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Electronic stopping of iron for protons and helium ions from first-principles calculations
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The electronic stopping power and charge state of protons and helium ions irradiating iron under both
channeling and off-channeling geometries are studied by first-principles molecular dynamics. Using real-time
time-dependent density functional theory, the inner-electron excitation of iron under ion irradiation is explored.
The calculated electronic stopping powers, which take into account the effects of inner-electron excitation,
were found to be in good agreement with experimental data. To further investigate the charges attracted by the
projectiles moving in iron, we introduced a modified method to decompose the charges into the occupations of
the respective projectile orbitals. When the projectile ion moves along off-channeling trajectories, the orbital
distribution of the charges attracted by protons is found to be unstable, while that of helium ions remains
relatively stable. However, it is worth noting that the orbital distribution differs between the channeling and
off-channeling cases for both protons and helium ions. Overall, our research provides insight into the electron
capture behavior of protons and helium ions as they traverse through iron.
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I. INTRODUCTION

The interaction between energetic ions and matter has
been an object of great interest since the last century [1].
As a fundamental physics research topic, its advancement has
abundant implications for nuclear materials related to fusion-
fission reactors [2–4], ion beam irradiation-based cancer
therapy [5–7], materials engineering for aerospace activi-
ties [8–10], etc. The energetic ions continuously deposit
kinetic energy as they travel in materials. There are two main
channels for the target material to gather kinetic energy of the
projectile ions: elastic collision with target nuclei and inelastic
energy loss due to electron excitation. The stopping power S
[the kinetic energy loss dE of the projectile per penetration
depth dx (S = −dE/dx)] is proposed to measure this energy
deposition quantitatively [11,12]. According to the mediums
of energy depositions, one can divide the stopping power S
into the nuclear stopping power Sn and the electronic stopping
power Se.

At lower ion velocities, Sn contributes significantly to the
energy deposition, which predominantly generates lattice dis-
placement. However, Se is also substantial via the excitation
of the outer electrons, which exhibits a particularly complex
behavior due to the electronic structure of the projectile-target
combination. The Se of metals for light ions, such as protons
and helium ions, is proportional to the velocity of the ions
in the low-velocity regime. For example, the Se of protons
in Al [13,14] is explained by the free electron gas (FEG)
model [15,16]. For transition metals, such as Cu, Zn, Au, Ag,
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and Pt [13,17–20], the Se exhibits pronounced deviations from
velocity proportionality, generally considering it caused by
the finite excitation threshold of d electrons. Meanwhile, this
deviation disappears for d-electron-poor transition metals,
such as Ti, Gd, and Ta [21,22]. Therefore, it is a fascinating
physical question of how the Se of transition metals with a
half-filled d band behave, and this study can lead us to achieve
a deeper understanding of the deviation from the velocity
proportionality of Se.

At higher ion velocities, the projectile ions lose most of the
kinetic energy by electronic stopping, and the inner electron
excitation provides additional channels for energy loss. In
this velocity regime, although light ions provide only a weak
perturbation to the target atomic electrons and the first-order
perturbation theoretical models [23–25] can describe the elec-
tronic energy loss precisely, it is still attractive to investigate
which inner-shell electrons are involved in the electronic en-
ergy loss [26]. For example, for the 2s and 2p electrons of
Si [27] and Al [28], the 3p electrons of Ni [29], and the 1s
electrons of H2O [30], etc., these results showed that inner
electrons offer non-negligible improvements in the electron
dynamics.

Another quantity of great interest is the charge state of
the projectiles interacting with solids. When an energetic ion
travels through materials in simulations, it is hard to separate
the charges captured by the ion from the materials, and one
can only artificially define a boundary. Even if an incident ion
has escaped from the materials, it is accompanied by bound
electrons. Recently, Kononov et al. [31] proposed a method
that uses the radial distribution of isolated hydrogen atomic
orbitals to linearly fit the radial distribution of the charges cap-
tured by protons after the proton escapes from an aluminum
target, thus decomposing the charges captured by protons into
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the occupations of hydrogen orbitals. This treatment opens a
different way to understand the fundamental physics of charge
capture.

In this article, we performed electron-ion dynamics sim-
ulation of protons and helium ions irradiating Fe and focus
on three issues: first, to explore the velocity proportionality
of the Se in the low-velocity regime; second, to investigate
the contribution of the inner-electron excitation to the Se; and
third, to obtain the orbital distribution of electrons captured
by the projectiles traveling in Fe for both channeling and
off-channeling trajectories.

II. METHOD AND COMPUTATIONAL DETAILS

In this work, real-time time-dependent density func-
tional theory (RT-TDDFT) [32–34] coupled with Ehrenfest
molecular dynamics as implemented in the real-space code
OCTOPUS [35,36] was used to simulate electron-ion dynamics
of protons and helium ions traversing in bulk Fe. A super-
cell including 108 Fe atoms is constructed from 3 × 3 × 6
conventional cubic cells, which was chosen to minimize the
spurious effects of the repetitions while keeping manageable
computational demands for a long off-channeling projectile
trajectory. Three-dimensional periodic boundary conditions
were used throughout in our simulations. A single k point (�)
was used for sampling in the Brillouin zone.

The norm-conserving Troullier-Martins pseudopoten-
tial [37] was used to describe the interaction between
the electrons and the ionic system for both projectiles
and host atoms in this simulation. Three pseudopotentials,
named Fe8 ([Ar]3d64s2), Fe14 ([Ne3s2]3p63d64s2), and Fe16
([Ne]3s23p63d64s2), were generated to investigate the inner-
electron excitation in the slowing down of the projectiles.
The local-density approximation (LDA) with Perdew-Wang
analytic representation [38] was employed for the exchange-
correlation potential. The external potential, electron density,
and Kohn-Sham orbitals are discretized in a set of mesh grid
points with uniform spacing of 0.16 Å, corresponding to a
grid cutoff of 107 Ry, along all three spatial coordinates
in real space in the simulation cell. The initial ground-state
Kohn-Sham orbitals are set up by diagonalization of the time-
independent Kohn-Sham Hamiltonian for Fe, and the initial
wave functions are constructed by the linear combination of
atomic orbitals method.

After obtaining the ground-state Kohn-Sham orbitals, an
ion is added to the simulated box and given a velocity with
a defined direction. The Kohn-Sham orbitals are propagated
according to the time-dependent Kohn-Sham equation using
the approximated enforced time-reversal symmetry (AETRS)
method [39]. The propagation step length �t × v ∼ 1.44 ×
10−3 Å is adopted for various velocities to ensure the energy
convergence of time-dependent evolution. The target atoms
fail to respond to the forces they experienced in time under the
femtosecond timescale simulations of the RT-TDDFT, so the
host atoms are fixed at their equilibrium positions and do not
move while the projectile is in motion. We adopted the method
proposed by Schleife et al. to extract the off-channeling Se, as
described in Ref. [28], by replacing the average of multiple
off-channeling trajectories with a long one; more details can
be seen in Fig. S1 of the Supplemental Material [40]. We used

FIG. 1. The Se of (a) protons and (b) helium ions in Fe in the
low-velocity range. The inset in (a) indicates the incidence geometry
of channeling projectiles, the red circles indicate Fe atoms, and the
gray circle suggests the projectile ion. The blue triangles refer to
the experimental database from International Atomic Energy Agency
(IAEA) [41] and the green curves refer to the SRIM [42]. The black
circles and red squares indicate the simulated results from channeling
and off-channeling trajectories, respectively. The black and red lines
indicate the linear fit of the channeling and off-channeling results,
respectively.

a velocity direction [0.444, 0.513, 0.735] (given normalized
here) for all the off-channeling simulations.

III. RESULTS AND DISCUSSION

A. The channeling stopping

In the low-velocity regime, the contribution of inner elec-
trons to the electronic stopping power is minimal when the
projectiles are channeling in Fe. Meanwhile, the pseudopoten-
tial radii of projectiles and host atoms are avoided to overlap
throughout the whole journey of projectiles, yielding more
accurate results. Figure 1 illustrates the RT-TDDFT calcu-
lated Se for protons and helium ions moving in Fe along
the [001] crystal orientation within a velocity range of 0.05
to 0.7 a.u. The incidence position is shown in the inset of
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Fig. 1(a), which is also referred to as hyperchanneling due
to its high-symmetry channel. Additionally, Fig. 1 includes
the RT-TDDFT off-channeling Se, experimental data [41],
and the stopping and range of ions in matter (SRIM) predic-
tions [42]. For all the RT-TDDFT simulations in Fig. 1, the
Fe14 pseudopotential was employed. The results of calcula-
tion of Se for channeled protons and helium ions are shown in
Fig. S2 of the Supplemental Material [40].

As shown in Fig. 1(a), the Se exhibits two types of be-
havior: First, the experimental data and calculated channeling
Se display two velocity-proportional slopes on both sides of
0.1 a.u., which is commonly referred to as the kink velocity.
This phenomenon can be explained by the fact that only the
s-band electrons near the Fermi energy are excited at lower
velocities, while the deeper d-band electrons are excited at
higher velocities. The excitation of these deeper electrons
provides an additional channel for electronic energy loss [12];
Second, the calculated off-channeling Se and SRIM predic-
tions show a linear velocity dependence. At higher velocities,
the off-channeling Se values agree quantitatively with the ex-
perimental data. The difference between the channeling Se and
experimental data decreases as the proton velocity decreases.
The channeling Se aligns well with the experimental data
at 0.1 a.u. and is about 30% lower than the experiment at
0.5 a.u. It is worth noting that the kink velocity disappears
as the impact parameter of the channeling proton decreases,
as shown in Fig. S3 of the Supplemental Material [40]. The
decrease in impact parameter directly affects the excitation
of deep-lying electrons, suggesting a connection between the
kink velocity and the excitation of these deep-lying electrons.

In contrast to protons, the behavior of helium ions shows
that both the channeling and off-channeling Se are pro-
portional to the velocity, as depicted in Fig. 1(b). The
off-channeling Se values agree well with the reference values,
while the channeling Se is underestimated by approximately
30% at a velocity of nearly 0.5 a.u. For d-electron-rich tran-
sition metals, such as Cu, Zn, and Ag [17,18], the Se for
both protons and helium ions exhibits deviations from the
velocity-proportional trend, but for d-electron-poor transition
metals, such as Ti, Gd, and Ta [21,22], the Se for both protons
and helium ions does not exhibit this deviation. However, for
the transition metal Fe, the d band is approximately half filled
with six d electrons per atom, and the Se of protons exhibits
the aforementioned deviation, while that of helium ions does
not.

One of the notable characteristics of the RT-TDDFT is its
ability to account for band structure effects in calculations.
We examined the distribution of the d band for transition
metals with different electronic configurations. As shown in
Fig. S4 of the Supplemental Material [40], filled by a few
electrons, the d band distributes mainly around the Fermi
energy as a conduction band. For the transition metals with
a fully filled d band, the d band is highly localized with a
band offset, such that a minimum energy is required to excite
electrons from the d band. Furthermore, for transition metals
such as Fe with a half-filled d band, the d band comprises
a few distinct peaks. To investigate the effects of the band
structure of Fe on electron excitation for protons and helium
ions in the low-velocity regime, the energy distribution of
excited electrons and holes is computed. By projecting the

time-evolved Kohn-Sham states ψ j (t ) at the final step of the
TDDFT simulation onto the Kohn-Sham eigenstates ϕi of Fe,
the occupations nocc(εi ) in the ih Kohn-Sham state with the
ground-state eigenenergy εi are obtained,

nocc(εi) =
∑

j

f j |〈ϕi|ψ j (t )〉|2, (1)

where f j are the fixed occupation of the time-evolved Kohn-
Sham states ψ j (t ). The populations of holes and excited
electrons, P(εi), are obtained as follows:

P(εi ) = nocc(εi ) − fi, (2)

where fi are the fixed occupation of the Kohn-Sham eigen-
states ϕi. The negative and positive values of P(εi) represent
the occupations of electron holes and excited electrons, re-
spectively. Summation over all electron holes yields the total
number of excited electrons N ,

N =
∑

εi<EF

|P(εi )|. (3)

Here, N is proportional to the time t spent by the ions moving
through Fe at a given velocity. Because, in our simulation,
the projectile is suddenly introduced into the material as a
bare ion at t = 0, it undergoes a charge capture process when
entering the material. Therefore, the P(ε) before achieving
charge equilibrium is subtracted to eliminate the effect of
charge exchange. The influence of charge capture on electron
excitation can be seen in Fig. S5 of the Supplemental Ma-
terial [40]. We take p(ε) = �P(ε)/�t to study the velocity
dependence of P(ε), where �t presents the time spent by the
projectiles from achieving charge equilibrium to the final step
of the TDDFT simulation.

Figure 2 shows the p(ε) at various projectile velocities
ranging from v = 0.05 to 0.20 a.u. in steps of 0.05 a.u. Based
on the behavior of p(ε), we divided the energy range into two
regions using dotted and dashed lines. The region below the
dotted line is labeled as region II, while the portion between
the dotted and dashed lines is denoted as region I. The total
number of holes in regions I and II, denoted as nI and nII,
respectively, is determined by integrating the p(ε) within these
regions. It is evident that the number of excited electrons in
region II increases more rapidly with velocity compared to re-
gion I. A notable difference between protons and helium ions
is observed when their velocities are set to 0.05 a.u. At this
velocity, protons fail to excite electrons in region II, whereas
helium ions do. However, as the velocity increases to 0.10 a.u.,
both protons and helium ions are capable of exciting electrons
in region II. This discrepancy may explain the presence of
a kink velocity in the electronic stopping power of protons,
unlike helium ions. Moreover, the proportion nII/nI is 0.03,
0.44, 0.73, and 1.32 for proton projectiles at velocities of 0.05,
0.10, 0.15, and 0.20 a.u., respectively, while it is 0.19, 0.48,
1.15, and 1.60 for helium ions. This suggests that a helium
ion possess a stronger ability to excite deep electrons. How-
ever, it is important to note that this conclusion is limited to
the current simulation environment, i.e., low-energy initially
fully bare projectiles moving along the [001] channel with the
maximum impact parameter.
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FIG. 2. The averaged excitation distribution p(ε) for (a) protons
and (b) helium ions traveling in Fe under channeling trajectory, for
velocities between v = 0.05 and 0.20 a.u. in steps of �v = 0.05 a.u.
The populations of holes and excited electrons, P(ε), before achiev-
ing charge equilibrium is subtracted to eliminate the effect of charge
exchange. As the number of electron excitations is proportional to
the time t , p(ε) = �P(ε)/�t is taken to study the velocity depen-
dence of P(ε), where �t presents the time spent by the projectiles
from achieving charge equilibrium to the final step of the TDDFT
simulation. The gray curves are the electronic density of states, and
the scale is different from p(ε). Gaussian broadening σ = 0.1 eV.

B. The off-channeling stopping

In RT-TDDFT calculations, the Se for a particular material
and projectile ion is mainly influenced by factors such as
ion velocity, incidence geometry, and inner-electron excita-
tion [43]. In experiments, the velocity direction of projectiles
within the material is uncontrolled, approximating to the
off-channeling incidence geometry in simulation calculations,
thereby allowing for direct comparison between the calculated
off-channeling Se and experimental data. Figure 3 demon-
strates the off-channeling Se values for protons and helium
ions in various valence-electron configurations of host atoms,
along with the experimental data [41] and SRIM predic-
tions [42]. Figure 3(a) presents the results for protons. The
contribution of the inner 3p electrons of Fe to Se is determined

FIG. 3. Electronic stopping power as a function of the velocity
for (a) protons and (b) helium ions projectiles under off-channeling
trajectories in Fe. Green solid lines result from SRIM [42] and blue
dots from the IAEA experimental database [41]. The RT-TDDFT
calculated results: (a) Open black circles represent the simulated
results of Fe8 and the solid circles represent Fe14. The solid red
and black circles present the cutoff radius of the 1s orbital of the
hydrogen pseudopotential, which is 0.49 and 1.25 a0, respectively,
and a0 is the Bohr radius. (b) Open black, solid black, and red circles
indicate our simulation results for Fe8, Fe14, and Fe16, respectively.
The lines are guides to the eye.

by comparing the results obtained from two pseudopoten-
tials, Fe8 and Fe14 (rc = 1.25 a0, rc is the cutoff radius of
the 1s orbital of protons). The calculated Se values for Fe8
are higher than the experimental data and SRIM predictions
below 1.0 a.u., but are significantly underestimated beyond
1.0 a.u. (by approximately 50% at 10.0 a.u.). The Se values
obtained from Fe14 and SRIM show excellent agreement in
the low-velocity regime. However, as the velocity exceeds
0.5 a.u., a noticeable difference arises between them, resulting
in an underestimation of the experimental data and SRIM
predictions by approximately 25% at 10.0 a.u. The role of
3p electrons in ion dynamics manifests in two ways: (i)
They correct the overestimated Se in the low-velocity regime,
which is commonly known as the “shake-up” effect [44], and
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(ii) they provide additional channels for electronic energy loss
at higher velocities.

After incorporating the effects of the 3p electrons, the
calculated Se still remains underestimated beyond the Bragg
peak. To further investigate the contribution of the 3s elec-
trons, the Fe16 pseudopotential is employed at a velocity of
2.0 a.u. However, this does not yield an improvement in the
obtained Se. Considering that a proton is a light ion and it is
challenging to excite the deep-lying electrons of the medium,
another proton pseudopotential is constructed by reducing the
cutoff radius of the 1s orbital from 1.25 to 0.49 a0. This modi-
fication increases the interaction potential between the proton
and target at close distances, resulting in a more pronounced
excitation of the inner electrons of host atoms. As depicted in
Fig. 3(a), the modification of the cutoff radius only affects the
high-velocity region (above the Bragg peak). Nevertheless,
the results exhibit a more satisfactory agreement with the ex-
perimental data. This quantitative agreement strengthens our
subsequent discussion of other physical problems and makes
it more persuasive. This adjustment of the cutoff radius ef-
fectively improves Se at the Bragg peak and higher velocities,
resulting in an increase of approximately 16% in Se at 10.0 a.u.

Figure 3(b) illustrates the Se of helium ions. The cal-
culated results obtained from three pseudopotentials exhibit
good agreement with the experimental data in the low-velocity
regime. However, the Se of Fe8 deviates from the refer-
ence values at 0.5 a.u., and it is severely underestimated by
about 40% at 10 a.u. In the case of Fe14, the quantitative
difference between the simulated and experimental values
becomes increasingly pronounced beyond 1.0 a.u., but this
difference diminishes beyond the Bragg peak. The excitation
of 3p electrons significantly improves the Se in the middle-
and high-velocity regimes, with an increase of about 50%
at 10.0 a.u., similar to the case of protons. For the Fe16
model, the Se agrees well with the experimental results below
the Bragg peak. Surprisingly, the difference in Se between
the Fe14 and Fe16 pseudopotentials is only observed
around the Bragg peak, suggesting that the 3s electrons play
an important role in this velocity region. In conclusion, the
excitation of inner-shell electrons of Fe exhibits different be-
havior for protons and helium ions. Helium ions, compared
to protons, can excite 3p electrons at a much lower velocity
(1.0 a.u. for helium ions versus 2.0 a.u. for protons). Ad-
ditionally, helium ions can significantly excite 3s electrons
near the Bragg peak, whereas protons cannot. According to
the classical pulse approximation, the momentum transferred
to a stationary charged particle by a fast ion with charge Z1

and velocity v is proportional to Z1/v. Helium ions transfer
more momentum than protons at the same velocity, enabling
them to excite 3p electrons at lower velocities. While the pulse
approximation is typically applicable at high velocities, our
simulations indicate its validity in explaining the response of
inner-shell electrons to ion irradiation, even at velocities as
low as approximately 1.0 a.u.

C. Charge state of projectiles

The charge state of ions within materials is a crucial
physical quantity in understanding the interaction of ions
with matter [45–47], while it is challenging to measure this

directly. First-principles simulations provide an opportunity
to investigate the charge state of ions in bulk materials. There
are generally two methods used to determine the charge state
of ions in materials. The first method involves manipulating
the Kohn-Sham (KS) orbitals [48–56], such as projecting
the Kohn-Sham orbitals onto atomic orbitals. However, this
method relies on noninteracting single-particle Kohn-Sham
orbitals and lacks rigorous physical interpretation. The second
method is based on integrating the electron density around
the projectile ions. This method requires the definition of a
boundary to differentiate between electrons captured by the
ions and those belonging to the target atomic system [57,58].
Typically, this boundary is defined artificially, which may lead
to the inclusion of bound electrons from the host atoms in the
captured electrons. Therefore, instead of attempting to obtain
an exact charge state, it is more informative to focus on the or-
bital distribution of the charges of projectiles as it can provide
a deeper understanding of charge capture behavior. Kononov
et al. [31] proposed a method to fit the radial distribution of
the charges captured by protons using a linear combination
of radial distributions of analytic hydrogen orbitals and back-
ground electron density. We extend this method to apply it to
projectile ions moving within materials.

Figure 4 illustrates the electron density along a line that
intersects the proton in both the x- and y-axis directions at a
specific moment while the proton is moving within Fe. The
figure shows that the moving proton, which attracts electrons,
does not significantly disrupt the surrounding electron density.
Consequently, the electron density around the projectile ion
can be divided into two components: one attracted by the
projectile ion (depicted as gray areas in Fig. 4) and the other
originating from the target system. The charge state of the
projectiles depends on the attracted electrons, and the electron
density of the target system can be considered as the back-
ground. Here, the term “attracted” was employed to describe
the phenomenon that electrons captured by the projectiles
undergo polarization within the material. In accordance with
the method described in Ref. [31], the radial distribution of
the attracted electrons can be expressed as a linear combi-
nation of the radial distribution of isolated projectile orbitals
using least-squares fits. To more accurately decompose the
attracted electrons into the occupation of the projectile’s or-
bital, a spherical region (bounded by the vertical dashed lines
in Fig. 4) is defined as the boundary, and its diameter is
determined based on the lowest electron density between the
projectile and host atoms.

The radial distribution n(r, t ) of the attracted electrons, in
units of e/a0, can be expressed as

n(r, t ) = 1

�r

∫
S[r,R(t )]

dr3[n(r, t ) − n(r, t0)], (4)

where the S[r, R(t )] is the spherical shell of thickness �r and
radius r, centered at the projectile’s position R(t). The n(r, t )
and the n(r, t0) are the electron density of the time-dependent
evolution and the original ground state, respectively. The ra-
dial distribution n(r, t ), integrated again over r, would obtain
the total number of electrons that are attracted. The electron
density in our simulations is represented by a real-space grid,

032807-5



XU-DONG ZHAO, FEI MAO, AND HUIQIU DENG PHYSICAL REVIEW A 109, 032807 (2024)

FIG. 4. The electron density on a line crossing the proton along
the (a) x and (b) y directions of the simulation cell when the pro-
jectile moves on an off-channeling trajectory in Fe at the velocity
of 0.2 a.u. The red dashed curves represent the electron density of
time-dependent evolution. The black solid curves correspond to the
electron density of the ground state on the same line. The blue solid
curves indicate their difference. The gray areas are the region where
we performed the electron orbital decomposition.

so Eq. (4) can be expressed in a discretized form as

n(ri, t ) = 1

�r

∑
ri−1<|r−R(t )|�ri

[n(r, t ) − n(r, t0)]�V, (5)

where ri = i�r ranges from 0 to 1.5 a0 and �V is the volume
of each grid cell. Considering the region defined in Fig. 4, we
select �r to be 0.3 a.u.

We fit the calculated radial distribution of charges attracted
by the projectiles to a linear combination of the radial dis-
tribution of the ground-state Kohn-Sham orbitals of isolated
H+ and He2+, as shown in Fig. 5. The resulting fits accurately
capture the simulated radial distribution, with R2 values above
0.97 for all our fits. The radial distribution of the ground-state
Kohn-Sham orbitals of isolated H+ and He2+ can be found in
Fig. S6 of the Supplemental Material [40]. In Fig. 5, certain
orbitals are not included, indicating that these orbitals have

(units of

FIG. 5. The solid blue circles show the simulated radial dis-
tribution of the electronic density captured by the off-channeling
(a) proton and (b) helium ion at the velocity of 0.2 a.u. The least
squares are used to fit the simulation results using the radial distribu-
tion of ground-state Kohn-Sham orbitals of the isolated proton and
helium ion, and the results are shown as curves.

no contribution [2p, 3p, and 3d orbitals in Fig. 5(a) and 2s,
3s, 3p, and 3d orbitals in Fig. 5(b)]. We conducted a more
precise test with a spacing of 0.10 Å, and the number of
valid simulated data points was increased to seven accord-
ingly, which showed a negligible change, as shown in Fig. S7
of the Supplemental Material [40]. Integrating fitted radial
distributions over r, the electron occupations for individual
orbitals can be obtained as follows:

nnl =
∫

nnl (r)dr, (6)

where nnl denotes the charges occupying an orbital with the
principal quantum number n and the angular quantum num-
ber l , and nnl (r) denotes the fitted radial distribution of the
charges of the orbital with the principal quantum number n
and angular quantum number l .

In Fig. 6(a), we present the charges decomposed into each
electron orbital of the proton, as determined by Eq. (6), when
the proton follows an off-channeling trajectory at a velocity
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FIG. 6. (a) The electrons attracted by the off-channeling proton,
decomposed into the 1s, 2s, 3s. and 3p orbitals of hydrogen, as a
function of projectile displacement at the velocity of 0.2 a.u. (b) First-
nearest-neighbor (NN) distance between the proton and host atoms
as a function of proton displacement.

of 0.2 a.u. Figure 6(b) illustrates the distance between the
proton and the first-nearest-neighbor host atom. The orbital
decomposition is performed where the target electron den-
sity is locally minimal, ensuring that the influence of the
surrounding host atoms on the attracted electrons is mini-
mal. The results reveal that the electrons attracted by the
off-channeling proton primarily occupy the 1s, 2s, and 3s
orbitals. The occupations of these orbitals exhibit significant
fluctuations as the proton moves and stabilize after the pro-
ton has traveled approximately 50 Å. Conversely, the total
charges fluctuate only slightly, indicating that the attracted
charges continually adjust their orbital distribution during
motion until reaching equilibrium. This observation suggests
that the electrons attracted by protons are sensitive to changes
in the environment, possibly indicating a polarization effect.
For high-velocity protons, the occupations in different orbitals
oscillate more vigorously and continue oscillating until the
end of the simulation, as demonstrated in Fig. S8 of the
Supplemental Material [40]. This behavior may be attributed
to the small energy interval between related atomic orbitals in
hydrogen, resulting in frequent electron transitions. The elec-
trons attracted by off-channeling protons at 1.0 a.u. amount
to approximately 0.65, which is consistent with the result for
protons in Al [31]. In comparison to protons escaping from
materials, the electrons that are attracted by protons within
materials occupy higher-n orbitals. The former predominantly
occupy the n = 1 orbital [31], while the latter are also dis-
tributed in the n = 2 and 3 orbitals at low velocities.

For the off-channeling helium ion at 0.2 a.u., as displayed
in Fig. 7(a), the majority of attracted electrons occupy the 1s
orbital of helium ions. The remaining electrons are mainly
found in the 2p and 3p orbitals, with occasional occupation
of the 2s and 3s orbitals during the motion of the projectile.
Unlike protons, the electrons in the 1s orbital of helium ions
are not significantly excited to other orbitals as the ions move.
This can be attributed to the larger energy separation between
related atomic orbitals of helium ions compared to protons,

N
o

.

FIG. 7. (a) The electrons attracted by the off-channeling helium
ion, decomposed into the 1s, 2s, 2p, 3s, and 3p orbitals of helium, as
a function of projectile displacement at 0.2 a.u. velocity. (b) First-
nearest-neighbor (NN) distance between the helium ion and host
atoms as a function of the helium ion’s displacement.

making electron transition less likely to occur. However, a
few electrons may still transition between high-n orbitals
during the projectile’s motion, possibly due to polarization
effects. At 1.0 a.u., the occupations in high-n orbitals dis-
play a noticeable increase, but primarily concentrate in the
1s orbital, as demonstrated in Fig. S9 of the Supplemental
Material [40].

The charge decomposition is also conducted for channeling
projectiles at 0.2 a.u., as shown in Fig. 8. In the case of the
channeling proton [Fig. 8(a)], the electrons in the 1s and 2s
orbitals are more stable. The total charges attracted by the
channeling proton remain the same as the off-channeling case,
as shown in Fig. 6(a), at approximately 0.7. For the channeling
helium ion [Fig. 8(b)], the total charges attracted amount
to around 0.8, with approximately 0.6 in the 1s orbital and
the remaining charges randomly occupying high-n orbitals.
Conversely, the total charges attracted by the off-channeling
helium ion at 0.2 a.u. are about 1.4 [as seen in Fig. 7(a)], with
approximately 1.3 in the 1s orbital and 0.1 in other orbitals.
This indicates that the total charges attracted by helium ions
depend on the trajectory of the ions. It is noteworthy that for
channeling projectiles at 0.2 a.u., the absolute charges are
0.3 for protons and 1.2 for helium ions. The difference in
absolute charges is likely the direct reason why low-energy
channeling helium ions can excite deeper electrons. In sum-
mary, the orbital distribution of electrons attracted by protons
is sensitive to the trajectories of the projectile ions, and the
trajectories of helium ions significantly influence the occupa-
tions of attracted electrons in the 1s orbital of helium ions
(approximately 0.6 electrons in the 1s orbital for the channel-
ing trajectory and approximately 1.3 electrons in the 1s orbital
for the off-channeling trajectory at 0.2 a.u.).

IV. CONCLUSIONS

In this study, we simulated the electron-ion excitation
dynamics of protons and helium ions in Fe using first
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FIG. 8. The electrons attracted by (a) channeling protons and
(b) helium ions, decomposed into the orbitals of n = 1, 2, and 3 of
projectiles, as a function of z coordinates at 0.2 a.u. velocity. Solid
black squares indicate the electrons attracted by proton and helium
ion projectiles. The colored symbols indicate the electrons in the
individual orbitals of the projectile. All data are obtained where the
projectiles are farthest from the target atoms.

principles based on real-time time-dependent density func-
tional theory. Our investigations have three main focuses.

First, the electronic stopping power of Fe is investigated when
the projectiles traverse along the channeling trajectory at low
velocities. Notably, the channeling Se of protons exhibited a
deviation from the velocity proportionality, a characteristic
not observed for helium ions. This disparity is attributed to
the stronger excitation power of helium ions, enabling them
to excite deeper d electrons at lower velocities.

Second, the off-channeling Se is calculated in a wide range
of velocities. The computed Se, accounting for inner-electron
excitation, aligned well with the experimental data up to the
Bragg peak. Furthermore, the use of different pseudopoten-
tials yielded fresh insights into understanding core electron
excitation. Specifically, the 3p electrons of Fe significantly
contribute to the Se in the middle- and high-velocity regimes
for both protons and helium ions. Additionally, a quantitative
description of the stopping maximum for helium ions neces-
sitated the inclusion of 3s electrons. In a word, the electrons
of Fe with n � 3 dominate the electronic stopping power of
protons and helium ions in Fe in a wide range of velocities.

Third, we expanded the electron decomposition method
proposed in Ref. [31] and applied it to the projectiles moving
in Fe. For the off-channeling projectile at 0.2 a.u., the charges
attracted by the proton primarily occupy the 1s, 2s, and 3s
orbitals, with unstable occupations in each orbital during
projectile motion. In contrast, the charges attracted by the
helium ion predominantly and stably occupy the 1s orbital.
For the low-velocity channeling projectiles, the occupations
of protons in each orbital remained stable, with the attracted
electrons mainly occupying the 1s and 2s orbitals. However,
the channeling helium ion attracts fewer 1s electrons, i.e.,
approximately half of those attracted by the off-channeling
helium ion.

This work examined the electronic stopping power in detail
for protons and helium ions in Fe, and the electrons attracted
by the projectiles moving in Fe are decomposed into the
occupation of projectile orbitals. Insights are provided to un-
derstand the electron excitation and charge transfer.
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