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Diffusion quantum Monte Carlo approach to the polaritonic ground state
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Making and using polaritonic states (i.e., hybrid electron-photon states) for chemical applications has recently
become one of the most prominent and active fields that connects the communities of chemistry and quantum
optics. Modeling of such polaritonic phenomena using ab initio approaches calls for new methodologies,
leading to the reinvention of many commonly used electronic structure methods, such as Hartree-Fock, density
functional, and coupled cluster theories. In this work, we explore the formally exact diffusion quantum Monte
Carlo approach to obtain numerical solutions to the polaritonic ground state during the dissociation of the H2

molecular system. We examine various electron-nuclear-photon properties throughout the dissociation, such
as changes to the minimum of the cavity Born-Oppenheimer surface, the localization of the electronic wave
function, and the average mode occupation. Finally, we directly compare our results to that obtained with
state-of-the-art, yet approximate, polaritonic coupled cluster approaches.
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I. INTRODUCTION

Recent experimental studies of highly entangled light-
matter states, known as polaritons, have demonstrated their
ability to modify chemical reactions [1–12] and physical prop-
erties [13–19] of both low- and high-dimensional material
systems [20–27]. This has garnered a substantial interest in the
theoretical community [28–32]. Specifically, computational
chemists have devoted the past few years to the “regenera-
tion” of various many-body methods—ubiquitously applied
to pristine many-electron systems—for use in the case of
strongly correlated electron-photon systems [28,30,33]. All
these approaches attempt to solve a nonrelativistic quantum
electrodynamic (QED) Hamiltonian for the coupled electron-
nuclear-photon system for its eigenstates, usually within
the cavity Born-Oppenheimer approximation [34–36], being
the case for most conventional electronic structure meth-
ods. These modified self-consistent (sc) approaches include
the scQED Hartree-Fock (scQED-HF) [35,37,38], density
functional theory (scQED-DFT) [39–43], coupled cluster the-
ory (scQED-CC) techniques [37,44–46], and Møller-Plesset
perturbation theory (scQED-MP2) [47], to name a few. More-
over, the analogous methods for excited-state simulations
have also been recently developed, such as time-dependent
scQED-DFT (scQED-TDDFT) [48–53], equation of motion
scQED-CC (scQED-EOMCCSD) [46,51,54], and complete
active space configuration interaction (scQED-CASCI) [55].

In many of these cases, the drawbacks of the orig-
inal method are exacerbated in its scQED analog. For
example, to describe the electron-photon correlations in
the DFT approach, new exchange-correlation functionals

*bweight@ur.rochester.edu
†zhy@lanl.gov

needs to be constructed to explicitly account for such ef-
fects [39,40,43,56–58]. The early attempts at developing
such functionals resulted in a dramatic reduction in the
quality of treatment of bare electron-electron correlations
[36,44,45,52,53]. While efforts toward constructing improved
functionals for the scQED-DFT approach are ongoing with
marked success [57,58], the “exact” effects of the cavity pres-
ence on the electronic subsystem are only trustworthy up to
the choice of electron-photon and electron-electron exchange-
correlation functionals.

One promising approach is the scQED-CC method, which
adds correlation on top of the scQED-HF approach. Here the
electron-electron correlations are treated by including single
and double excitations, which is known to provide accurate
results, even for highly correlated many-electron systems. In
fact, the CCSD approach is exact for two-electron systems in
the absence of the cavity since the single and double exci-
tations comprise the full configuration interaction limit (up
to the choice of basis set). This is no longer valid when the
cavity is present, since the cavity photons can be excited to
an arbitrary level due to their bosonic nature [54]. Due to
the large computational expense, the scQED-CC method has
only been used for small molecular systems coupled to the
cavity with typically one or two photonic excitations included.
This approach is expected to provide reliable results, even
for large light-matter coupling strengths [37,45]. However,
such truncation of the photonic excitations has been shown
to contradict the full configuration interaction limit in the
strong-coupling regimes for simple Hubbard model systems,
even when using up to 10 photonic excitations [54]. Notably,
this high-level photonic treatment is usually numerically in-
tractable for models describing realistic molecular systems.

State-of-the-art experimental designs using plasmonic
nanocavities have already shown strong coupling at moder-
ate conditions [59,60]. These recent advancements in cavity
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design lead the way for novel chemistry of cavity-modified
chemistry. In response to these experimental strides, much
recent theoretical progress has been made focusing on the
strong coupling of plasmonic cavities to the ground-state po-
tential energy surface of various molecular systems (at high
cavity frequencies on the order of electronic transitions ∼1–
20 eV), showcasing changes in the ground-state electronic
density [37,46], modifications to nonbonded interaction po-
tentials [44], electron affinities of diatomic molecules [46], as
well as a more complicated exploration of the cavity-induced
modifications to reaction barriers in proton-transfer reactions
[21,36,45,47].

To our knowledge, the experimental realization of cavity-
induced changes to the polaritonic ground state through
coupling to high-frequency electronic transitions has yet to
be achieved. However, we hypothesize that such experiments
are expected within the next few years. Some examples of
experiments that may provide insight are linear and nonlinear
spectroscopies (e.g., infrared, Raman, pump-probe, etc.) of
the polaritonic ground state with cavity-coupled molecules,
which have already been done for low-frequency cavity de-
signs aimed at the exploration of vibropolaritons [11,28]. We
hypothesize that these experiments will provide direct insight
into the modifications of the ground-state potential energy
surfaces and the resulting changes to the vibrational/nuclear
system. Such changes to the excited-state potential energy
surfaces have already been widely observed in experiment
[61–65].

In this work, we explore the polaritonic ground state of
the H2 molecular system coupled to a single quantized cavity
mode. These interactions between light and matter are often
called QED vacuum fluctuations and become important in
the presence of a matter which causes a polarization of the
cavity mode [66–68]. We solve the Pauli-Fierz QED Hamilto-
nian in the long-wavelength approximation using the diffusion
quantum Monte Carlo (DQMC) approach. This methodology
converges to the exact solution for the two-electron H2 molec-
ular system, even when many quantized photonic modes are
considered. We then directly compare with state-of-the-art
polaritonic coupled cluster methods to highlight the inherent
approximations in such schemes. Various properties are exam-
ined, such as the localization of the electronic wave function
and changes to the polaritonic potential energy surface. We
also explore a decomposition of the photonic wave functions
into the number (or Fock) basis. This analysis highlights the
discrepancy between the scQED-CCSD and DQMC results
due to the inclusion of high-level photonic excitations present
even in the ground state. Finally, we examine the average
photon number as a function of the nuclear separation length.
Our results suggest the DQMC scheme as another chemically
relevant approach toward modeling molecular and material
systems inside the cavity.

II. METHODOLOGY

A. Electronic Hamiltonian

The molecular Hamiltonian,

ĤM = T̂N + T̂el + V̂ = T̂N + Ĥel, (1)

consists of the nuclear kinetic energy, T̂N, the electronic
kinetic energy, T̂el, and all pairwise Coulomb interactions,
V̂ = V̂ee + V̂eN + V̂NN, between electrons e and nuclei N . The
electronic Hamiltonian, Ĥel = ĤM − T̂N, which is approxi-
mately solved by a number of electronic structure software,
can be written as an eigenvalue problem and yields the
Born-Oppenheimer approximation for the electronic states
parametrized by the nuclear positions,

Ĥel|ψ j (R)〉 = Ej |ψ j (R)〉. (2)

In this work, we consider a “simple” two-electron H2 molecu-
lar system and its interatomic dissociation inside and outside a
photonic cavity. In this case, the electronic Hamiltonian takes
the form

Ĥel = p̂2
1

2
+ p̂2

2

2
+ 1

|r̂1 − r̂2| − 1

|r̂1 − R1| − 1

|r̂1 − R2|
− 1

|r̂2 − R1| − 1

|r̂2 − R2| + 1

|R1 − R2| , (3)

where {R1, R2} = R denote the nuclear coordinates, and
{r̂1, r̂2} and {p̂1, p̂2} are the position and momenta operators
of the electrons, respectively. Solving Eq. (2) yields the elec-
tronic adiabatic states |ψ j (R)〉, their respective eigenenergies
Ej (R), and all subsequent properties. As a matter of notation,
we will drop the dependence on R from the adiabatic wave
functions |ψ j (R)〉 ≡ |ψ j〉 and the adiabatic energies Ej (R) ≡
Ej for brevity. Achieving an exact solution has proven to be
challenging, even for the state-of-the-art approximate many-
body methods, such as density functional theory (DFT). Exact
diagonalization of this Hamiltonian requires the solution of a
six-dimensional Hilbert space, and it can be accomplished via
coupled cluster singles and doubles (CCSD), which coincides
with the full configuration interaction (FCI) limit for this
two-electron system.

B. Diffusion Monte Carlo

In many cases, the approximate solution to a high-
dimensional integral problem can be achieved using a Monte
Carlo approach, which leverages the concept of random vari-
ables in high-dimensional space. Monte Carlo integration is
ubiquitous in the community for both classical and quantum
mechanical problems, when the number of degrees of freedom
(DOFs) is large. One of the most common approaches is
Markov-Chain Monte Carlo based on the Metropolis-Hastings
algorithm [69], which is related to the variational quantum
Monte Carlo (VQMC) [70], and it is used to solve for the
equilibrium distribution of the many-particle system.

In this work, we focus on a particular quantum mechan-
ical analog called diffusion quantum Monte Carlo (DQMC)
[71–77]. In DQMC, the wave function is approximated by
a basis of random walkers whose “motion” is defined by
multiple applications of a short-time Green’s function for the
Schrödinger equation in imaginary time.

The imaginary time Schrödinger equation, in the six-
dimensional real-space basis, can be written as

∂

∂τ
ψ (r, τ ) =

(
1

2
∇2

r + V (r)

)
ψ (r, τ ), (4)
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where τ = it and 1
2∇2

r = 1
2∇2

r1
+ 1

2∇2
r2

. Specifically, r =
(r1, r2) is a single point in the six-dimensional configuration
space of the two electrons in H2. Note that the nuclear posi-
tions R [see Eq. (1)] are kept fixed and contribute to the total
potential V (r; R) and the adiabatic wave functions |ψ (r, R)〉
but are dropped from the notation for brevity. The formal
solution of this equation can be written as a Green’s function,

ψ (r, τ ) =
∫

dr′ G(r, r′, τ )ψ (r′, 0). (5)

This propagator G(r, r′, τ ) can be approximated by the
Trotter-Suzuki splitting of the time-evolution operator as
[78,79]

e[ 1
2 ∇2

r+V (r)]dτ ≈ e
1
2 ∇2

r dτ eV (r)dτ (6)

during a short-time interval dτ = τ
Nsteps

leading to the follow-
ing Green’s function approach:

G(r, r′, τ ) = lim
dτ→0

[Gdiff (r, r′, dτ )

× GBirth/Death(r, r′, dτ )]Nsteps . (7)

The formal solutions to these Green’s functions are

Gdiff (r, r′, dτ ) = e− (r−r′ )2

2dτ (8)

GBirth/Death(r, r′, dτ ) = e−dτ V (r)+V (r′ )
2 . (9)

Here, and in the equations above, r and r′ are two system
configurations of the (3Nel)-dimensional space (the nuclear
DOFs are fixed), where Nel is the number of electrons (Nel = 2
in this case). The first Green’s function is the solution to the
diffusion equation in free space (i.e., ∂τψ = 1

2∇2ψ), which
leads to an unbiased Gaussian random walk with a standard
deviation

√
τ .

The second propagator gives rise to an exponential proba-
bility of the random walker itself, often called the Birth/Death
algorithm. This propagator dictates the multiplication or de-
struction of a walker according to the probability distribution
Pw ∼ GBirth/Death(r′, r, τ ), given the current V (r′) and previ-
ous V (r) total potential energies (for a single configuration of
particles) of the system with configurations r′ and r, respec-
tively. This term gives rise to a variable number of Gaussian
random walkers, which can lead to an exponential increase (or
decrease) of the number of walkers.

For practical reasons, one introduces an energy shift, ET in
Eq. (2), by replacing the energy eigenvalue Ej with Ej − ET,
where ET is called the trial energy. The trial energy becomes
an estimate of the exact ground-state energy after sufficient
simulation time, limτ→∞ ET(τ ) ≈ E0. As such, this parameter
is dynamic and can be understood as a solution to a first-order
rate equation for the number of Gaussian random walkers Nw,

Nw(τ + dτ ) = Nw(τ )e−[ET(τ )−ET(τ+dτ )]dτ = N̄w

⇒ ET(τ + dτ ) = ET(τ ) + α ln

(
N̄w

Nw(τ )

)
, (10)

where α and N̄w are parameters. N̄w is the target number of
random walkers (taken to be 106 in this work). Nw(τ = 0) =
N̄w to initiate the simulation. α is a parameter that controls the
stiffness of the variation in the number of random walkers. In

FIG. 1. (a) A schematic of the diffusion Monte Carlo process.
Random walkers are initially sampled from a uniform distribution
(top blue circles) and move in time (top-to-bottom) by a Gaussian
random walk. At each step, the random walker may be removed
or duplicated according to the potential energy landscape. (b) The
ground-state potential energy surface of the H2 dissociation outside
the cavity at various computational levels: Hartree-Fock (HF, blue
curve), coupled cluster singles doubles (CCSD, black curve), and
diffusion quantum Monte Carlo (DQMC, red circles). The hori-
zontal dashed black line indicates the exact dissociation energy of
Ediss = −1.0 a.u.

this work, we choose α = 0.01 a.u., which damps the oscil-
lations in the number of walkers while still allowing them to
fluctuate according to the birth/death Green’s function without
encountering numerical issues such as zero or infinite walkers.
A schematic representation of the DQMC method is provided
in Fig. 1(a).

The DQMC scheme converges to the exact solution for
all nodeless ground states, which encompasses up to two
fermions (e.g., electrons) and, in principle, an infinite number
of bosons (e.g., photon modes). It is crucial to emphasize

032804-3



WEIGHT, TRETIAK, AND ZHANG PHYSICAL REVIEW A 109, 032804 (2024)

that all results presented in this work converge to the exact
answer since we restrict our study to no more than two elec-
trons. This convergence is ensured when a sufficiently small
propagation time step dτ is chosen and an adequate number
of Gaussian random walkers Nw is used. Extensions of this
scheme to ground states that have nodes (or phase changes)
and to excited states have been well-studied for electronic
systems. This augmentation often involves the fixed-node ap-
proximation, which necessitates a priori knowledge of the
wave function’s nodal structure. This structure is typically
derived from a Hartree-Fock Slater determinant or its post-
Hartree-Fock counterparts.

C. Pauli-Fierz Hamiltonian

The coupling between light and molecular DOFs can take
many forms. In this work, we examine the interaction between
the H2 molecular system with a single quantized radiation
mode (although there is no limit to the number of modes)
using the Pauli-Fierz QED Hamiltonian [28,30] within the
Born-Oppenheimer approximation (i.e., neglecting the nu-
clear kinetic energy T̂R). Mathematically, this Pauli-Fierz
Hamiltonian can be written as

ĤPF = Ĥel + ωc
(
â†â + 1

2

) + ωcA0(μ̂ · ê)(â† + â)

+ ωcA2
0(μ̂ · ê)2, (11)

where the second term represents the bilinear light-matter
coupling term (Ĥel-ph), and the third term denotes the dipole
self-energy (DSE) (ĤDSE). The interactions between light and
matter DOFs are controlled by the molecular dipole operator,

μ̂(r̂) = −
Nel∑
p

r̂p +
NIONS∑

I

ZI RI , (12)

and its square,

μ̂2(r̂) =
Nel∑
p,p′

r̂pr̂p′ − 2
Nel∑
p

NIONS∑
I

ZI r̂pRI +
NIONS∑
I,I ′

ZI ZI ′RI RI ′ ,

(13)

which encapsulates both one- and two-electron quadrupole-
like terms. As will become clear in the next section, we require
the light-matter Hamiltonian in the position representation
for the cavity photon mode. Consequently, the Pauli-Fierz
Hamiltonian can be rewritten as

ĤPF = Ĥel + 1
2 p̂2

c + 1
2ω2

c q̂2
c

+
√

2ω3
c A0μ̂q̂c + ωcA2

0μ̂
2, (14)

where q̂c =
√

1
2ωc

(â† + â) and p̂c = √
ωc
2 (â† − â) represent

the position and momentum operators for the cavity photon.

D. Polaritonic diffusion Monte Carlo

While DQMC has been proven to exactly solve the ground
state of bosonic systems, its extension toward entangled
boson-fermion systems, particularly those arising from the
strong coupling of molecular systems to light in optical or

plasmonic cavities, remains underexplored. Nevertheless, ex-
tending this method to account for one or several quantized
cavity or plasmonic modes is relatively straightforward using
a similar approach by decomposing the exact Green’s function
into multiple short-time propagators for both the electronic
and photonic DOFs.

Namely, we start from the imaginary-time Schrödinger
equation for the Pauli-Fierz Hamiltonian in the position rep-
resentation for both the electrons r and cavity mode qc,

∂

∂τ
ψ (r, qc, τ )

=
(∇2

r

2
+ V (r) + ∇2

qc

2
+ Vel−ph(r, qc) + VDSE(r)

)

× ψ (r, qc, τ ), (15)

where r again signifies all six real-space coordinates of two
electrons. The many-body “local” dipole for a specific config-
uration, r, can be written as

μ(r) = −
Nel∑
p

rp +
NIONS∑

I

RI , (16)

and the subsequent one- and two-electron quadrupole is

μ2(r) =
Nel∑
p,p′

rprp′ − 2
Nel∑
p

NIONS∑
I

ZI rpRI +
NIONS∑
I,I ′

ZI ZI ′RI RI ′ ,

(17)

where p and p′ label electrons, and I and I ′ denote nuclei. It
is worth noting that the nuclear charge ZI is 1, NIONS = 2, and
Nel = 2 for the H2 cavity system.

Utilizing the Trotter expansion, the kinetic energy of the
electrons and photon can be split into one short-time Green’s
function propagator, while the potential terms can be split into
another set as

e[ ∇2
r

2 +V (r)+ ∇2
qc
2 +Vel-ph (r,qc )+VDSE (r)]dτ (18)

≈ e( ∇2
r

2 + ∇2
qc
2 )dτ e[V (r)+Vel-ph (r,qc )+VDSE (r)−ET]dτ

≈ e( ∇2
r

2 + ∇2
qc
2 )dτ e[VTotal (r,qc )−ET] (19)

over a short-time interval dτ . Here, VTotal(r, qc) = V (r) +
Vel-ph(r, qc) + VDSE(r) encompasses all the potential terms.
We have also integrated the trial energy ET directly into the
above expression. This leads to the following Green’s function
approach for the coupled electron-photon system:

G(r, qc, r′, q′
c, τ ) = lim

dτ→0
[Gdiff (r, qc, r′, q′

c, dτ )

× GBirth/Death(r, qc, r′, q′
c, dτ )]Nsteps .

(20)

In this case, the inclusion of the photonic DOF is formally
analogous to an additional effective electronic one with a
modified configurational potential energy V (r) → V (r) +
Vel−ph(r, qc) + VDSE(r) = VTotal(r, qc) dependent on its posi-
tion qc and the configurational electronic dipole μ(r) as well
as its square μ2(r).
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The formal solutions to these Green’s functions are

GDiff.(r, qc, r′, q′
c, dτ ) = e− |r−r′ |2

2dτ e− (qc−q′
c )2

2dτ (21)

GBirth/Death(r, qc, r′, q′
c, dτ ) = e−dτ ( VTotal (r,qc )−VTotal (r′ ,q′

c )
2 −ET ).

(22)

Updating the trial energy ET follows the same procedure
as with photon-free propagation [Eq. (10)]. The coupled
electron-photon wave function is constructed by binning
Gaussian random walkers at each time step into a set of
equally sized histograms (i.e., shared by all time steps) such
that the creation or destruction of walkers does not affect the
histogram binning. Normalization is enforced at the end of the
simulation.

E. Computational details

For clarity, we present a step-by-step breakdown of the
proposed algorithm:

(1) Generate initiate configurations by uniformly sampling
all DOFs (electronic array size: Nw walkers × Nel electrons
× 3 dimensions; photonic array size: Nw walkers × Nmodes)
over a wide enough range, taking special case to sample initial
configurations well beyond the nuclear distribution.

(2) Evaluate the total potential energy of the system for
each configuration VTotal(r, qc).

(3) Displace all walkers by sampling a Gaussian distribu-
tion with a standard deviation of

√
dτ .

(4) Evaluate the total potential energy VTotal(r, qc) for the
updated configurations.

(5) Update the trial energy ET according to Eq. (10).
(6) Calculate walker probabilities as

Pw = exp

[
−dτ

(
VTotal(r, qc) + VTotal(r′, qc′ )

2
− ET

)]
.

(7) For each walker, compare its probability Pw to a unique
uniform random number ξ and perform one of the following
actions:

(a) Kill the walker if Pw < ξ .
(b) Retain the walker if ξ < Pw < 1.
(c) Clone the walker if Pw > 1.

(8) Repeat steps 3–5 until the requested number of steps is
completed.

(9) Repeat steps 2–6 using the final configurations as the
initial configurations for the primary or “production” simu-
lation. Save all average energies and accrue configurational
histograms (i.e., the wave function) during the production
simulation.

Unless otherwise noted, all data reported here use Nw =
106 walkers, Nsteps = 5000 steps for the equilibration as
well as for the production simulations, Nel = 2 electrons, and
Nmodes = 1 cavity mode. We adopt a numerical time step of
dτ = 0.01 a.u. and a population parameter of α = 0.01 a.u. A
statistical analysis was performed on the resulting dynamics
to account for the serial correlation present in the random
walkers [80–82]. We refer the interested reader to Figs. S1–S3
and their discussion in the supplemental material [83].

III. RESULTS AND DISCUSSION

A. Bare H2 dissociation

The dissociation potential energy surface (PES) of bare
H2, defined as the ground-state energy E (R) as a function
of the H-H distance (R), has been a common benchmark
for new many-body methods as well as new density func-
tionals for its simultaneous simplicity and complexity. The
ground-state reaction can be thermally activated given suffi-
cient kinetic energy at a finite temperature to overcome or
tunnel through the reaction barrier. Given the two-electron
constitution, the Born-Oppenheimer surface can be computed
exactly using CCSD in the complete basis limit. In con-
trast, approximate methods, such as Hartree-Fock confined to
the mean-field level of electron-electron correlation, perform
very poorly for the H2 dissociation. This can be improved
using the broken-symmetry solution (i.e., performing an unre-
stricted self-consistent field Hartree-Fock analog). However,
such a solution, while improving the energy landscape of the
mean-field solution, fails to capture precise symmetries of
the electron orbitals. Hence, the physical nature of the wave
function still requires further corrections.

From this perspective, CCSD and HF results comprise the
best and worst limits of ab initio approaches toward the H2

dissociation, respectively, and will serve as a reference for
the current diffusion quantum Monte Carlo (DQMC) study.
Figure 1(b) presents the results of the HF, CCSD, and DQMC
methods for the pristine (i.e., no cavity) H2 dissociation. The
HF and CCSD results are obtained using the PySCF [84,85]
electronic structure package using the cc-pVQZ basis set. For
the DQMC results, the standard deviations of the mean energy
are shown as vertical error bars for each nuclear separation
length.

In this case, we find that the DQMC approach agrees well
with the reference CCSD results. In the case of two electrons,
CCSD is expected to perform well, contingent solely on the
choice of basis set. However, introduction of the cavity photon
mode when incorporating polaritons leads to harsh approx-
imations in the treatment of both bare photonic excitation
and coupled excitations. These truncations in the polaritonic
CCSD (or scQED-CCSD) have been comprehensively dis-
cussed in the existing literature [28,30,37,44–46,51,54].

B. Polaritonic dissociation curves

In the presence of the cavity, the ground-state PES, and
consequently the reaction barrier, of a molecule can be altered
due its coupling cavity [32,36,37,44,45,47,66]. In this work,
we examine the effect of the cavity on the ground-state PES
at different coupling strengths A0 and photon frequencies ωc.
Figure 2 presents the primary results of this work: the polari-
tonic potential energy surfaces of the H2 dissociation at varied
light-matter coupling strengths A0 (colors) and cavity fre-
quencies ωc. For each simulation (i.e., symbol), the standard
deviation of the mean energy is shown by a vertical error bar.
The horizontal dashed line indicates the expected dissociation
energy at zero light-matter coupling, which is computed as the
dissociation energy outside the cavity Ediss and the zero-point
energy (ZPE) of the cavity mode EZPE = 1

2ωc.

032804-5



WEIGHT, TRETIAK, AND ZHANG PHYSICAL REVIEW A 109, 032804 (2024)

FIG. 2. Potential energy surfaces for the ground state H2 dis-
sociation at various coupling strengths A0 from 0.0 to 1.0 a.u. in
increments of 0.1 a.u. (from bottom to top) for four cavity frequen-
cies ωc = 5.0 (a), 10.0 (b), 15.0 (c), and 20.0 (d) eV. The horizontal
dashed line references the expected dissociation energy with van-
ishing light-matter coupling calculated as Ediss + 1

2 ωc. The cavity
polarization is parallel to the bond axis. The black arrow in panel
(d) highlights the shift of the minimum energy point (RHH)MIN in the
potential energy surfaces to lower values with increasing light-matter
coupling strength A0.

Two prominent features can be observed immediately: (I)
the vertical energy shift with increasing light-matter coupling
strength A0, and (II) the shift of the minima to lower values
of RHH. This first observation is expected, since the primary
contribution to the ground-state energy is given by the DSE
term, which only adds positive values to the total potential
energy for each configuration. The second observation is,
however, more interesting, since even small changes to such
adiabatic surfaces may give rise to a wide range of modified
chemistry, e.g., the bond stiffness during a chemical reaction,
and the nonadiabatic couplings between electronic states in
photoexcited processes. These phenomena can be monitored
by specific spectroscopic signatures, either in the ground (e.g.,
infrared/Raman) or excited states (e.g., absorption/emission).

The shift of the minimum in the potential energy surface
as a function of the light-matter coupling strength A0 is
presented in Fig. 3(a). The results are plotted as an average
over all four cavity frequencies (ωc = 5.0, 10.0, 15.0, and
20.0 eV), given the minimal frequency dependency observed.
A linear fit to the data shows a slope of −0.16 Bohr/a.u.
over this range of light-matter coupling A0, leading to an
overall reduction in nuclear separation of roughly 0.15 Bohr.
Even this relatively large amount would result in substantial
changes to a local chemistry.

At this point, it is prudent to compare/benchmark the
results of the DQMC for the polaritonic system with the state-
of-the-art coupled cluster approach for polaritonic eigenstates,
i.e., the self-consistent QED-CCSD method. This method
encompasses diverse treatments of photonic excitation and

FIG. 3. (a) The location of the ground-state potential energy sur-
face minimum, (b) the difference in wave-function localization, and
(c) the location of the maximum photon number as a function of the
light-matter coupling strength A0. 〈· · · 〉ωc indicates an average over
cavity frequencies ωc = 5.0, 10.0, 15.0, and 20.0 eV. Panels (a) and
(c) are accompanied with a linear fit (red line), and panel (b) is shown
with a Gaussian fit (red curve). In all cases, the data are interpolated
with a cubic spline before locating the minimum or maximum of the
function on a fine grid.

coupled excitations. In this work, the notation QED-CCSD-
U2n-Sm specifies the level of the coupled cluster approach,
where n represents the truncation level for the coupled
photonic/electronic excitation and m indicates pure photonic
excitation. As outlined in Refs. [30,45,86], multiple strategies
can be applied; we focus on those where n = m and n ∈ {1, 2}.
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FIG. 4. The ground-state potential energy of the H2 system as
a function of light-matter coupling strength A0. Four methods are
compared: DQMC (current work, solid black curve and circles with
error bars), QED-CCSD-U22-S2 (red curve, second lowest curve),
QED-CCSD-U21-S1 (blue curve, third lowest curve), and QED-HF
(dashed black and thick transparent black). The results of the QED-
CCSD and QED-HF (thick transparent black) are computed using
code published in Ref. [45], and the QED-HF (dotted black) is gen-
erated with an in-house code [30]. For the DQMC method, the error
bars indicate the correlated standard deviation of the means. The
cavity frequency and nuclear separation are fixed at ωc = 20.0 eV
and RHH = 2.8 a.u., respectively.

Figure 4 presents the results of these two approaches along
with the DQMC of the current work as well as the QED-HF
result. The change in the ground-state energy, E (A0) − E (0),
of the polaritonic system as a function of the light-matter cou-
pling strength A0 is shown. The scQED-CCSD-U21-S1 ap-
proach includes only a single photonic excitation and its sub-
sequent interaction with the electronic system. In contrast, the
scQED-CCSD-U22-S2 approach includes double excitations
of the cavity. This is expected to provide increased accuracy
in a similar sense as the double electronic excitations increase
the accuracy for the electronic ground state. First, the QED-
HF results —generated from two different codes, Refs. [45]
(thick transparent black) and [30] (dotted black), which are
in mutual agreement with each other—significantly overes-
timate the change in ground-state energy with increasing
light-matter coupling strength. The DQMC approach agrees
well with the scQED-CCSD-U22-S2 approach up to roughly
A0 ∼ 0.5 a.u., where the data points begin to diverge. How-
ever, all scQED-CCSD-U22-S2 results lie within the DQMC’s
correlated standard deviation. The scQED-CCSD-U21-S1
surpasses the DQMC’s error bars around A0 ≈ 0.4 a.u.
Given that the DQMC method captures exact correlations
among electrons and between electrons and photons, we ex-
pect that a scQED-CCSD method with increased photonic
excitation would align more closely with DQMC energies.

We next inspect the overlaps between the photonic wave
function and the Fock state basis in the cavity position rep-
resentation, c f (A0) = 〈φDQMC

ph (A0)| f 〉, where f is the Fock

state with f photons, and |φDQMC
ph (A0)〉 is the wave function as

computed by the DQMC approach in this study (see Figs. S4
and S5 in the supplemental material [83]). At A0 = 0.0, 0.5,
and 1.0 a.u., the amplitudes of the zero-photon Fock state are
c f = 1.0, 0.95, and 0.89, respectively. At A0 = 1.0 a.u., there
are significant contributions from the higher photon-number
Fock states, c f : 0.89( f = 0), 0.37 ( f = 2), 0.20 ( f = 4), 0.12
( f = 6), and 0.07 ( f = 8). It it worth noting that contributions
from odd-photon-number Fock states are below 0.001, due
to the “even”-symmetry of the ground-state wave function.
Furthermore, over 99.5% of the photonic wave function is
encapsulated by the first 10 Fock states (0 � f � 9) for A0 =
1.0 a.u. This quantitative analysis of the photonic wave func-
tion underscores the necessity for the scQED-CCSD approach
to incorporate additional photonic excitations to capture
the required correlations. This also elucidates the discrep-
ancy between the DQMC and scQED-CCSD results at large
couplings.

It should be noted that utilizing unperturbed Fock/number
states as the basis for photonic DOFs is a user choice. In
principle, one may consider a polarized basis, such as the
polarized Fock states [68] or the generalized coherent state
basis [87]. These basis sets introduce a shift in the photonic
coordinate potentially enabling a superior basis to the bare
and unshifted Fock states presented in this work. Additionally,
by nature of the coupled cluster approach, higher excitation
levels than the explicitly included excitation operators are
always present due to the exponential ansatz. For example,
the authors of Ref. [45] utilized the shifted Fock basis [37] in
the generation of the scQED-CCSD code used in this work.
Thus the results shown in Fig. 4 should benefit from such
transformation. Yet, some errors still exist due to the lack of a
sufficiently large number of photonic excitations.

Here, we have shown that even the state-of-the-art coupled
cluster approaches can be far from the exact solution even for
simple systems such as H2. We suggest the DQMC scheme
as a valuable tool for gaining insights into elusive correla-
tions within various systems, particularly when testing novel
polaritonic many-body techniques.

Returning to the potential energy surface, Fig. S6 in the
supplemental material [83] compares the potential energy
surfaces in the cavity to the zero-coupling case, i.e., the dif-
ferences represented as E (A0) − E (0). These quantities are
shown across a range of light-matter coupling values for four
distinct cavity frequencies: (a) 5.0, (b) 10.0, (c) 15.0, and
(d) 20.0 eV. A noticeable maximum value emerges, espe-
cially in the case of large coupling. This maximum moves
to shorter nuclear separation distances, RHH, with increasing
light-matter coupling strength. This observation resembles the
shift noticed in the minima of the potential energy surface, and
it will become apparent in the observables we discuss later in
this study. In fact, all of these alterations are closely connected
to modifications in the electronic wave function, specifically
the molecular quadrupole, which is the focus of the upcoming
section.

C. Polaritonic wave functions

Frequently, there is an interest in properties pertaining to
the electronic part of the wave function confined within the
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FIG. 5. The electronic wave function for the H2 system coupled
to the cavity at various nuclear separation lengths RHH = 3 (a), 5
(b), and 30 (c) a.u. for two coupling strengths A0 = 0.0 (black) and
0.5 (red, lower-in-magnitude curves) a.u. The wave functions are all
normalized to unit by their maximum value for plotting purposes
as φ

DQMC
el /MAX[φDQMC

el ] → φ
DQMC
el . For all panels, the cavity fre-

quency is set to ωc = 20.0 eV with cavity polarization being parallel
to the bond axis.

cavity. The alterations noted within the electronic subsystem
provide direct information regarding chemical reactions. The
photonic wave function’s expansion in the Fock basis has
been previously illustrated in supplemental Figs. S4 and S5
[83]. Here we focus on the electronic wave function |φDQMC

el 〉
plotted in Fig. 5 at various nuclear separation lengths RHH.
For each nuclear separation, the wave functions for two dis-
tinct coupling strengths, A0 = 0.0 and 0.5 a.u., are shown. A
critical observation pertains to the influence of the cavity on

FIG. 6. The difference in wave-function localization of the
ground state H2 dissociation with respect to the pristine system (i.e.,
no cavity), Ld (A0) − Ld (0), at various coupling strengths A0 from
0.0 to 1.0 a.u. in increments of 0.1 a.u. (colors, from top to bottom)
for four cavity frequencies ωc = 5.0 (a), 10.0 (b), 15.0 (c), and 20.0
(d) eV.

the electronic wave function’s localization. The underpinning
for this behavior can be traced to the Pauli-Fierz Hamiltonian,
which incorporates the molecular dipole operator via both di-
rect light-matter interaction Ĥel-ph and through the DSE ĤDSE

term in Eq. (11). This implies that the wave function tends to
become an eigenstate of the dipole (or position) operator, in
the limit when Ĥel-ph, ĤDSE � Ĥel.

To characterize the localization in quantum-mechanical
systems, the inverse participation ratio (IPR) is widely used
as a quantitative metric [88–94]. The IPR assesses the spread
of a quantum-mechanical wave function ψ across its basis. In
the present case, the basis is continuous, real-space position
R, or, more practically, discrete position Rj with uniform
discretization 	R = Rj − Rj−1 and is defined as

IPR = 1∑
j P2

j

, Pj = |ψ (Rj )|2∑
k |ψ (Rk )|2 ,

IPR = 1∫
dR
	R P(R)2

, P(R) = |ψ (R)|2∫
dR
	R |ψ (R)|2 (23)

for each representation, respectively. Here, |ψ (Rj )| =
ψ (Rj ) ≡ φ

DQMC
el (Rj ) in this work, since the wave function in

the position representation is both real- and positive-valued.
The resulting IPR (an integer) spans a range between 1 and
Nbasis, where Nbasis is the number of basis states (or discrete
positions Rj). When ψ (Rj ) = δRj ,R0 , IPR = 1, and when
ψ (Rj ) = 1/Nbasis, IPR = Nbasis. To convert this value into a
spatial length, one can multiply by the grid spacing 	R to
obtain the localization length Ld = IPR × 	R.

Supplemental Fig. S7 [83] displays the computed localiza-
tion length, Ld , for every DQMC simulation of the electronic
wave function, projected along the bond axis. The most mean-
ingful representation is rather the change in the localization
with respect to outside the cavity, Ld (A0) − Ld (0), which is
presented in Fig. 6 for all light-matter coupling strengths A0

and four cavity frequencies ωc. There is a pronounced nuclear
separation RHH where the localization of the wave function
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exhibits a maximal change compared to outside the cavity,
which strongly depends on the light-matter coupling A0. This
trend mirrors our earlier observations regarding the potential
energy surface minimum, as depicted in Fig. 3(a). The cavity
frequency, again, has a minimal effect on the localization of
the electronic wave function.

At a fixed nuclear separation of RHH = 2.8 a.u. (near the
maximum localization), the extent of enhanced wave-function
localization is presented in Fig. 3(b) and follows a Gaussian
function of the coupling strength. The data shown in Fig. 3(b)
represent an average over four cavity frequencies, which pro-
vide increased statistical clarity. Our results are suggestive of
a generic trend, wherein the electronic localization adheres
to a Gaussian profile as a function of the coupling strength.
Such Gaussian correlations with coupling strength have also
been observed in relation to the splitting between ground
and excited state avoided crossings for the LiF system [68].
These were attributed to a wave-function overlap between two
shifted Fock states (i.e., a Gaussian involving the light-matter
coupling strength) in the polarized Fock state representation.

D. Average photon number

The final observable of interest is the average photon num-
ber in the ground state. This is a direct extension of our earlier
discussion about the overlap of the DQMC photonic wave
function with the number (or Fock) basis (see supplemental
Figs. S4 and S5 [83]). In the photon number basis, the expres-
sion 〈â†â〉 represents the average occupation of the mode in
the Pauli-Fierz (or length) gauge, which may differ from that
in the Coulomb (or “p · A”) gauge. Nevertheless, the average
occupation can undergo a unitary rotation to any other gauge
[28,95], and we expect that the absolute magnitudes of the
photon number might differ, but the physical trends should
remain unchanged.

Figures 7(a)–7(d) present the average photon number
〈â†â〉 throughout the H2 dissociation, for various light-matter
coupling strengths A0 and for four cavity frequencies ωc.
Analogous to the previous observables, such as the change
in electronic wave-function localization Ld , there is a distinct
peak in photon number at a certain value of RHH, depending
on the coupling strength A0. The peak’s location is illustrated
in Fig. 3(c) and fit to a linear function, where the data have
been averaged over the four cavity frequencies ωc.

At a fixed RHH = 2.8 a.u., as depicted in Fig. 7(e), the
average photon number behaves intriguingly. For smaller
light-matter coupling strengths A0 � 0.5 a.u., the photon
number increases quadratically, 〈â†â〉 ∼ ωcA2

0, with its lead-
ing coefficient dependent on the cavity frequency. Conversely,
for larger light-matter coupling A0 � 0.5 a.u., the average
photon number increases linearly (up to the maximal coupling
strength computed in this work) with slopes dependent on
the cavity frequency, 〈â†â〉 ∼ ωcA0. The convergence of the
average photon number in the ground state is tested with
respect to the simulation time step, as shown in supplemental
Fig. S8 [83]. Given these substantial changes in the photon
number, there exists a potential for fascinating quantum mea-
surements in highly entangled many-body states, especially
in dynamic scenarios where complex interplay between the

FIG. 7. The average photon number, 〈â†â〉, throughout the
ground-state H2 dissociation with respect to the uncoupled system,
Ld (A0) − Ld (0), at various coupling strengths A0 from 0.0 to 1.0
a.u. in increments of 0.1 a.u. (colors, bottom to top) for four cav-
ity frequencies ωc = 5.0 (a), 10.0 (b), 15.0 (c), and 20.0 (d) eV.
(e) The average photon number, 〈â†â〉, as a function of light-matter
coupling strength A0 for a fixed nuclear separation RHH = 2.8 a.u. for
four cavity frequencies ωc = 5.0 (black, bottom), 10.0 (red, lower
middle), 15.0 (blue, upper middle), and 20.0 (green, top) eV. The
dotted curves present the scaling at the low (i.e., quadratic) and high
(i.e., linear) coupling regimes.

nuclear and photonic DOFs can induce significant fluctuations
in the photon number, even in the ground polaritonic state.

E. Linear infrared spectroscopy

The infrared spectrum of the H2 system is not experi-
mentally accessible due to the lack of ground-state electronic
dipole moment, 〈φ0(RHH)|μ̂|φ0(RHH)〉 = 0, for all RHH due
to the molecular symmetry. However, we can still extract
meaningful spectroscopic quantities whose trends can be gen-
eralized to more complicated molecular systems. The simplest
quantity is the vibronic transition frequency. The vibrational
frequency was computed using two approaches: The discrete
variable representation (DVR) [96] and the harmonic mode
approximation (HMA). See the supplemental material [83]
for details on the DVR and HMA. The DVR approach is the
most rigorous and is expected to be less sensitive to the sta-
tistical error present in the DQMC simulations. This approach
also exactly captures the anharmonicity of the ground-state
potential energy surface. Contrary to this, the HMA (which
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FIG. 8. (a) The potential energy surface (solid black) and first two vibronic wave functions (ν0 gray, ν1 red) are shown for three light-matter
coupling strengths A0 = 0.0, 0.5, and 1.0 a.u. (b) The principal vibrational transition frequency, ν1 − ν0, of the H2 system is shown as a function
of the light-matter coupling strength A0. Four polaritonic structure methods are shown using the DVR approach: DQMC (black filled squares),
QED-Hartree-Fock (black dashed), CCSD-U21-S1 (blue filled triangles), and CCSD-U22-S2 (red open triangles). Further, the HMA is shown
for the DQMC approach (gray open squares). All data are computed with cavity frequency ωc = 20.0 eV.

is ubiquitously used in electronic structure theory) is highly
sensitive to the accuracy of the ground-state energy with
respect to the nuclear displacement. Due to this, we expect
larger errors to be present in the HMA DQMC approach since
the ground-state energy exhibits finite statistical fluctuations
(see the error bars in Fig. 4). These statistical errors will also
arise when computing other observables that depend on nu-
merical finite differences of the energy, such as the forces on
the nuclei, F = −〈φ0(R)|∇RĤ |φ0(R)〉, of a molecular system
[97].

The potential energy surface (solid black) and the first
two vibronic wave functions (ν0 gray, ν1 red) are shown in
Fig. 8(a) for three light-matter coupling strengths A0 = 0.0,
0.5, and 1.0 a.u. The computed principle vibrational transition
frequency, ν1 − ν0, of the H2 system is depicted in Fig. 8(b) as
a function of the light-matter coupling strength A0. Here, we
present results obtained using four polaritonic structure meth-
ods employing the DVR approach, including DQMC (black
filled squares), QED-HF (black dashed), CCSD-U21-S1 (blue
filled triangles), and CCSD-U22-S2 (red open triangles). Ad-
ditionally, the HMA is depicted for the DQMC approach (gray
open squares). All data are computed with cavity frequency
ωc = 20.0 eV.

The trends of the vibrational transition frequency closely
resemble those of the ground-state energy itself (Fig. 4).
At zero light-matter coupling A0 = 0.0 a.u., both the CC
and DQMC approaches agree on the vibrational transition
frequency. The HF result is slightly blueshifted in this com-
parison. With increasing coupling strength, the vibrational
transition frequency is expected to increase, since the elec-
tronic wave functions undergo a strong localization (see
Fig. 4) and hence are expected to produce a narrower po-
tential energy surface. As in the case of the ground-state
energy itself (see Fig. 4), with increasing coupling strength,
the HF approach overestimates the cavity effects. The DQMC
approach suggests the weakest effects, followed by the CCSD-
U22-S2 and CCSD-U21-S1 methods. These results imply that
the presence of stronger electron-electron and electron-photon

correlations reduces the overall effects of the cavity on the
nuclear vibrational frequency shift. We expect these trends
in vibrational frequencies to generalize to more complicated
molecules where the infrared spectrum can be measured and
analyzed. Such molecules and their vibrational spectra will be
the subject of our future work.

As a final note, the statistical error in the numerical deriva-
tive of the nuclear positions is evidenced by the DQMC HMA
(gray open squares). While the overall trend of the cavity
effects is clearly present, the large fluctuations between data
points suggest that the DQMC approach is very sensitive to
the evaluation of numerical gradients, which is a well-known
issue of DQMC approaches [97].

IV. CONCLUSIONS

In summary, this work presents a diffusion quantum Monte
Carlo (DQMC) scheme for direct simulations of molecular
polaritons, which necessarily includes complicated correla-
tions between the electronic, nuclear, and photonic degrees
of freedom. This scheme represents a thoroughly ab initio ap-
proach, which provides the exact solution to any two-electron
system interacting with, in principle, infinite cavity modes.
As a testament to its capabilities, we study the H2 molecular
dissociation coupled to a single cavity mode. The results are
compared directly with state-of-the-art quantum electrody-
namic (QED) coupled cluster approaches, which provides an
exact solution to the pristine molecular system (in the absence
of cavity) in the infinite basis limit . We emphasize that the ac-
curacy of the latter method is largely contingent upon the trun-
cation of photonic excitation in the exponential ansatz. Our
comparative analysis shows that even the highest fidelity ap-
proach currently available fails in even the simplest molecular
system when the light-matter coupling strengths become large
enough to necessarily include contributions from photonic ex-
citations beyond one or two photonic number (or Fock) states.

The DQMC approach is then used to explore various ob-
servables for the H2 system, such as the localization extent
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of the electronic and the decomposition of the photonic wave
functions in the Fock basis. Additionally, linear trends in the
light-matter coupling strength are identified for the nuclear
separations, which exhibit (I) the minimum of the poten-
tial energy surfaces, and (II) the maximum average photon
number. Moreover, a Gaussian trend emerges in the changes
related to wave-function localization. In the former two cases,
the change of the properties with respect to the nuclear sepa-
ration length are directly relevant to modifications of chemical
reactions, where even the smallest nuclear displacement may
alter reaction pathways and resulting products. Meanwhile,
the wave function’s localization can offer insights into pro-
cesses demanding wave-function overlap, such as Dexter
energy transfer or H/J-aggregates representing excitonic sys-
tems. This holds implications for exciton-polariton transport
in molecular and solid-state materials.

Altogether, DQMC represents a promising route toward the
direct and accurate simulation of simple systems, where the
results are exact. Applications to more intricate systems are
possible as well by leveraging the fixed node approximation
for many-electron systems and excited states [70,98–100]. We
note that in the realm of polaritonic DQMC, the fixed node
approximation needs to be carefully implemented, since the
nodal surface will likely undergo changes as a result of inter-
action with the cavity. Thus, using a mean-field wave function
(i.e., Hartree-Fock) one must either (I) include the cavity
effects on the single-particle orbitals (i.e., QED-HF) [52] or
(II) allow the nodal surface to relax in order to minimize the
energy while retaining the correct electronic statistics. This
can be introduced via an importance-sampling algorithm [76],
which adds an effective drift term to the Gaussian random
steps encoded with information regarding the provided refer-
ence wave function. It is important to note that the extension
of the present polaritonic DQMC approach, specifically in-
cluding the photonic DOF, will not impact an incorporation of
an importance-sampling algorithm into polaritonic DQMC, so
long as the trial or reference wave function accurately captures
the nodal structure of the system. These ideas direct our future
studies in this area.

The presented DQMC approach can be further readily
employed to explore polaron formation and its inherent prop-
erties, including polaron radius and binding energy, given
the bosonic nature of both photons and phonons. Most im-
portantly, and without loss of accuracy, the many-molecule
and many-cavity-mode systems can be directly simulated,
assuming (I) the molecules do not interact directly via
Coulomb potential (i.e., only through mutual interaction with
the cavity) and (II) the cavity modes do not include the
complex-valued nature of the Pauli-Fierz Hamiltonian in the
absence of the long-wavelength approximation. Despite these
constraints, our approach illuminates solutions for simple
molecular systems inside the cavity. Further, the extension
toward plasmonic cavities, where the light-matter coupling
strength depends on position, A0 → A0(r), would be straight-
forward with minimal changes to the code. DQMC’s relative
simplicity and favorable scaling with dimensionality, typically
a constraint for advanced methods like coupled cluster, ce-
ments its place as a promising tool for investigating ab initio
molecular systems inside cavities.

ACKNOWLEDGMENTS

The authors acknowledge the support from the Laboratory
Directed Research and Development Funds (LDRD) at Los
Alamos National Laboratory (LANL) and the U.S. DOE, Of-
fice of Science, Basic Energy Sciences, Chemical Sciences,
Geosciences, and Biosciences Division under Triad National
Security, LLC (“Triad”) Grant No. 89233218CNA000001
(FWP: LANLECF7). The research was performed in part at
the Center for Integrated Nanotechnologies (CINT), a U.S.
Department of Energy, Office of Science user facility at
LANL. LANL is operated by Triad National Security, LLC,
for the National Nuclear Security Administration of the U.S.
Department of Energy (Contract No. 89233218CNA000001).
Computing resources were provided by the Center for In-
tegrated Research Computing (CIRC) at the University of
Rochester.

There are no conflicts to declare.

[1] K. Nagarajan, A. Thomas, and T. W. Ebbesen, Chemistry
under vibrational strong coupling, J. Am. Chem. Soc. 143,
16877 (2021).

[2] F. J. Garcia-Vidal, C. Ciuti, and T. W. Ebbesen, Manipulat-
ing matter by strong coupling to vacuum fields, Science 373,
eabd0336 (2021).

[3] J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W.
Ebbesen, Modifying chemical landscapes by coupling to vac-
uum fields, Angew. Chem. Int. Ed. 51, 1592 (2012).

[4] T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen,
Reversible switching of ultrastrong light-molecule coupling,
Phys. Rev. Lett. 106, 196405 (2011).

[5] T. W. Ebbesen, Hybrid light–matter states in a molecular
and material science perspective, Acc. Chem. Res. 49, 2403
(2016).

[6] A. Sau, K. Nagarajan, B. Patrahau, L. Lethuillier-Karl,
R. M. A. Vergauwe, A. Thomas, J. Moran, C. Genet, and T. W.

Ebbesen, Modifying Woodward–Hoffmann stereoselectivity
under vibrational strong coupling, Angew. Chem. Int. Ed. 60,
5712 (2021).

[7] A. Thomas, L. Lethuillier-Karl, K. Nagarajan, R. M. A.
Vergauwe, J. George, T. Chervy, A. Shalabney, E. Devaux, C.
Genet, J. Moran, and T. W. Ebbesen, Tilting a ground-state
reactivity landscape by vibrational strong coupling, Science
363, 615 (2019).

[8] A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. J.
Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C.
Genet, J. A. Hutchison, and T. W. Ebbesen, Ground-state
chemical reactivity under vibrational coupling to the vac-
uum electromagnetic field, Angew. Chem. Int. Ed. 55, 11462
(2016).

[9] A. Thomas, A. Jayachandran, L. Lethuillier-Karl, R. M. A.
Vergauwe, K. Nagarajan, E. Devaux, C. Genet, J. Moran,
and T. W. Ebbesen, Ground state chemistry under vibrational

032804-11

https://doi.org/10.1021/jacs.1c07420
https://doi.org/10.1126/science.abd0336
https://doi.org/10.1002/anie.201107033
https://doi.org/10.1103/PhysRevLett.106.196405
https://doi.org/10.1021/acs.accounts.6b00295
https://doi.org/10.1002/anie.202013465
https://doi.org/10.1126/science.aau7742
https://doi.org/10.1002/anie.201605504


WEIGHT, TRETIAK, AND ZHANG PHYSICAL REVIEW A 109, 032804 (2024)

strong coupling: dependence of thermodynamic parameters on
the Rabi splitting energy, Nanophotonics 9, 249 (2020).

[10] J. Lather, P. Bhatt, A. Thomas, T. W. Ebbesen, and J. George,
Cavity catalysis by cooperative vibrational strong coupling of
reactant and solvent molecules, Angew. Chem. Int. Ed. 58,
10635 (2019).

[11] K. Hirai, J. A. Hutchison, and H. Uji-i, Molecular chemistry
in cavity strong coupling, Chem. Rev. 123, 8099 (2023).

[12] B. S. Simpkins, A. D. Dunkelberger, and I. Vurgaftman, Con-
trol, modulation, and analytical descriptions of vibrational
strong coupling, Chem. Rev. 123, 5020 (2023).

[13] A. Thomas, E. Devaux, K. Nagarajan, G. Rogez, M. Seidel,
F. Richard, C. Genet, M. Drillon, and T. W. Ebbesen, Large
enhancement of ferromagnetism under a collective strong cou-
pling of YBCO nanoparticles, Nano Lett. 21, 4365 (2021).

[14] R. M. A. Vergauwe, A. Thomas, K. Nagarajan, A. Shalabney,
J. George, T. Chervy, M. Seidel, E. Devaux, V. Torbeev, and
T. W. Ebbesen, Modification of enzyme activity by vibrational
strong coupling of water, Angew. Chem. Int. Ed. 58, 15324
(2019).

[15] A. M. Berghuis, V. Serpenti, M. Ramezani, S. Wang, and
J. G. Rivas, Light–matter coupling strength controlled by the
orientation of organic crystals in plasmonic cavities, J. Phys.
Chem. C 124, 12030 (2020).

[16] A. M. Berghuis, R. H. Tichauer, L. M. A. de Jong, I.
Sokolovskii, P. Bai, M. Ramezani, S. Murai, G. Groenhof,
and J. G. Rivas, Controlling exciton propagation in organic
crystals through strong coupling to plasmonic nanoparticle
arrays, ACS Photon. 9, 2263 (2022).

[17] D. Xu, A. Mandal, J. M. Baxter, S.-W. Cheng, I. Lee, H.
Su, S. Liu, D. R. Reichman, and M. Delor, Ultrafast imaging
of polariton propagation and interactions, Nat. Commun. 14,
3881 (2023).

[18] H. Deng, H. Haug, and Y. Yamamoto, Exciton-polariton Bose-
Einstein condensation, Rev. Mod. Phys. 82, 1489 (2010).

[19] G. G. Rozenman, K. Akulov, A. Golombek, and T. Schwartz,
Long-range transport of organic exciton-polaritons revealed by
ultrafast microscopy, ACS Photon. 5, 105 (2018).

[20] J. M. Lüttgens, F. J. Berger, and J. Zaumseil, Population
of exciton–polaritons via luminescent sp3 defects in single-
walled carbon nanotubes, ACS Photon. 8, 182 (2021).

[21] C. Möhl, A. Graf, F. J. Berger, J. Lüttgens, Y. Zakharko, V.
Lumsargis, M. C. Gather, and J. Zaumseil, Trion-polariton
formation in single-walled carbon nanotube microcavities,
ACS Photon. 5, 2074 (2018).

[22] A. Graf, L. Tropf, Y. Zakharko, J. Zaumseil, and M. C.
Gather, Near-infrared exciton-polaritons in strongly coupled
single-walled carbon nanotube microcavities, Nat. Commun.
7, 13078 (2016).

[23] A. Graf, M. Held, Y. Zakharko, L. Tropf, M. C. Gather, and J.
Zaumseil, Electrical pumping and tuning of exciton-polaritons
in carbon nanotube microcavities, Nat. Mater. 16, 911 (2017).

[24] M. Son, Z. T. Armstrong, R. T. Allen, A. Dhavamani, M. S.
Arnold, and M. T. Zanni, Energy cascades in donor-acceptor
exciton-polaritons observed by ultrafast two-dimensional
white-light spectroscopy, Nat. Commun. 13, 7305 (2022).

[25] R. T. Allen, A. Dhavamani, M. Son, S. Kéna-Cohen, M. T.
Zanni, and M. S. Arnold, Population of subradiant states in
carbon nanotube microcavities in the ultrastrong light–matter
coupling regime, J. Phys. Chem. C 126, 8417 (2022).

[26] A. Mandal, D. Xu, A. Mahajan, J. Lee, M. Delor, and
D. R. Reichman, Microscopic theory of multimode polari-
ton dispersion in multilayered materials, Nano Lett. 23, 4082
(2023).

[27] L. P. Lindoy, A. Mandal, and D. R. Reichman, Resonant cavity
modification of ground-state chemical kinetics, J. Phys. Chem.
Lett. 13, 6580 (2022).

[28] A. Mandal, M. A. D. Taylor, B. M. Weight, E. R. Koessler,
X. Li, and P. Huo, Theoretical advances in polariton chemistry
and molecular cavity quantum electrodynamics, Chem. Rev.
123, 9786 (2023).

[29] M. Ruggenthaler, D. Sidler, and A. Rubio, Understanding po-
laritonic chemistry from Ab Initio quantum electrodynamics,
Chem. Rev. 123, 11191 (2023).

[30] B. M. Weight, X. Li, and Y. Zhang, Theory and modeling
of light-matter interactions in chemistry: current and future,
Phys. Chem. Chem. Phys. 25, 31554 (2023).

[31] D. S. Wang and S. F. Yelin, A roadmap toward the theory of
vibrational polariton chemistry, ACS Photon. 8, 2818 (2021).

[32] T. S. Haugland, J. P. Philbin, T. K. Ghosh, M. Chen, H. Koch,
and P. Narang, Understanding the polaritonic ground state in
cavity quantum electrodynamics, arXiv:2307.14822.

[33] J. J. Foley IV, J. F. McTague, and A. E. DePrince III, Ab initio
methods for polariton chemistry, Chem. Phys. Rev. 4, 041301
(2023).

[34] J. Flick, H. Appel, M. Ruggenthaler, and A. Rubio, Cavity
Born–Oppenheimer approximation for correlated electron–
nuclear-photon systems, J. Chem. Theory Comput. 13, 1616
(2017).

[35] T. Schnappinger, D. Sidler, M. Ruggenthaler, A. Rubio,
and M. Kowalewski, Cavity-Born-Oppenheimer Hartree-Fock
ansatz: Light-matter properties of strongly coupled molecular
ensembles, J. Phys. Chem. Lett. 14, 8024 (2023).

[36] B. M. Weight, T. D. Krauss, and P. Huo, Investigating
molecular exciton polaritons using Ab Initio cavity quantum
electrodynamics, J. Phys. Chem. Lett. 14, 5901 (2023).

[37] T. S. Haugland, E. Ronca, E. F. Kjønstad, A. Rubio, and H.
Koch, Coupled cluster theory for molecular polaritons: Chang-
ing ground and excited states, Phys. Rev. X 10, 041043 (2020).

[38] X. Li and Y. Zhang, First-principles molecular quan-
tum electrodynamics theory at all coupling strengths,
arXiv:2310.18228.

[39] J. Flick, C. Schäfer, M. Ruggenthaler, H. Appel, and A. Rubio,
Ab initio optimized effective potentials for real molecules in
optical cavities: Photon contributions to the molecular ground
state, ACS Photon. 5, 992 (2018).

[40] C. Pellegrini, J. Flick, I. V. Tokatly, H. Appel, and A. Rubio,
Optimized effective potential for quantum electrodynamical
time-dependent density functional theory, Phys. Rev. Lett.
115, 093001 (2015).

[41] J. Flick, N. Rivera, and P. Narang, Strong light-matter coupling
in quantum chemistry and quantum photonics, Nanophotonics
7, 1479 (2018).

[42] M. Ruggenthaler, J. Flick, C. Pellegrini, H. Appel, I. V.
Tokatly, and A. Rubio, Quantum-electrodynamical density-
functional theory: Bridging quantum optics and electronic-
structure theory, Phys. Rev. A 90, 012508 (2014).

[43] M. Ruggenthaler, N. Tancogne-Dejean, J. Flick, H. Appel, and
A. Rubio, From a quantum-electrodynamical light–matter de-
scription to novel spectroscopies, Nat. Rev. Chem. 2, 1 (2018).

032804-12

https://doi.org/10.1515/nanoph-2019-0340
https://doi.org/10.1002/anie.201905407
https://doi.org/10.1021/acs.chemrev.2c00748
https://doi.org/10.1021/acs.chemrev.2c00774
https://doi.org/10.1021/acs.nanolett.1c00973
https://doi.org/10.1002/anie.201908876
https://doi.org/10.1021/acs.jpcc.0c00692
https://doi.org/10.1021/acsphotonics.2c00007
https://doi.org/10.1038/s41467-023-39550-x
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1021/acsphotonics.7b01332
https://doi.org/10.1021/acsphotonics.0c01129
https://doi.org/10.1021/acsphotonics.7b01549
https://doi.org/10.1038/ncomms13078
https://doi.org/10.1038/nmat4940
https://doi.org/10.1038/s41467-022-35046-2
https://doi.org/10.1021/acs.jpcc.2c02076
https://doi.org/10.1021/acs.nanolett.3c01017
https://doi.org/10.1021/acs.jpclett.2c01521
https://doi.org/10.1021/acs.chemrev.2c00855
https://doi.org/10.1021/acs.chemrev.2c00788
https://doi.org/10.1039/D3CP01415K
https://doi.org/10.1021/acsphotonics.1c01028
https://arxiv.org/abs/2307.14822
https://doi.org/10.1063/5.0167243
https://doi.org/10.1021/acs.jctc.6b01126
https://doi.org/10.1021/acs.jpclett.3c01842
https://doi.org/10.1021/acs.jpclett.3c01294
https://doi.org/10.1103/PhysRevX.10.041043
https://arxiv.org/abs/2310.18228
https://doi.org/10.1021/acsphotonics.7b01279
https://doi.org/10.1103/PhysRevLett.115.093001
https://doi.org/10.1515/nanoph-2018-0067
https://doi.org/10.1103/PhysRevA.90.012508
https://doi.org/10.1038/s41570-018-0118


DIFFUSION QUANTUM MONTE CARLO APPROACH TO THE … PHYSICAL REVIEW A 109, 032804 (2024)

[44] T. S. Haugland, C. Schäfer, E. Ronca, A. Rubio, and H. Koch,
Intermolecular interactions in optical cavities: An ab initio
QED study, J. Chem. Phys. 154, 094113 (2021).
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