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We present a study of two-photon electron capture by H-like uranium ions. The energy of the incident electron
was chosen to be in the region with the most significant contribution of the dielectronic recombination. We
studied the photon emission spectrum. In particular, we calculated the differential over the photon energy cross
section including the main resonance groups corresponding to the cascade transitions, and the low-energy photon
region, where the infrared divergence required special processing. The calculations were performed within the
framework of QED theory. The importance of generalized Breit interaction was discussed. We investigated
the roles of the dielectronic recombination and the radiative recombination. We investigated the resonance
approximation and the single-photon approximation, which are commonly used to describe radiation spectra.

DOI: 10.1103/PhysRevA.109.032805

I. INTRODUCTION

The radiative electron transitions in ions and atoms are the
fundamental processes in atomic physics. The one- and two-
photon transitions determine the majority of possible radiative
transitions. The simplest system for observing such transitions
is H-like ions or a hydrogen atom. The one-photon transitions
are direct transitions which occur without formation of any
intermediate state, while the two- and more photon transitions
can proceed both through the formation (cascade transitions)
and without the formation (noncascade transitions) of inter-
mediate states.

The radiative transitions include processes in which an
incident electron emits one or more photons passing into a
bound state (radiative electron capture) [1] or into a contin-
uum state with lower energy (bremsstrahlung) [2,3]. The first
theoretical description of the two-photon mechanism was pre-
sented in Ref. [4]. Consideration of systems with two or more
electrons leads to the appearance of such types of transitions
in which the interelectron interaction can play a significant
role. The radiative transitions in such systems can also be
distinguished by the number of emitted photons and by the
formation of intermediate states. The role of the interelectron
interaction can be very different. In this work, we focus on ra-
diative transitions in which the interelectron interaction plays
a crucial role.

We consider the two-photon electron capture by H-like
ions. It is customary to distinguish two channels in this
process: radiative recombination (RR) and dielectronic re-
combination (DR). The RR is a nonresonant channel of
electron capture in which the electron is directly captured into
a bound state of the ion

e (e) + UM (1s) —» U (s, nl) + v, (1)

where e~ denotes the incident electron with the energy ¢, y
is the emitted photon, and n, [ correspond to the principal
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quantum number and the orbital momentum of the one-
electron state, respectively. In contrast, the DR is a resonant
channel in which the electron capture proceeds through the
formation of a doubly excited state:

e (e) + U (1s) —> U90+(nl, n'l')

\2
U (s, nl) + vy, 2)

where n, n’ > 2. The DR can make a significant contribution
to the cross section if the energy of the initial state is close to
the energy of some of the doubly excited states. We note that
the division of the process into these two channels is quite
conditional. The interference between these channels can also
be of importance.

The radiative electron capture in which only the RR chan-
nel makes a significant contribution has been extensively
investigated for many atomic systems [1,5,6]. In systems with
two or more electrons, the DR channel acquires special impor-
tance and attracts considerable attention from experimenters
[7-12]. It also plays a significant role in the description of the
laboratory plasma and that which is observed in astrophysics
[13]. The first measurements of the DR cross section were
reported in Refs. [7,8]. In these works, the theoretical predic-
tions about the large contribution of the Breit interaction and
the interference between the resonances were convincingly
confirmed experimentally. Recently, the energy spectra of the
emitted photon in DR have become the object of experimental
research. In the work [12], it was reported about the measure-
ment of photon emission spectra for the DR with Be-like lead
ions.

The DR was also extensively studied theoretically. In par-
ticular, the calculation of DR cross sections for the highly
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charged ions was presented in Refs. [8,14—19]. In the ma-
jority of these works, the process of electron capture was
considered within the single-photon approximation, i.e., only
the one-photon transitions to the singly excited states were
taken into account (2), while the further decay of the singly
excited states was not investigated. Hence, only the emission
of the resonant photon was investigated. Going beyond this
approximation was discussed in Ref. [18], where the process
was analyzed within the framework of the resonance approxi-
mation (with disregard for the noncascade transitions and their
interference with the main channel). In the most accurate ex-
periments on the DR [7,8], the cross section was measured by
recording the change in ion charge after the electron capture,
while the photon emission spectrum was not recorded. The
single-photon approximation quite precisely describes these
experimental data. However, it is not appropriate for the in-
vestigation of the photon emission spectrum. In this paper, we
study the photon emission spectrum of the electron capture by
H-like ions, without using such common approximations as
the single-photon approximation and the resonance approxi-
mation. In particular, we calculated the differential over the
photon energy cross section including the main resonance
groups corresponding to the cascade transitions, and the low-
energy photon region, where the infrared divergence required
special processing. We investigated the single-photon and the
resonance approximations, comparing their results with the
results of the full calculation, and discussed the conditions of
their applicability.

The two-photon transitions have many additional proper-
ties compared with the one-photon transitions, which leads to
their much wider participation in the atomic processes. Vari-
ous properties of two-photon transitions are an actual subject
of the experimental and theoretical research for both light and
heavy ions and atoms [4,13,20-30]. In this paper, we present
an ab initio QED study of the two-photon electron capture in
the presence of the DR channel using the example of uranium
ions. In particular, we show that the DR channel leads to
quantitative and serious qualitative changes in the total and
differential cross section.

The paper is organized as follows: In the next section,
we present the QED approach which was used for the cal-
culation. The third section is divided into sections, where
we present and discuss our results. First, we show the to-
tal cross section of the two-photon electron capture as a
function of the energy of the incident electron and discuss
the electron energy selected for further study. The resonance
structure of the differential cross section as a function of
the emitted photon energy is investigated. Then we discuss
the two-photon emission cross section for the low-energy
photons since the infrared divergence that occurs in this en-
ergy region requires a special approach. Furthermore, we
discuss the contribution of the DR channel to the differen-
tial cross section comparing it with the RR channel. Next,
we investigate the role of the Breit interaction in the emis-
sion spectrum. In the last two sections, we introduce and
study the resonance and single-photon approximation, com-
monly used to describe the radiation spectrum and total
cross section, respectively. In conclusion, we provide a brief
summary.
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FIG. 1. The Feynman graphs corresponding to the (a) one-
photon and (b) two-photon emission. The double line represents the
electron in the field of the atomic nucleus. The wavy lines with ar-
rows correspond to the emitted photons with the momentum 4-vector
(k) and polarization (). The letter n indicates the summation over the
complete Dirac spectrum (the electron propagator).

II. THEORY

We present an ab initio QED study of the two-photon elec-
tron capture. We performed the calculation of the differential
cross section depending on the energy of the emitted photon.
The considered process is schematically described as

e (&) + UM (ls) —» - = U (U +y +y, ()

where the initial state is the incident electron with the energy
¢ and the bound 1s electron. The final state is the two-electron
ion in the ground (1s)* state. A special attention is paid to
the energy region of the emitted photon where the electron
capture proceeds through the formation of one of the singly
excited states. In this case, the process can be described as

e (e) + U2 (1s) »> U (1s, nl) + y

l
U (1s)> +y + . 4)

In the DR channel, this process proceeds through the addi-
tional formation of a doubly excited state,

e () + UM (1s) — U (nl, n'l")
- UUs, il +y - U’ +y +9, (5)

where n, n’ > 2. The process of the two-photon electron cap-
ture (3) including its subprocesses given by (4) and (5) is
treated uniformly as a composite process.

The relativistic units are used throughout the paper unless
otherwise stated.

The cross section of the two-photon electron capture was
calculated with the use of the line-profile approach (LPA). A
detailed description of LPA is presented in Ref. [27]. In this
work, we generalize this method for the two-photon electron
capture and present the main points of this approach. The
one- and two-photon emissions in H-like ions are given by the
Feynman graphs depicted in Fig. 1. The Feynman graphs de-
scribing the two-photon emission with one-photon exchange
correction are presented in Figs. 2 and 3.

The Furry picture [31] was used in which the interaction
of electrons with the electric field of the atomic nucleus was
fully taken into account. The two-electron wave functions
of the final (1s)? state and all the intermediate states in the
zero-order perturbation theory are expressed in the j — j
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FIG. 2. The Feynman graphs corresponding to the one-photon
emission in He-like ions. The wavy line between the vertexes gives
the photon propagator. The other notations are the same as in Fig. 1.

coupling scheme

(0)
JMny jiling joly (ri,r2)

=Ny C i det (W tim, 1) Yinsjotam, (12) ), (6)

mymy

where the one-electron wave functions 1, j;,, are the solutions
of the Dirac equation, n, j, m denote the principal quantum
number (or the energy in the case of continuum electrons),
the total angular momentum and its projection, respectively.
Furthermore, J and M are the total angular momentum of the
two-electron configuration and its projection, N is the nor-
malizing constant, which is equal to 1/+/2 for nonequivalent
electrons and to 1/2 for equivalent electrons. The symbols
denote the Clebsch-Gordan coefficients [32].
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FIG. 3. The Feynman graphs describing the two-photon emis-
sion with the photon exchange. The notations are the same as in
Fig. 2.

The initial state of the electron system [ls and e~ (¢)] in-
cludes the incident electron with the certain momentum p and
polarization p (in the asymptotic r — 00). Its wave function
can be written as

0)
lIJnjlm yn

1
(ri,r) = E det{Vjim(ro), ¥pu )}, (1)

where ¥, ji,, is the wave function of the bound electron, ¥, is
the wave function of the continuum electron. It is convenient
to represent this wave function as an expansion over the wave
functions in the j — j coupling scheme,

0) _ }: JM
\pnjlm,p;/.(rl’rZ) - /dG C]mjm
IM j'U'n!
X dyr o iy WO (r,r), (8)
pi€jUm = ppjlejrr 1 12

where the coefficients ap,, ¢y read
(27T)3/2
/D€

Apu.ej'l'm = e [QJ "'m (P)Uu(P)]fS(G —-¢), (9
Q;Sl/m/(p) is the spherical spinor, v,(p) is the spinor with
projection p on the direction of the electron momentum p,
the phases ¢ are the Coulomb phases, and ¢ is the energy of
the incident electron [33].

The interelectron interaction plays an essential role in the
formation of doubly excited (autoionizing) states. Therefore,
it should be taken into account accurately. The doubly excited
states are usually quasidegenerate. Accordingly, the quaside-
generate QED perturbation theory should be used for the
description of the DR process. Applying the quasidegenerate
perturbation theory within the LPA, we introduce a set of
two-electron configurations (the set g) which includes the
reference state (the initial state, final state, and some of the in-
termediate states corresponding to the considered resonances)
and all the two-electron configurations with the energies close
to the reference states. For taking into account the interaction
of the reference states with the quantized fields, the matrix V
is introduced which is determined by various QED corrections
and is derived order by order within the framework of the
QED perturbation theory [27]. In this work, the matrix V
includes the Dirac energies, the electron self-energy correc-
tion, the vacuum polarization correction, one- and two-photon
exchange corrections. It is convenient to present the matrix V
as a block matrix

AV

_ (Vi Vi2) _ Vl(lo)-l-AVn (10)
Vor Vo AVyy V;§)+AV22’

where matrix Vj; is defined on the set g. The matrix Vj; is a
finite matrix and can be diagonalized numerically,

vi®=8"vB, B'B=1L (11

Then, the standard perturbation theory can be applied to the
diagonalization of the infinite matrix V. The reference states
are described by the corresponding eigenvectors of this matrix
[19]:

kont {
=Y B, ¥+ Y [AV]

g”g 0) .
5 ED g
koeg kégl.cg

(12)
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where n, = (JM ji joliloniny) is a complex index representing
the complete set of quantum numbers describing the reference
state ng, the indices k, [, describe the two-electron configu-
rations: the index I, runs over all configurations of the set
g; the index k runs over all configurations not included in
the set g (this implies the integration over the positive- and
negative-energy continuum). Here, E,EO) is the energy of the
two-electron configuration in the zeroth order: the sum of
the one-electron Dirac energies. The eigenvectors @, corre-
sponding to the reference states are used for the calculation of
the amplitude of the process under consideration. The eigen-
values 8,,3 =E, — %1",,3 are complex, where E,,, is interpreted
as the energy of the corresponding energy level (with the
interelectron interaction and QED corrections are taken into
account) and I',, is the width of the energy level. The calcula-
tions of the energy levels for the He-like ions were presented
in works [19,34-37].

Within the LPA the amplitude of the two-photon electron
capture is expressed as [27]

(1) 1y (A),,
EF+(,()1 —EN + éFN

(A(kz’)LZ)*)FN(A(k]’)hl‘)*)NI (13)
EF+(,()2—EN+%FN ’

UFIZZ
N

+

N

where Er is the energy of the final state of the electron system
and the two-electron matrix element of the photon emission
(A%, reads

AR p = e/d3r1d3r2 Dy(ry, 12)

« [y(l)vAl()k,A)*(rl) 4 y(z)“Af,k'”*(rz)]
x ®p(ry, rp). (14)

In Eq. (14) yO" are the Dirac y matrices acting on the
one-electron wave function of the argument r;. The photon
wave function A®»" = (A% A®D) in the transverse gauge
reads

2 .
A(()k’*)(r) =0, A®NV(@) = /%ezkre()»), (15)

where k is the photon wave vector, w = |k| is the photon
energy (frequency), e is the polarization vector.

The summations in Eq. (13) run over the complete ba-
sis set constructed from the two-electron functions Eq. (12).
However, in this work, it is sufficient to take into account
only the two-electron (n;l;, nyly) states where the principal
quantum number n; of the first electron is equal to 1 and 2.
The quantum numbers of the second electron run over the
complete Dirac spectrum.

The fully differential cross section is connected with the
amplitude as

d*o 5y + Eit En)|U |2£ a)%a)%
—————— =§(w+w — - )
dod 2 dand$, P T R oy

(16)

where E;, Ep are the energies of the initial and final states of
the electron system, respectively, and €2; and €2, are the solid
angles of the emitted photons.

Accordingly, the differential cross section of the two-
photon electron capture is given by

do 1 d*o
4o _ 2 dandQd9——2% (17
daoy 4;; @dd8 e d, D

SMp Ay, A2

The energies of the emitted photons are limited by the
interval determined by the energy conservation law

w) + wy = Ey — Ef. (18)

The photon energy spectrum is continuous and limited by
the energy range [0, wmax], Where wmax = Ej — Erp. We note
that if one of the photons is registered, then the energy of the
second one is determined by Eq. (18). Since the two-photon
states (ki, A1; ko, Ap) and (k,, Ap; k1, A1) are identical, the dif-
ferential cross section (17) is symmetric with respect to the
center of the energy interval [0, wmpax]-

The summation over the complete Dirac spectrum was
performed using a finite basis set for the Dirac equation con-
structed from B splines [38,39]. The implementation of this
method for the two-electron system is described in our pre-
vious work [37]. The real part of the electron self-energy
correction was taken into account with the use of Ref. [40].
The imaginary part of the electron self-energy corrections,
the vacuum polarization corrections, one- and two-photon
exchange corrections were taken into account by direct cal-
culation. The calculation accuracy of the energies of the
two-electron configurations for (nl,n'l’) with n,n’ <2 is
about 0.5 eV and it becomes worse for configurations where
nand/orn’ > 2.

III. RESULTS AND DISCUSSION

We theoretically study the two-photon electron capture by
H-like highly charged ions using the uranium ions as an ex-
ample. We have calculated the differential cross section with
respect to the energies of the emitted photons. Particular atten-
tion was paid to the collision energies at which the DR makes
a significant contribution to the cross section. The calculations
were performed in the rest frame of the ion.

A. Dielectronic recombination

The DR is a resonant channel of the electron capture which
proceeds through the formation of a doubly excited state. The
corresponding total cross section shows resonances at the in-
cident electron energies, at which the energy of the initial state
approaches the energy of one of the doubly excited states. In
Fig. 4 we present the total cross section [the solid (black)
curve] of electron capture for the DR energy region for the
uranium ions. The resonances of the cross section demonstrate
the contributions of the particular doubly excited states which
are indicated by the vertical dotted (black) lines. For a detailed
study of the photon emission spectrum and the effect of the
DR, the collision energy was selected in such a way that it cor-
responded to the strongest resonance of the cross section. This
energy is indicated by the vertical dashed (blue) line in Fig. 4
and is equal to 63.924 keV. The dashed (red) curve represents
the results obtained within the framework of the single-photon
approximation, which is discussed in the Sec. III'F.
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FIG. 4. Total cross section (in kbarn) of the electron capture as
a function of the kinetic energy of the incident electron for uranium
ion. The solid (black) curve corresponds to the total cross section of
the two-photon electron capture to the ground state. The dashed
(red) curve represents the total cross section calculated within the
single-photon approximation (only the capture to the single excited
state with total angular momentum J # 0 are taken into account, see
Sec. I F). The dotted (black) vertical lines show the positions of
the DR resonances corresponding to the doubly excited states. The
dashed (blue) vertical line indicates the kinetic energy of the incident
electron, chosen for the study of the differential cross section of
two-photon electron capture

In Fig. 5, we present the two-photon emission differential
cross section with respect to the energy of the emitted photon
[the energy of the paired photon is determined by Eq. (18)].
Accordingly, the emitted photon energy is limited by the in-
terval [0, wmax] and the differential cross section is symmetric
with respect to the center of this interval. The noticeable
resonant structure indicates the various cascade transitions,
i.e., the transition from the initial state to one of the singly
excited (1snl;); states:

UM (1s) + e (e) — UM (Is, nlj); + y

!
U (1s)? +y + 7/, (19)

where 2 <n <5, 0<I1<4, and J > 1. The intermediate
states with J = 0 do not contribute to the considered two-
photon recombination [with the final (1s)? state], since such
states decay to the ground state with emission of two or more
photons. The accuracy of the resonance positions is given by
the accuracy of the calculated energies, which are determined
by the QED corrections taken into account (see the end of
Sec. IT). This accuracy exceeds the resolution of the presented
figures. The calculation accuracy of the differential cross sec-
tion can be estimated from the accuracy of the total cross
section obtained after integration over the photon energy.
Our results on the total cross section are in good agreement
with the results of previous studies and experimental data
[8,17,18]. Comparing these results with Fig. 4, we conclude
that the accuracy is better than 5%.

The cut-out energy regions on the upper panel of Fig. 5
contain an infinite number of resonances corresponding to the
states with n > 5. When n — o0, the positions of the reso-
nances (w,) corresponding to the (1s, nl;), states approach the
kinetic energy of the incident electron (w, — &), in the left
half of the energy interval, and tend to wmax — €k in the right
half. At the left and right edges of the energy interval, we can
see a smooth behavior of the differential cross section. These
parts represent radiative transitions to the lower energy con-
tinuum states (the bremsstrahlung) and the following radiative
recombination to the ground state:

U Us)+e(e) » UHUs)+e () +y

l
U (1) +y + v/, (20)

where ¢’ < &. On the lower panel of Fig. 5 we present in detail
four energy intervals with cascade resonances corresponding
to the singly excited states with n = 2-5. The contribution of
cascade transitions as well as the background value between
the neighboring groups of peaks decreases with an increase
of the principal quantum number n. The latter is mainly due
to the interference between the groups of peaks. This is dis-
cussed in Sec. III C.

B. Treatment of the infrared divergence

Special attention should be paid to the emission of low-
energy photons (soft photons) since the infrared divergence
is manifested there [41,42]. The reason for the infrared di-
vergence lies in the use of the standard QED perturbation
theory, which is based on the assumption that with an increase
in the number of interactions between the quantized fields,
the contributions of the corresponding terms decrease. This
condition is not fulfilled when we consider the emission of
soft photons [42]. Accordingly, the consideration of the en-
ergy region of the soft photon requires a reformulation of
the QED perturbation theory. The corresponding procedure is
discussed in Refs. [41-43]. In Fig. 6 we explore the soft pho-
ton region for uranium ion in detail. The dashed (red) curve,
marked as “full,” shows the cross section calculated within the
framework of the standard QED perturbation theory. We can
see that the cross section tends to infinity as the photon energy
goes to zero. It can be deduced that the divergence part of the
cross section has the following behavior:

do 1
— x —, ®—0, (21)
do

which leads to logarithmic divergence of the total cross
section. In the one-electron case, the reformulation of the
perturbation theory can be reduced to the subtraction of the
regularization term, in which the wave function of a con-
tinuum electron (moving in the field of an atomic nucleus)
is replaced by the wave function of free electron [44]. In
the two-electron case, a similar procedure can be applied. In
the region of soft photon energies, the role of interelectron
interaction for the initial and final states is relatively small
(because cascade resonances are located far from this region).
If the interelectron interaction is negligible, then the cross sec-
tion in the two-electron case can be quite accurately reduced
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FIG. 5. Differential cross section (in barn/keV) of the two-photon electron capture depending on the energy of one of the emitted photons
for uranium ion. The energy of the other photon is determined by the energy conservation law. Total photon energy of the both emitted photons
is 193.488 keV. The electron kinetic energy is x = 63.924 keV, which is close to the DR resonances corresponding to the (2p,» )2, (252p; 205

and (252p; ), states.

to a cross section for the one-electron case with an additional
factor 1/2, which arises due to the different statistics for the

1.0)(10-2 - 1 1 1 1 1 1
" — — - full calculation
N - IR

full calculation w/o IR| |

8.0x107

6.0x107

4.0x107

cross section do/dw (barn/keV)

2.0x107

diff

0.0 T T T T T T

photon energy o (keV)

FIG. 6. The differential cross sections (in barn/keV) of the two-
photon electron capture by H-like uranium ion with and without
elimination of the infrared divergence. The dashed (red) curve corre-
sponds to the differential cross section calculated with the amplitude
in Eq. (13). The dotted (red) curve represents the divergence part
of the dashed curve calculated by Eq. (22). The solid (black) curve
corresponds to the differential cross section after eliminating the
infrared divergence (the difference between the dashed and dotted
curves).

initial and final states in these cases. Accordingly, following
this procedure, the regularization term reads

(sln —Zp)aly,

where o'!7 denotes the total cross section of the one-photon ra-
diative recombination to the ground state for the one-electron
case. The cross section calculated with the replacement of the
wave function of the continuum electron by the wave function
of the corresponding free electron is represented in Fig. 6 by
a dotted (red) line, marked as “IR.” The solid (black) curve,
marked as “full w/o IR,” gives the result of subtracting the
regularization term from the cross section calculated within
the framework of the standard QED perturbation theory. The
subtracted regularization term (after integration over the low-
energy photons) can be canceled with the infrared-divergent
term arising from the radiation corrections to one-photon re-
combination of emitting electrons [43].

dO.IR

dw; - 27 pw;

o E+p

€—p

(22)

C. Contribution of the dielectronic recombination channel
to the differential cross section

In this study, the initial energy of the system (the incident
electron and the bound 1s electron) is chosen so that it is
close to the energies of doubly excited (21, 21") states. This
condition can be written as

E; ~ E(21,20)). (23)
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FIG. 7. Differential cross section (in barn/keV) depending on
the energy of one of the emitted photons. The solid (black) curve
corresponds to the full calculation (same data as in Fig. 5). The
dashed (red) curve represents the separated contribution of the DR
channel. The dotted (blue) curve shows the separated contribution of
the RR channel.

Therefore, the electron recombination occurs mainly
through the DR channel, i.e., through the formation of the
doubly excited states. The fulfillment of the DR resonance
condition Eq. (23) is manifested in an increase in the total
cross section (see Fig. 4). In Fig. 7 we present separately the
contributions of the DR and RR channels to the differential
cross section. The RR channel is determined by disregarding
the contributions of the doubly excited states in the full cal-
culation. The amplitude of the DR channel is defined as the
difference between the full amplitude and the amplitude of the
RR channel. For the chosen energy of the incident electron,
the interference between the DR and RR channels is generally
very small, even in the photon energy regions where the DR
and RR have similar values.

The most significant contribution to the DR channel is
made by the singly excited (1s, 2/) states. This can be seen
from the following: (i) the DR channel proceeds through the
formation of the (21, 21”) states; (ii) the most significant transi-
tions are the E'1 transitions in which only one of the electrons
changes its quantum numbers. Accordingly, the main contri-
bution to the DR channel is given by the following transitions

U2 (1s) + e (g) — UH (2L, 21)
!
U (1s,20) + y(E1)

J
U1 + y(ED+y'. (24)

1 1 1 1 1
————— £,=63.795 keV
£,=63.924 keV/| F

£,=64.100 keV
10° 5 3

100

(1s,2s),

104 4 (18,2py0)4

diff. cross section do/dw (barn/keV)

1004 B T L

T T
95.8 95.9 96.0 96.1 96.2 96.3
photon energy o (keV)

FIG. 8. Differential cross section depending on the energy of one
of the emitted photons. The solid (blue), dotted (green), and dashed
(red) curves correspond to the kinetic energy of the incident electron
& = 63.924, 64.1, and 63.795 keV, respectively. The small inset in
the upper-left corner shows the total cross section as a function of
the incident-electron energy (see Fig. 4), where the chosen electron
energies are indicated by vertical lines of the corresponding color.

In the RR channel, the initial state can effectively de-
cay through any singly excited state. Thus, the DR channel
is significantly suppressed in the photon energy region cor-
responding to the (1s,3l), (1s,4l), and (ls,5]) cascade
resonances. We note that the contribution of the DR channel
to the total cross section is dominant (see Fig. 4) due to the
particularly large contribution of the resonance group (1s, 2/).
Figure 7 demonstrates that the Fano structure is more promi-
nent in the DR channel than in the RR channel. We can expect
that the Fano structure is more noticeable for lighter ions,
where the DR channel is stronger relative to the RR channel.

It is worth considering in more detail the region of photon
energy where the DR channel is not suppressed by the RR.
To differentiate the contributions of the RR and DR channels,
we present the calculation results for several characteristic
energies of the incident electron. In particular, in Fig. 8 the
differential cross sections for the three selected energies are
presented: (i) the solid (blue) curve corresponds to the energy
of the main resonance; (ii) the dotted (green) curve corre-
sponds to the energy of the smaller resonance corresponding
to the (2s)? state; (iii) the dotted (red) curve shows the differ-
ential cross section for energy far from DR resonances. The
spectrum corresponding to nonresonant energy varies slowly
with the energy and, accordingly, represents a large region
of nonresonant energies of the incident electron. In the inset
in the upper-left corner, we show the total cross section (see
Fig. 4) with vertical lines indicating the selected energies of
the incident electron. We can see that, in general, the differ-
ence in the energies of the incident electrons is manifested in
an overall increase or decrease in the cross section. The DR
contribution increases the cross section by about 10 times.
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FIG. 9. Differential cross section (in barn/keV) depending on
the energy of one of the emitted photons. The solid (black) curve
corresponds to the full calculation (the same data as in Fig. 5). The
dashed (red) curve represents the result of the calculation without
Breit interelectron interaction.

D. Importance of the Breit interaction

The interelectron interaction plays a crucial role in the DR
channel. In particular, the contribution of the Breit interac-
tion to the (differential) cross section is significant. In Fig. 9
we show our results that demonstrate the role of the Breit
interaction in the two-photon electron capture. We present a
differential cross section calculated taking into account both
the Coulomb and Breit (including the retardation [34]; the
so-called generalized Breit interaction) parts of the interelec-
tron interaction, and also separately present the results of the
calculation performed without the Breit interaction.

We can conclude that the Breit interaction affects the differ-
ential cross section in three different ways. First, it contributes
to the energies of the singly and doubly excited states. This
leads to the noticeable shift of both the positions of the
cascade resonances in the differential cross section and the
positions of the DR resonances in the total cross section.
Second, the Breit interaction determines the so-called Breit
width of the energy levels, which is of great importance for
some singly and doubly excited states [45]. We see that dis-
regard of the Breit interaction brings a significant change in
the widths of some resonances, which can also cause some
resonances to become unnoticeable (e.g., the sharp resonance
located near the energy of 93 keV in Fig. 9). Third, it is
the direct contribution of the Breit interaction to the rate of
the formation of doubly excited states, since the formation
occurs due to the interelectron interaction. Disregarding the
Breit interaction usually leads to a decrease in this rate, which
reduces the DR resonances of the total cross section. We see
that the role of the Breit interaction is most significant for

the cascade resonances corresponding to (ls, 2/) states and
decreases for other (1s, nl) states as the principal quantum
number n increases. This is explained by the fact that the
average orbital radius of the one-electron states increases with
the n (as n?) and, consequently, the average interaction with
the electric field of the atomic nucleus decreases. This makes
electrons less relativistic and less sensitive to the QED effects,
in particular, to the Breit interaction.

E. Resonance approximation

The line profile corresponding to a single resonance can
be effectively interpolated by the Lorentz profile. Using this
approach for a group of resonances leads to neglect of their
interference [46,47]. Here we introduce an appropriate ap-
proximation, which we call the resonance approximation. We
can see in Fig. 5 that the main contribution to the differential
cross section is made by states corresponding to the cascade
transitions. In general, these are the singly excited (1s, nl)
and the doubly excited (nl, n'l") states with the energies in
the region [Ef, E;]. The resonant approximation includes:
(i) retaining only the cascade states in the summation over
intermediate states in Eq. (13); (ii) neglecting the interference
between the contributions of the retained states. The imple-
mentation of the resonance approximation for the differential
cross section yields

d*o® _¢ w%w% ! |(A;ckl,kl)FN|2|(A;ckz,kz)N1|2

dendQudQn — p 2y 4\ (EBp+ o — En)? + 113

|( zz,)\z)FN|2}(Altl,)\l)N1‘2
(Er — w1 — En)* + 3T}

+ , (25)

where the summation over the intermediate states in the
amplitude Eq. (13) is replaced by the summation over the
individual contributions of these states to the differential cross
section. The prime at the summation means that it runs only
over the singly and doubly excited states with the energies
within the region [Er, E;]. In Fig. 10, we compare the results
obtained within the resonance approximation with the results
of the full calculation. The contribution of the noncascade
terms is represented by a dash-dotted (blue) line. Its relative
contribution is quite small. We can see that the resonance
approximation is very accurate in the vicinity of every in-
dividual resonance. It also gives quite reasonable results in
the energy region of the same resonance group. However,
this approximation becomes inapplicable when moving away
from resonances, especially for the region between the groups
of resonances. Since the Fano structure is determined by the
interference between the resonances, it can arise only beyond
the resonance approximation. In the energy region of the same
resonant group, the resonant approximation can both increase
and decrease the differential cross section, revealing the de-
structive and constructive role of interference. In the energy
region between resonance groups, the resonant approximation
significantly increases the cross section, revealing the destruc-
tive role of the interference between the resonances.
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FIG. 10. Differential cross section (in barn/keV) depending on
the energy of one of the emitted photons. The solid (black) curve
corresponds to the full calculation (the same data as in Fig. 5). The
dashed (red) curve represents the result of the calculation obtained
within the resonance approximation. The dotted (blue) curve corre-
sponds to the calculation where only the noncascade terms are taken
into account.

F. Single-photon approximation

In the experiment on the DR with H-like uranium ion [8],
the electron capture was registered by charge change of the
ions

U (1s) + e(e) — UH (21,20

1
U™ 1) +y+y +--. (20)

So, the emitted photons were not detected in this experiment.
Only the number of ions with changed charge was measured.
The main contribution to this process was made by the elec-
tron capture to the singly excited states. The major theoretical
studies considered only a part of this process

U (1s) + e(e) — U (21,210

l
U (1s,2) + y, (27

where the emission of the second and other photons was
neglected. The calculated cross section for the one-photon
transitions was used for the description of the experimental
data. The obtained theoretical and experimental results are in
good agreement [8]. The absence of further transitions from
the singly excited states to the ground state determines the
single-photon approximation. This approximation was first
considered in Ref. [18], and calculations of some properties
of this process beyond the single-photon approximation were
presented within the quasirelativistic approach.

In this section, we investigate the single-photon approxi-
mation. To apply it for the two-photon electron capture, we do
the following: (i) use the resonance approximation introduced
in Sec, IIIE; (ii) perform integration over the energy of one
of the emitted photons in the expression for the differential
cross section (25). Within the single-photon approximation,
the differential cross section for the two-photon electron cap-
ture reads

oy _s~dof N
dQ, — A}, I'n

The detailed derivation is presented in Appendix A. The
differential cross section do'V3Y/dQ, is defined by
Eq. (A7). Its physical meaning is the cross section of the
electron recombination into the state N with the one-photon
emission. The width I'y is the total width of the state N, and
F,(VIV’N%F) denotes the partial one-photon width correspond-
ing to the transition of the singly excited state N to the final
state F'.

The total width of the singly excited states (I'y) is deter-
mined by the radiation width. In the case of the singly excited
states with the total angular momentum not equal to zero
(J # 0), the total widths are determined by the one-photon
widths 'y ~ F,(vl”). For the (1s,2l) states, the one-photon
widths are determined by one-photon transitions to the ground
state ") ~ (""", Therefore, we can substitute unit
for the fraction T'\""" 7" /T'y. For the (1s, nl) states with
n > 3, we also substitute a unit for this fraction within the
one-photon approximation. However, for the (1s, nl) states
with n > 3, this may lead to a loss of accuracy. Since we are
considering the two-photon electron capture, the intermediate
singly excited states N with zero total angular momentum do
not contribute, because they cannot decay to the ground state
by emitting a single photon. Accordingly, the cross section of
the two-photon electron capture within the single-photon ap-
proximation can be written as

doj_r ~ Z d a,(lxppm) (29)
d<2, ds2, ’
N(J#£0)

where the summation runs over the singly excited states with
nonzero total angular momentum.

It is useful to consider the capture of an electron with the
emission of two or more photons. In this case, by integrating
the energies of all the emitted photons, integrating over the
angular variable, and summing the polarizations of all the
emitted photons, except the angular variables and polarization
of the resonant photon, which corresponds to the transition
from I — N, we come to the expression

(1y approx) ~(N—F) (1y approx)
do 'y do;_/y

dojr I—>N
<, _XN: dQ, I'n NXN: a2,

(30)

In this case, since many photon transitions have been taken
into account, FI(VN_)F) ~ ['y becomes a good approximation
for all the singly excited states.

So far, we have not considered electron capture to the
ground state with the emission of a single photon. However,

032805-9



LYASHCHENKO, ANDREEV, AND YU

PHYSICAL REVIEW A 109, 032805 (2024)

diff. cross section
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FIG. 11. Differential cross section as a function of the polar
angle of the emitted photon. The solid (black) curve corresponds to
the full calculation. The dashed (red) curve represents the separated
contribution of the DR channel. The dotted (blue) curve shows the
separated contribution of the RR channel (data magnified by a factor
of five). The dash-dotted (red) curve corresponds to the calculation
within the single-photon approximation (see Sec. III F).

this makes a noticeable contribution to the total electron-
capture cross section. In this process, we can also distinguish
two channels: the RR and DR. The RR channel is non-
resonant and gives a correction to the cross section, which
varies slightly depending on the incident energy [48]. The DR
channel is resonant, but it proceeds through the two-electron-
one-photon (TEOP) transition, which is usually negligible.
Accordingly, the one-photon electron capture can be easily
taken into account with high accuracy.

To obtain the total cross of the electron capture with the
emission of two or more photons in the single-photon approx-
imation, we perform integration over the angles of the emitted
photon (£2;) in Eq. (30), summation, and averaging over the
polarizations of the electrons and photon. This cross sec-
tion together with the contribution of the one-photon electron
capture gives the cross section measured in the experiment [8],
where only the charge change of the ions was recorded.

In Fig. 4, the dashed (red) curve represents the total cross
section of the electron capture calculated within the single-
photon approximation. We note that, since we are studying
the two-photon electron capture, only the singly excited states
with nonzero total angular momenta (J # 0) are taken into
account as final states in calculations within this approxima-
tion. The cross section, which takes into account all the final
states, is presented in Ref. [49]. This cross section can be
compared with the results of the full calculation given by the
solid (black) curve. The single-photon approximation enlarges
the cross section by about 5% in the nonresonance region and
by about 1% in the resonance region.

In Fig. 11, we show the angular distribution obtained after
integrating the differential cross section over the energies of
the emitted photons and all the angular variables, except the
polar angle 6 (the angle between the photon momentum and

the momentum of the incident electron),

dO' . 1 Zz\/‘wmﬂx/zd /d /dQ/d
snbdo 4 A @ | deaiide

womp AN

1 d*o d*o
X = + . (3D
2\dwdQdew'd  da'ddwd2

The angular distribution of the emitted photons in the DR
channel is close to isotropic. Accordingly, an anisotropic part
of the distribution is mainly determined by the RR channel,
where the angular distribution has a clear maximum. The
contribution of the RR and DR channels are given sepa-
rately in Fig. 11. We also present the angular distribution
calculated within the single-photon approximation. The dis-
crepancy between the single-photon approximation and the
exact calculation is explained by the contribution of the non-
resonant photon.

The single-photon approximation can be applied to two-
and more electron systems for the description of experiments
on the radiative electron capture in which the emitted photons
are not recorded [7,8,50].

IV. SUMMARY

We have studied the two-photon capture of an electron with
the energy corresponding to the strongest DR resonances. We
conducted a detailed study within the QED theory of the pho-
ton emission spectrum taking into account four main groups
of the cascade resonances [(1s, nl), where n = 2-5]. Special
attention was paid to the region of low-energy photons, where
the infrared divergence requires a special approach. The in-
fluence of the DR resonances on the emission spectrum was
shown. We demonstrated that the contribution of the Breit
interaction is very important. The Breit interaction makes a
significant contribution to the positions and widths of many
resonances and can qualitatively change the emission spec-
trum. We analyzed the widely used resonant approximation,
studying its accuracy. We have shown that this approximation
gives suitable results for the photon energies near the cascade
resonances. However, it may not work in the regions be-
tween close resonances if there is strong interference between
them. Moreover, it failed in the region between the resonance
groups. Finally, we demonstrated how the two-photon elec-
tron capture is related to an experimental setup where the
DR was investigated by measuring the number of ions that
captured an electron (without registering the emitted photons).
The investigation of the photon emission spectrum in the pro-
cess of two-photon electron capture provides an opportunity
to test the QED theory by studying the atomic structure and
dynamics in strong fields.
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APPENDIX: SINGLE-PHOTON APPROXIMATION

We present the application of the single-photon approxi-
mation to the cross section of the two-photon electron capture.
First, we consider the cross section within the resonance ap-
proximation (25). Second, we perform integration over the
energy of the photon w;

d*oip %t/wmdzdw & wjw)
dQdQ o pQ2n)

% 2 « 2
> Z ’( ki, Al)FN} ’(Akz,kz)N1’

N (Er + wy —EN)2+ %FI%I

|( :2 )»z)FN| |(Ai1,)\.1)N]|2

(E1 — o1 — Ex)* + 1T}

(A)

Only one of the terms in large brackets is resonant within the
given integration region. In our case, the first term is resonant,
while the second term is not resonant and can be omitted.

d*o1_F N/‘“"‘“X/z £ a)za)g
d$,dS2, 0 pQ2n)

* 2 * 2
x Z |( ki, X])FN| |(Ak2,)u2)N[| (AZ)

(Er + o1 — En)* + 5T}

The main contribution to the integral is given by the resonant
region around w| &~ Ey — Er. Within the resonant region the
matrix elements (A; , )ry and (A7 ; Jnr as well as the factors

w?} and w?} are slowly changing function of w; and can be
substituted by their values in the resonance

~y - e () (5)
p  @n)y

N

* 2 * 2
X ||A A
’( kges’)“)FN’ ‘( k?s’)‘z)lwl

Omax /2 da)l
X/ T (A3)
0 (Er + w1 — Ex)” + 3I%

where k|* = (Ey — Er,Kky), k5% = (E;
utilize the approximation

2
d°oir

d2,dS2;

— Ey,ky). We can

/‘wmax/z d(,()]
0 (Ep + o1 — EN)* + %Fﬁz

° dw 2
~ — = —. (A4)
oo (B4 o1 —En)” + 3% IN

Using Eq. (A4) for Eq. (A3), performing the integration
over 21, the summation over the photon polarization (i), and
the summation over the projection of the final state My, we

obtain the following expression:

dO’]_>F (a)aes)z

S G (i) T
~ T — res —_—
s, N p 2r)} N nl [Ty

res) 2
G [aolen), f | o

The term in the square brackets does not depend on My
and is equal to the one-photon partial width of the state N:

=TV (A6)

The term in curly brackets together with the summation
over the projection My gives the differential cross sec-
tion within the one-photon approximation

d (1y approx) WS 2 b
% — 27T£( 2 )3 ‘(AZ(:SA ) ‘ . (A7)
ds2, p 2w) 2 "2/ NI

Accordingly, we can write

s s doZE I
sz N dQZ l—‘N '

In general, the full width of any state can be represented
as the sum of the radiative and Auger widths: ['y = F](\;ad) +

T If we assume that the main contribution is given
by the singly excited states (1s,2/) with the total angular
momentum not equal to zero (J # 0), we get FI(\,IV’N_)F) ~ Ty.
Finally, we get the following relation between the differential
cross section of the two-photon electron capture and the dif-
ferential cross section within the single-photon approximation

doj~r 3 do 7P (A9)
d2, ~ d2, '

By integrating over the angular variable €2, and summing
and averaging over the polarizations of the electrons and pho-
tons, we obtain the total cross section as

do (ly approx)

Oj»F N Z Z/dﬁz I;SA;Z

w,my, MyAa

- , (A10)
22jp+ 1D

where jj, is the total angular momentum of the bound electron
in the initial state.
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