can in principle be improved by dedicated calculations of the
BW correction for specific nuclei with a microscopic nuclear
model [39]. An even better way is to use experimental values
of the effective Zemach radius r̃Z [35] obtained from the
hyperfine-splitting measurements. One can then use r̃Z instead
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of rZ in Eq. (23) and compute rM from Eq. (24). An additional
benefit is that this automatically accounts for some higher-
order nuclear effects included in r̃Z .

Table IV lists our theoretical predictions of the nuclear
shielding constant for heliumlike ions. We do not present
results for neutral helium since more complete calculations
are available in this case [12,13]. The absolute accuracy of
theoretical predictions for the shielding constant σ varies from
2 × 10−10 for Z = 3 to 1 × 10−4 for Z = 91. This accuracy
demonstrates the precision possible for determination of nu-
clear magnetic moments from heliumlike ions.

Summarizing, we performed calculations of the nuclear
magnetic shielding for heliumlike ions in the ground state.
By combining two complementary approaches, we obtained
results for a wide region of nuclear charges. Our calculations
confirmed the presence of a rare antiscreening effect for the
relativistic shielding correction. They also demonstrated the
importance of inclusion of the negative-energy part of the
Dirac spectrum in calculations of the nuclear shielding, es-
pecially for low-Z ions. In the future, the developed approach
can be extended to calculations of nuclear shielding in Li-like
ions, which are of immediate experimental interest [8,9,40].
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